Effects of a Phytogenic Feed Additive on Redox Status, Blood Haematology, and Piglet Mortality in Primiparous Sows
Abstract
:1. Introduction
2. Results
2.1. Reproductive Parameters, Litter Characteristics and Body Conditions Indexes
2.2. Haematological Parameters
2.3. Redox Biomarkers
3. Materials and Methods
3.1. Trial Farm
3.2. Experimental Material
3.3. Study Design
- (a)
- T1 group-control group (32 sows): regular gestation (GF) and lactation feed (LF);
- (b)
- T2 group (32 sows): regular GF and LF supplemented with top-dressing of the commercial PFA product (Herb-AllTM CALM) (10 g/day in the morning meals per sow) for 14 days before farrowing until the 7th day of lactation, according to the manufacturer’s recommendations.
3.4. Blood Sampling
3.5. Laboratory Examinations for Redox Biomarkers
3.6. Records
3.7. Statistical Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Ji, Y.; Yin, C.; Deng, M.; Tang, T.; Deng, B.; Ren, W.; Deng, J.; Yin, Y.; Tan, C. Differential analysis of gut microbiota correlated with oxidative stress in sows with high or low litter performance during lactation. Front. Microbiol. 2018, 9, 362435. [Google Scholar] [CrossRef]
- Li, Q.; Yang, S.; Chen, F.; Guan, W.; Zhang, S. Nutritional strategies to alleviate oxidative stress in sows. Anim. Nutr. 2021, 9, 60–73. [Google Scholar] [CrossRef]
- Berchieri-Ronchi, C.B.; Kim, S.W.; Zhao, Y.; Correa, C.R.; Yeum, K.J.; Ferreira, A.L.A. Oxidative stress status of highly prolific sows during gestation and lactation. Animal 2011, 5, 1774–1779. [Google Scholar] [CrossRef]
- Toy, H.; Camuzcuoglu, H.; Arioz, D.T.; Kurt, S.; Celik, H.; Aksoy, N. Serum prolidase activity and oxidative stress markers in pregnancies with intrauterine growth restricted infants. J. Obstet. Gynaecol. Res. 2009, 35, 1047–1053. [Google Scholar] [CrossRef]
- Zhang, H.; Tsao, R. Dietary polyphenols, oxidative stress and antioxidant and anti-inflammatory effects. Curr. Opin. Food Sci. 2016, 8, 33–42. [Google Scholar] [CrossRef]
- Tuchscherer, M.; Kanitz, E.; Otten, W.; Tuchscherer, A. Effects of prenatal stress on cellular and humoral immune responses in neonatal pigs. Vet. Immunol. Immunopathol. 2002, 86, 195–203. [Google Scholar] [CrossRef]
- Emack, J.; Kostaki, A.; Walker, C.D.; Matthews, S.G. Chronic maternal stress affects growth, behaviour and hypothalamo-pituitary-adrenal function in juvenile offspring. Horm. Behav. 2008, 54, 514–520. [Google Scholar] [CrossRef]
- Kapoor, A.; Dunn, E.; Kostaki, A.; Andrews, M.H.; Matthews, S.G. Programming of hypothalamo-pituitary-adrenal function: Prenatal stress and glucocorticoids. J. Physiol. 2006, 572, 31–44. [Google Scholar] [CrossRef]
- Kranendonk, G.; Mulder, E.J.H.; Parvizi, N.; Taverne, M.A.M. Prenatal stress in pigs: Experimental approaches and field observations. Exp. Clin. Endocrinol. Diabetes. 2008, 116, 413–422. [Google Scholar] [CrossRef]
- Spoolder, H.A.M.; Geudeke, M.J.; Van der Peet-Schwering, C.M.C.; Soede, N.M. Group housing of sows in early pregnancy: A review of success and risk factors. Livest. Sci. 2009, 125, 1–14. [Google Scholar] [CrossRef]
- Einarsson, S.; Brandt, Y.; Lundeheim, N.; Madej, A. Stress and its influence on reproduction in pigs: A review. Acta Vet. Scand. 2008, 50, 48. [Google Scholar] [CrossRef]
- Kick, A.R.; Tompkins, M.B.; Almond, G.W. Stress and immunity in the pig. Anim. Sci. Rev. 2011, 212, 51–65. [Google Scholar] [CrossRef]
- Moberg, G.P.; Mench, J.A. The Biology of Animal Stress: Basic Principles and Implications for Animal Welfare; CABI: Wallingford, UK, 2000. [Google Scholar]
- Olsson, I.A.S.; de Jonge, F.H.; Schuurman, T.; Helmond, F.A. Poor rearing conditions and social stress in pigs: Repeated social challenge and the effect on behavioural and physiological responses to stressors. Behav. Process. 1999, 46, 201–215. [Google Scholar] [CrossRef]
- Salak-Johnson, J.L.; McGlone, J.J. Making sense of apparently conflicting data: Stress and immunity in swine and cattle. J. Anim. Sci. 2007, 85, 81–88. [Google Scholar] [CrossRef]
- Jarvis, S.; D’Eath, R.B.; Robson, S.K.; Lawrence, A.B. The effect of confinement during lactation on the hypothalamic–pituitary–adrenal axis and behaviour of primiparous sows. Physiol. Behav. 2006, 87, 345–352. [Google Scholar] [CrossRef]
- van der Staay, F.J.; Schuurman, T.; Hulst, M.; Smits, M.; Prickaerts, J.; Kenis, G.; Korte, S.M. Effects of chronic stress: A comparison between tethered and loose sows. Physiol. Behav. 2010, 100, 154–164. [Google Scholar] [CrossRef]
- Salak-Johnson, J.L. Social status and housing factors affect reproductive performance of pregnant sows in groups. Mol. Reprod. Dev. 2017, 84, 905–913. [Google Scholar] [CrossRef]
- Braastad, B.O. Effects of prenatal stress on behaviour of offspring of laboratory and farmed mammals. Appl. Anim. Behav. Sci. 1998, 61, 159–180. [Google Scholar] [CrossRef]
- Lagoda, M.E.; Marchewka, J.; O’Driscoll, K.; Boyle, L.A. Risk Factors for Chronic Stress in Sows Housed in Groups, and Associated Risks of Prenatal Stress in Their Offspring. Front. Vet. Sci. 2022, 9, 883154. [Google Scholar] [CrossRef]
- Baxter, E.M.; Edwards, S.A. Piglet Mortality and Morbidity. Advances in Pig Welfare; Elsevier: Amsterdam, The Netherlands, 2018; pp. 73–100. [Google Scholar]
- Rutherford, K.M.D.; Baxter, E.M.; Ask, B.; Berg, P.; D’Eath, R.B.; Jarvis, S.; Jensen, K.K.; Lawrence, A.B.; Moustsen, V.A.; Robson, S.K.; et al. The Ethical and Welfare Implications of Large Litter Size in the Domestic Pig: Challenges and Solutions; Danish Centre for Bioethics and Risk Assessment (CeBRA): Copenhagen, Denmark, 2011; Project report, No. 17. [Google Scholar]
- Stygar, A.H.; Chantziaras, I.; Maes, D.; Aarestrup Moustsen, V.; De Meyer, D.; Quesnel, H.; Kyriazakis, I.; Niemi, J.K. Economic feasibility of interventions targeted at decreasing piglet perinatal and pre-weaning mortality across European countries. Porcine Health Manag. 2022, 8, 22. [Google Scholar] [CrossRef]
- O’Reilly, K.M.; Harris, M.J.; Mendl, M.; Held, S.; Moinard, C.; Statham, P.; Marchant-Forde, J.; Green, L.E. Factors associated with preweaning mortality on commercial pig farms in England and Wales. Vet. Rec. 2006, 159, 193–196. [Google Scholar] [CrossRef]
- ZDS (Zentralverband der Deutschen Schweineproduktion e.V.). Schweine-Produktion 2010 in Deutschland; Georg-August-Universität Göttingen: Bonn, Germany, 2011; pp. 1–12. [Google Scholar]
- Dial, G.D.; Marsh, W.E.; Polson, D.D.; Vaillancourt, J.P. Reproductive Failure: Differential Diagnosis. In Disease of Swine, 7th ed.; Leman, A.L., Straw, B.E., Mengeling, W.L., D’Allaire, S., Taylor, D.J., Eds.; Ames Iowa State University Press: Ames, IA, USA, 1992; pp. 83–113. [Google Scholar]
- Cutler, R.S.; Fahy, V.A.; Spicer, E.M.; Cronin, G.M. Preweaning Mortality. In Diseases of Swine, 8th ed.; Straw, B.E., D’Allaire, S., Mengeling, W.L., Taylor., D.J., Eds.; Ames Iowa State University Press: Ames, IA, USA, 1999; pp. 985–1002. [Google Scholar]
- Edwards, S.A.; Smith, W.J.; Fordyce, C.; MacMenemy, F. An analysis of the causes of piglet mortality in a breed herd kept outdoors. Vet. Rec. 1994, 135, 324–327. [Google Scholar] [CrossRef]
- Nuntapaitoon, M.; Tummaruk, P. Factors influencing piglet pre-weaning mortality in 47 commercial swine herds in Thailand. Trop. Anim. Health Prod. 2018, 50, 129–135. [Google Scholar] [CrossRef]
- Wilson, M.R.; Friendship, R.M.; McMillan, I.; Hacker, R.R.; Pieper, R.; Swaminathan, S. A survey of productivity and its component interrelationships in Canadian swine herds. J. Anim. Sci. 1986, 62, 576–582. [Google Scholar] [CrossRef]
- Koketsu, Y.; Takenobu, S.; Nakamura, R. Preweaning mortality risks and recorded causes of death associated with production factors in swine breeding herds. J. Vet. Med. Sci. 2006, 68, 821–826. [Google Scholar] [CrossRef]
- Spicer, E.M.; Driesen, S.J.; Fahy, V.A.; Horton, B.J.; Sims, L.D.; Jones, R.T.; Cutler, R.S.; Prime, R.W. Causes of preweaning mortality on a large intensive piggery. Aust. Vet. J. 1986, 63, 71–75. [Google Scholar] [CrossRef]
- Friendship, M.; Wilson, M.; McMillan, I. Management and housing factors associated with piglet preweaning mortality. Can. Vet. J. 1986, 27, 307–311. [Google Scholar]
- Mainau, E.; Manteca, X. Pain and discomfort caused by parturition in cows and sows. Appl. Anim. Behav. Sci. 2011, 135, 241–251. [Google Scholar] [CrossRef]
- Peltoniemi, O.A.T.; Oliviero, C. Housing, Management and Environment during Farrowing and Early Lactation; Farmer, C., Ed.; The Gestating and Lactating Sow; Academic Publishers: Wageningen, The Netherlands, 2015; pp. 231–252. [Google Scholar]
- Papatsiros, V.G.; Alexopoulos, C.; Kyriakis, S.C. Postpartum dysgalactia syndrome of sows. J. Hell. Vet. Med. Soc. 2007, 58, 61–75. [Google Scholar] [CrossRef]
- Mainau, E.; Ruiz-de-la-Torre, J.L.; Dalmau, A.; Salleras, J.M.; Manteca, X. Effects of meloxicam (Metacam®) on post-farrowing sow behaviour and piglet performance. Animal 2012, 6, 494–501. [Google Scholar] [CrossRef]
- Sabaté, D.; Salichs, M.; Bosch, J.; Ramó, P.; Homedes, J. Efficacy of ketoprofen in the reduction of pre-weaning piglet mortality associated with sub-clinical forms of post-partum dysgalactia syndrome in sows. Pig J. 2012, 67, 19–23. [Google Scholar]
- Homedes, J.; Salichs, M.; Sabaté, D.; Sust, M.; Fabre, R. Effect of ketoprofen on pre-weaning piglet mortality on commercial farms. Vet. J. 2014, 201, 435–437. [Google Scholar] [CrossRef]
- Viitasaari, E.; Hänninen, L.; Heinonen, M.; Raekallio, M.; Orro, T.; Peltoniemi, O.; Valros, A. Effects of post-partum administration of ketoprofen on sow health and piglet growth. Vet. J. 2013, 198, 153–157. [Google Scholar] [CrossRef]
- Viitasaari, E.; Raekallio, M.; Heinonen, M.; Valros, A.; Peltoniemi, O.; Hänninen, L. The effect of ketoprofen on post-partum behaviour in sows. Appl. Anim. Behav. Sci. 2014, 158, 16–22. [Google Scholar] [CrossRef]
- Tenbergen, R.; Friendship, R.; Cassar, G.; Amezcua, M.R.; Haley, D. Investigation of the use of meloxicam post farrowing for improving sow performance and reducing pain. J. Swine Heal Prod. 2014, 22, 10–15. [Google Scholar]
- Papatsiros, V.G.; Katsogiannou, E.G.; Papakonstantinou, G.I.; Michel, A.; Petrotos, K.; Athanasiou, L.V. Effects of Phenolic Phytogenic Feed Additives on Certain Oxidative Damage Biomarkers and the Performance of Primiparous Sows Exposed to Heat Stress under Field Conditions. Antioxidants 2022, 11, 593. [Google Scholar] [CrossRef]
- Tzika, E.D.; Tassis, P.D.; Papatsiros, V.G.; Pferschy-Wenzig, E.M.; Siochu, A.; Bauer, R.; Alexopoulos, C.; Kyriakis, S.C.; Franz, C. Evaluation of in-feed larch sawdust anti-inflammatory effect in sows. Pol. J. Vet. Sci. 2017, 20, 321–327. [Google Scholar] [CrossRef]
- Reyes-Camacho, D.; Vinyeta, E.; Perez, J.F.; Aumiller, T.; Criado, L.; Palade, L.M. Phytogenic actives supplemented in hyperprolific sows: Effects on maternal transfer of phytogenic compounds, colostrum and milk features, performance and antioxidant status of sows and their offspring, and piglet intestinal gene expression. J. Anim. Sci. 2020, 98, skz390. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, G.; Kebreab, E.; Yu, Q.; Li, J.; Zhang, X. Effects of dietary grape seed polyphenols supplementation during late gestation and lactation on antioxidant status in serum and immunoglobulin content in colostrum of multiparous sows 1. J. Anim. Sci. 2019, 97, 2515–2523. [Google Scholar] [CrossRef]
- Chen, J.; Huang, Z.; Cao, X.; Zou, T.; You, J.; Guan, W. Plant-derived polyphenols in sow nutrition: An update. Anim. Nutri. 2022, 12, 96–107. [Google Scholar] [CrossRef]
- Jócsák, I.; Tossenberger, J.; Végvári, G.; Sudár, G.; Varga-Visi, É.; Tóth, T. How Is the Effect of Phytogenic Feed Supplementation Tested in Heat Stressed Pigs? Methodol. Sampl. Consid. 2020, 10, 257. [Google Scholar]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Jacela, J.; Derouchey, J.M.; Tokach, M.; Goodband, R.; Nelssen, J.; Renter, D.; Dritz, S. Feed additives for swine: Fact sheets—Prebiotics and probiotics, and phytogenics. J. Swine Health Prod. 2010, 18, 132–136. [Google Scholar]
- Kantas, D.; Papatsiros, V.G.; Tassis, P.D.; Athanasiou, L.V.; Tzika, E.D. Effect of a natural feed additive (Macleaya cordata), containing sanguinarine, on the performance and health status of weaning pigs. Anim. Sci. J. Nihon Chikusan Gakkaiho 2015, 86, 92–98. [Google Scholar] [CrossRef]
- Papatsiros, V.G.; Tzika, E.D.; Papaioannou, D.S.; Kyriakis, S.C.; Tassis, P.D.; Kyriakis, C.S. Effect of Origanum vulgaris and Allium sativum extracts for the control of proliferative enteropathy in weaning pigs. Pol. J. Vet. Sci. 2009, 12, 407–414. [Google Scholar]
- Papatsiros, V.; Tzika, E.; Tassis, P.; Kantas, D.; Filippopoulos, L.; Papaioannou, D. Greek experience of the use of phytogenic feed additives in organic pig farming. J. Cell Anim. Biol. 2011, 5, 320–323. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Ghosal, S.; Bhattacharya, S.K. Antioxidant activity of tannoid principles of Emblica officinalis (amla) in chronic stress induced changes in rat brain. Ind. J. Exp. Biol. 2000, 38, 877–880. [Google Scholar]
- Middha, S.K.; Goyal, A.K.; Lokesh, P.; Yardi, V.; Mojamdar, L.; Keni, D.S.; Babu, D.; Usha, T. Toxicological Evaluation of Emblica officinalis Fruit Extract and its Anti-inflammatory and Free Radical Scavenging Properties. Pharmacogn. Mag. 2015, 11, S427–S433. [Google Scholar]
- Jothie Richard, E.; Illuri, R.; Bethapudi, B.; Anandhakumar, S.; Bhaskar, A.; Chinampudur Velusami, C.; Mundkinajeddu, D.; Agarwal, A. Anti-stress Activity of Ocimum sanctum: Possible Effects on Hypothalamic-Pituitary-Adrenal Axis. Phytother. Res. 2016, 30, 805–814. [Google Scholar] [CrossRef]
- Chaudhary, A.; Sharma, S.; Mittal, A.; Gupta, S.; Dua, A. Phytochemical and antioxidant profiling of Ocimum sanctum. J. Food Sci. Technol. 2020, 57, 3852–3863. [Google Scholar] [CrossRef]
- Blomhoff, R.; Carlsen, M.H.; Andersen, L.F.; Jacobs, D.R., Jr. Health benefits of nuts: Potential role of antioxidants. Br. J. Nutr. 2008, 96, S52–S60. [Google Scholar] [CrossRef]
- McKay, D.L.; Chen, C.Y.; Yeum, K.J.; Matthan, N.R.; Lichtenstein, A.H.; Blumberg, J.B. Chronic and acute effects of walnuts on antioxidant capacity and nutritional status in humans: A randomized, cross-over pilot study. Nutr. J. 2010, 9, 21. [Google Scholar] [CrossRef]
- Lorenzon Dos Santos, J.; Quadros, A.S.; Weschenfelder, C.; Garofallo, S.B.; Marcadenti, A. Oxidative Stress Biomarkers, Nut-Related Antioxidants, and Cardiovascular Disease. Nutrients 2020, 12, 682. [Google Scholar] [CrossRef]
- Sordillo, L.M.; Aitken, S.L. Impact of oxidative stress on the health and immune function of dairy cattle. Vet. Immunol. Immunopathol. 2009, 128, 104–109. [Google Scholar] [CrossRef]
- Patsoukis, N.; Zervoudakis, G.; Panagopoulos, N.T.; Georgiou, C.D.; Angelatou, F.; Matsokis, N.A. Thiol redox state (TRS) and oxidative stress in the mouse hippocampus after pentylenetetrazol-induced epileptic seizure. Neurosci. Lett. 2004, 357, 83–86. [Google Scholar] [CrossRef]
- Muirhead, M.; Alexander, T. Nutrition and Disease. Managing Pig Health and the Treatment of Disease. A Reference for the Farm; 5M Enterprises: Sheffield, UK, 1997; pp. 441–470. [Google Scholar]
- Ray, G.; Batra, S.; Shukla, N.K.; Deo, S.; Raina, V.; Ashok, S. Lipid peroxidation, free radical production and antioxidant status in breast cancer. Breast Cancer Res. Treat 2000, 59, 163–170. [Google Scholar] [CrossRef]
- Trevisan, M.; Browne, R.; Ram, M.; Muti, P.; Freudenheim, J.; Carosella, A.M. Correlates of markers of oxidative status in the general population. Am. J. Epidemiol. 2001, 154, 348–356. [Google Scholar] [CrossRef]
- Shacter, E. Quantification and significance of protein oxidation in biological samples. Drug Metab. Rev. 2000, 32, 307–316. [Google Scholar] [CrossRef]
- Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A.G. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 1990, 186, 464–478. [Google Scholar]
- Halliwell, B.; Chirico, S. Lipid peroxidation: Its mechanism, measurement, and significance. Am. J. Clin. Nutr. 1993, 57, 715S–724S. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.; Wei, H.; Sun, H.; Ao, J.; Long, G.; Jiang, S.; Peng, J. Effects of Dietary Supplementation of Oregano Essential Oil to Sows on Oxidative Stress Status, Lactation Feed Intake of Sows, and Piglet Performance. Biomed Res. Int. 2015, 2015, 525218. [Google Scholar] [CrossRef]
- Rubio, C.P.; Mainau, E.; Cerón, J.J.; Conteras-Aguilar, M.D.; Martinez-Subiela, S.; Navarro, E.; Tecles, F.; Manteca, X.; Escribano, D. Biomarkers of oxidative stress in saliva in pigs: Analytical validation and changes in lactation. BMC Vet. Res. 2019, 15, 144. [Google Scholar] [CrossRef]
- Frame, C.A.; Johnson, E.; Kilburn, L.; Huff-Lonergan, E.; Kerr, B.J.; Serao, M.R. Impact of dietary oxidized protein on oxidative status and performance in growing pigs. J. Anim. Sci. 2020, 98, skaa097. [Google Scholar] [CrossRef]
- Orrico, F.; Laurance, S.; Lopez, A.C. Oxidative Stress in Healthy and Pathological Red Blood Cells. Biomolecules 2023, 13, 1262. [Google Scholar] [CrossRef]
- Freedman, J.E. Oxidative Stress and Platelets. Arterioscler. Thromb. Vasc. Biol. 2008, 28, s11–s16. [Google Scholar] [CrossRef]
- Kotani, K.; Sakane, N. White Blood Cells, Neutrophils, and Reactive Oxygen Metabolites among Asymptomatic Subjects. Intern. J. Prev. Med. 2012, 3, 428–431. [Google Scholar]
- Hatia, S.; Septembre-Malaterre, A.; Le Sage, F. Evaluation of antioxidant properties of major dietary polyphenols and their protective effect on 3T3-L1 preadipocytes and red blood cells exposed to oxidative stress. Free Radic. Res. 2014, 48, 387–401. [Google Scholar] [CrossRef]
- Singh, S.; Taneja, M.; Majumdar, D.K. Biological activities of Ocimum sanctum L. fixed oil—An overview. Ind. J. Experiment. Biol. 2007, 45, 403–412. [Google Scholar]
- Shakoor, H.; Feehan, J.; Apostolopoulos, V. Immunomodulatory Effects of Dietary Polyphenols. Nutrients 2021, 13, 728. [Google Scholar] [CrossRef]
- Neu, J.; Göres, N.; Kecman, J.; Voß, B.; Rosner, F.; Swalve, H.H.; Kemper, N. Behavioral Observation Procedures and Tests to Characterize the Suitability of Sows for Loose-Housed Farrowing Systems. Animals 2021, 11, 2547. [Google Scholar] [CrossRef]
- Bull, B.S.; Koepke, J.A.; Simson, E.; van Assendelft, O.W. Procedure for Determining Packed Cell Volume by the Microhematocrit Method; Approved Standard, 3rd ed.; Wayne: Wayne, PA, USA, 2000; p. 16. [Google Scholar]
- Gerasopoulos, K.; Stagos, D.; Kokkas, S.; Petrotos, K.; Kantas, D.; Goulas, P.; Kouretas, D. Feed supplemented with byproducts from olive oil mill wastewater processing increases antioxidant capacity in broiler chickens. Food Chem. Toxicol. 2015, 82, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Gerasopoulos, K.; Stagos, D.; Petrotos, K.; Kokkas, S.; Kantas, D.; Goulas, P.; Kouretas, D. Feed supplemented with polyphenolic byproduct from olive mill wastewater processing improves the redox status in blood and tissues of piglets. Food Chem. Toxicol. 2015, 86, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Keles, M.S.; Taysi, S.; Sen, N.; Aksoy, H.; Akçay, F. Effect of corticosteroid therapy on serum and CSF malondialdehyde and antioxidant proteins in multiple sclerosis. Can. J. Neurol. Sci. 2001, 28, 141–143. [Google Scholar] [CrossRef]
- Vanderhaeghe, C.; Dewulf, J.; De Vliegher, S.; Papadopoulos, G.A.; de Kruif, A.; Maes, D. Longitudinal field study to assess sow level risk factors associated with stillborn piglets. Anim. Reprod. Sci. 2010, 120, 78–83. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.; Barai, S.R. Effect of ocimum sanctum (TULSI) on haematological parameters of male albino rat. Biochem. Cell. Arch. 2016, 16, 85–88. [Google Scholar]
- Packirisamy, R.M.; Bobby, Z.; Panneerselvam, S.; Koshy, S.M.; Jacob, S.E. Metabolomic Analysis and Antioxidant Effect of Amla (Emblica officinalis) Extract in Preventing Oxidative Stress-Induced Red Cell Damage and Plasma Protein Alterations: An In Vitro Study. J. Med. Food. 2018, 21, 81–89. [Google Scholar] [CrossRef]
- Amad, A.; Wendler, K.; Zentek, J. Effects of a phytogenic feed additive on growth performance, selected blood criteria and jejunal morphology in broiler chickens. Emir. J. Food Agric. 2013, 25, 549–554. [Google Scholar]
- Kumar, K.; Dey, A.; Rose, M.; Dahiya, S. Impact of Dietary Phytogenic Composite Feed Additives on Immune Response, Antioxidant Status, Methane Production, Growth Performance and Nutrient Utilization of Buffalo (Bubalus bubalis) Calves. Antioxidants 2022, 11, 325. [Google Scholar] [CrossRef]
- Singh, P.; Ahlawat, N.; Pandey, R.; Singh, A. Effect of Phytogenic Feed Mixture on Blood Hematology, Metabolites, Enzymes and Lipids in Broilers. J. Anim. Res. 2022, 12, 713–719. [Google Scholar] [CrossRef]
- Singh, S.; Rehan, H.M.S.; Majumdar, D.K. Effect of Ocimum sanctum fixed oil on blood pressure, blood clotting time and pentobarbitone-induced sleeping time. J. Ethnopharmacol. 2001, 78, 139–143. [Google Scholar] [CrossRef]
- Sun, J.J.; Wang, P.; Chen, G.P.; Luo, J.Y.; Xi, Q.Y.; Cai, G.Y. Effect of Moringa oleifera supplementation on productive performance, colostrum composition and serum biochemical indexes of sow. J. Anim. Physiol. Anim. Nutr. 2020, 104, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Lipiński, K.; Antoszkiewicz, Z.; Mazur-Kuśnirek, M.; Korniewicz, D.; Kotlarczyk, S. The effect of polyphenols on the performance and antioxidant status of sows and piglet. Ital. J. Anim. Sci. 2019, 18, 174–181. [Google Scholar] [CrossRef]
- O’Driscoll, K.; Quinn, A.; Diaz, J.C.; Boyle, L. A closer look at preweaning mortality- Keeping your ‘born alive’ alive. In Proceedings of the Pig Farmers’ Conference, Tipperary, Ireland, 17–18 October 2017; pp. 3–19. [Google Scholar]
- Marchant, J.N.; Rudd, A.R.; Mendl, M.T.; Broom, D.M.; Meredith, M.J.; Corning, S.; Simmins, P.H. Timing and causes of piglet mortality in alternative and conventional farrowing systems. Vet. Rec. 2000, 147, 209–214. [Google Scholar] [CrossRef]
- Melišová, M.; Illmann, G.; Chaloupková, H.; Bozděchová, B. Sow postural changes, responsiveness to piglet screams, and their impact on piglet mortality in pens and crates. J. Anim. Sci. 2014, 92, 3064–3072. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, B.; Hegglin, D. Individual differences in the behaviour of sows at the nest-site and the crushing of piglets. Appl. Anim. Behav. Sci. 1997, 51, 39–49. [Google Scholar] [CrossRef]
- Valros, A.; Rundgren, M.; Špinka, M.; Saloniemi, H.; Algers, B. Sow activity level, frequency of standing-to-lying posture changes and anti-crushing behaviour—Within sow-repeatability and interactions with nursing behaviour and piglet performance. Appl. Anim. Behav. Sci. 2003, 83, 29–40. [Google Scholar] [CrossRef]
- Roehe, R.; Kalm, E. Estimation of genetic and environmental risk factors associated with pre-weaning mortality in piglets using generalized linear mixed models. Anim. Sci. 2000, 70, 227–240. [Google Scholar] [CrossRef]
- Baxter, M.R.; Petherick, J.C. The effect of restraint on parturition in the sow. Proc. Int. Pig Vet. Soc. 1980, 6, 84. [Google Scholar]
- Cronin, G.M.; Simpson, G.J.; Hemsworth, P.H. The effects of the gestation and farrowing environments on sow and piglet behaviour and piglet survival and growth in early lactation. Appl. Anim. Behav. Sci. 1996, 46, 175–192. [Google Scholar] [CrossRef]
- Niemi, J.K.; Jones, P.; Tranter, R.; Heinola, K. Cost of production diseases to pig farms. In Proceedings of the 24th International Pig Veterinary Society Congress, Dublin, Ireland, 7–10 June 2016. [Google Scholar]
- Muns, R.; Nuntapaitoon, M.; Tummaruk, P. Non-infectious causes of preweaning mortality in piglets. Livest. Sci. 2016, 184, 46–57. [Google Scholar] [CrossRef]
- Koketsu, Y.; Tani, S.; Iida, R. Factors for improving reproductive performance of sows and herd productivity in commercial breeding herds. Porcine Health Manag. 2017, 3, 1. [Google Scholar] [CrossRef] [PubMed]
- Nam, N.H.; Sukon, P. Risk factors for intrapartum stillbirth in piglets born from cloprostenol-induced farrowing sows. J. Appl. Anim. Res. 2022, 50, 420–425. [Google Scholar] [CrossRef]
- Oliviero, C.; Heinonen, M.; Valros, A.; Peltoniemi, O. Environmental and sow-related factors affecting the duration of farrowing. Anim. Reprod. Sci. 2010, 119, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Shurson, G.C.; Urriola, P.E.; Hung, Y.-T. Too Much of a Good Thing: Rethinking Feed Formulation and Feeding Practices for Zinc in Swine Diets to Achieve One Health and Environmental Sustainability. Animals 2022, 12, 3374. [Google Scholar] [CrossRef]
- Baxter, E.M.; Hall, S.A.; Farish, M.; Donbavand, J.; Brims, M.; Jack, M.; Lawrence, A.B.; Camerlink, I. Piglets’ behaviour and performance in relation to sow characteristics. Animal 2022, 17, 100699. [Google Scholar] [CrossRef]
Parameters | Groups | |||
---|---|---|---|---|
Litter characteristics | T1 | T2 | 95% CI | p-value |
Number of liveborn piglets | 15.8 (2.4) | 15.7 (1.7) | −0.9 to 1.2 | 0.800 |
Number of stillborn piglets | 2.1 (1.3) | 1.0 (0.9) | 0.5 to 1.7 | <0.001 |
Number of mummies | 0.7 (0.8) | 0.7 (0.6) | −0.3 to 0.4 | 0.809 |
Number of alive piglets 24 h after farrowing | 13.9 (1.6) | 15.4 (1.7) | −2.3 to −0.6 | 0.001 |
Number of crushed piglets | 1.3 (0.9) | 0.4 (0.6) | 0.5 to 1.3 | <0.001 |
Number of dead piglets until weaning | 0.5 (0.6) | 0.4 (0.6) | −0.2 to 0.4 | 0.730 |
Number of given piglets (fostering) | 0.2 (0.5) | 0.6 (0.7) | −0.7 to −0.1 | 0.009 |
Number of taken piglets (fostering) | 0.7 (0.8) | 0.2 (0.3) | 0.1 to 0.8 | <0.001 |
Number of weaned piglets | 12.6 (0.9) | 14.2 (0.7) | −2.0 to −1.1 | <0.001 |
BW of piglets at weaning (kg) | 7.5 (0.5) | 7.7 (0.6) | −0.5 to 0.2 | 0.071 |
Sow performance | T1 | T2 | 95% CI | p-value |
Back fat at farrowing (BFF) (cm) | 17.3 (0.9) | 16.9 (1.0) | −0.1 to 0.8 | 0.151 |
Back fat at weaning (BFW) (cm) | 12.7 (0.8) | 13.3 (0.7) | −0.9 to −0.2 | 0.030 |
Weaning to estrus period (days) | 5.8 (0.8) | 5.4 (0.6) | 0.0 to 0.7 | 0.025 |
Parameter | Group | Mean (SD) | 95% CI | p-Value |
---|---|---|---|---|
PCV (% red blood cells in total blood volume) | T1 | 35.6 (3.7) | 33.9–37.1 | 0.041 |
T2 | 38.9 (5.9) | 36.1–41.3 | ||
WBC (cells/μL) | T1 | 11,110.0 (3072.8) | 9935.3–12,428.5 | 0.051 |
T2 | 13,261.2 (3667.9) | 11,855.2–14,968.2 | ||
Neu (cells/μL) | T1 | 6648.0 (1844.8) | 5915.7–7504.0 | 0.051 |
T2 | 7996.4 (2354.3) | 7108.9–9051.2 | ||
Lymph (cells/μL) | T1 | 3545.8 (1359.4) | 3002.6–4101.5 | 0.224 |
T2 | 4096.0 (1454.7) | 3516.6–4806.3 | ||
Mono (cells/μL) | T1 | 513.3 (329.3) | 387.7–652.5 | 0.277 |
T2 | 631.2 (347.0) | 500.3–789.3 | ||
Eos (cells/μL) | T1 | 403.0 (265.2) | 288.4–522.7 | 0.104 |
T2 | 537.8 (246.9) | 440.7–658.6 | ||
PLT (cells/μL) | T1 | 236,920.0 (112,964.8) | 191,659.3–284,768.1 | 0.034 |
T2 | 319,300.8 (123,236.2) | 264,426.3–373,509.4 |
Mean Concentration | Group T1 | Group T2 | 95% CI | p-Value |
---|---|---|---|---|
CARBS (nmol/mL) | 24.8 (2.0) | 18.3 (0.9) | 5.1 to 7.7 | <0.001 |
TBARS (μmol/L) | 18.7 (1.2) | 14.9 (0.7) | 3 to 4.6 | <0.001 |
Feeding Schedule | ||
---|---|---|
Stage | Amount of feed (kg) | |
80th–110th day | 1.5 (GF) | |
110th–one day before farrowing | 1.5 (GF) | |
day of the farrowing | 0.5 (LF) | |
1st day after farrowing | 1.0 (LF) | |
2nd to 10th of lactation | increase of 0.5 per day (LF) | |
10th–12th day of lactation | maximum: 2.0 + 0.4 per piglet (LF) | |
13th–22nd day of lactation | 8.0 (LF) | |
23rd–24th day of lactation | 4.0 (LF) | |
Day of weaning | 2.0 (LF) | |
Composition of ingredients (kg) | GF | LF |
Corn | 0.300 | 344 |
Barley | 0.280 | 200 |
Wheat bran | 0.235 | 200 |
Soybean meal (46% crude protein) | 0.120 | 170 |
Soybean oil | 0.010 | 20 |
Protein concentrate (68% crude protein) * | 0.013 | 24 |
Vitamins/minerals premix ** | 0.030 | 30 |
Inactive dried yeast *** | 0.005 | 5 |
Mycotoxin binder **** | 0.002 | 2 |
Dietary cellulose powder ***** | 0.005 | 5 |
Total | 1 | 1 |
Analysed nutrient compositions (%) | GF | LF |
Crude protein | 16.50 | 18.40 |
Crude fat | 3.70 | 4.65 |
Crude fibre | 5.40 | 4.80 |
Lysine | 0.80 | 0.96 |
Methionine | 0.29 | 0.33 |
Methionine + Cystine | 0.60 | 0.63 |
Calcium | 0.65 | 0.86 |
Total phosphorus/available phosphorus | 0.76/0.40 | 0.78/0.46 |
Sodium | 0.24 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papatsiros, V.G.; Papakonstantinou, G.I.; Katsogiannou, E.; Gougoulis, D.A.; Voulgarakis, N.; Petrotos, K.; Braimaki, S.; Galamatis, D.A.; El-Sayed, A.; Athanasiou, L.V. Effects of a Phytogenic Feed Additive on Redox Status, Blood Haematology, and Piglet Mortality in Primiparous Sows. Stresses 2024, 4, 293-307. https://doi.org/10.3390/stresses4020018
Papatsiros VG, Papakonstantinou GI, Katsogiannou E, Gougoulis DA, Voulgarakis N, Petrotos K, Braimaki S, Galamatis DA, El-Sayed A, Athanasiou LV. Effects of a Phytogenic Feed Additive on Redox Status, Blood Haematology, and Piglet Mortality in Primiparous Sows. Stresses. 2024; 4(2):293-307. https://doi.org/10.3390/stresses4020018
Chicago/Turabian StylePapatsiros, Vasileios G., Georgios I. Papakonstantinou, Eleni Katsogiannou, Dimitrios A. Gougoulis, Nikolaos Voulgarakis, Konstantinos Petrotos, Sofia Braimaki, Dimitrios A. Galamatis, Amr El-Sayed, and Labrini V. Athanasiou. 2024. "Effects of a Phytogenic Feed Additive on Redox Status, Blood Haematology, and Piglet Mortality in Primiparous Sows" Stresses 4, no. 2: 293-307. https://doi.org/10.3390/stresses4020018