Efficacy of Green Extracting Solvents on Antioxidant, Xanthine Oxidase, and Plant Inhibitory Potentials of Solid-Based Residues (SBRs) of Cordyceps militaris
Abstract
:1. Introduction
2. Results
2.1. Adenosine and Cordycepin Content in Cordyceps Militaris SBRs
2.2. Antioxidant Activities and In Vitro Inhibition of Xanthine Oxidase (XOD)
2.3. Screening Analysis of GC-MS
2.4. Growth-Inhibitory Activity on Plants of Cordyceps Militaris SBRs Extract
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Reagents
4.3. Adenosine and Cordycepin Content in Cordyceps militaris SBRs
4.4. Antioxidant and Xanthine Oxidase Inhibition (XOD) Activities
4.5. GC-MS Screening Analysis
4.6. Growth-Inhibitory Activity Bioassays
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, S.-Y.; Litscher, G.; Gao, S.-H.; Zhou, S.-F.; Yu, Z.-L.; Chen, H.-Q.; Zhang, S.-F.; Tang, M.-K.; Sun, J.-N.; Ko, K.-M. Historical Perspective of Traditional Indigenous Medical Practices: The Current Renaissance and Conservation of Herbal Resources. Evid. Based Complement. Altern. Med. 2014, 2014, 525340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, S.T.; Wasser, S.P. The Role of Culinary-Medicinal Mushrooms on Human Welfare with a Pyramid Model for Human Health. Int. J. Med. Mushrooms 2012, 14, 95–134. [Google Scholar] [CrossRef] [PubMed]
- Valverde, M.E.; Hernández-Pérez, T.; Paredes-López, O. Edible Mushrooms: Improving Human Health and Promoting Quality Life. Int. J. Microbiol. 2015, 2015, 376387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, L.T.; Van Le, V.; Nguyen, B.T.T.; Ngo, N.X.; Nguyen, H.T.T.; Nguyen, Q.D.; Mulla, S. Cultural Characteristics and Cordycepin Production of Some Cordyceps militaris Strains under Artificial Cultivation Conditions. BioTechnologia 2020, 101, 135–145. [Google Scholar] [CrossRef]
- Kim, H.O.; Yun, J.W. A Comparative Study on the Production of Exopolysaccharides between Two Entomopathogenic Fungi Cordyceps militaris and Cordyceps sinensis in Submerged Mycelial Cultures. J. Appl. Microbiol. 2005, 99, 728–738. [Google Scholar] [CrossRef]
- Yu, X.-Y.; Zou, Y.; Zheng, Q.-W.; Lu, F.-X.; Li, D.-H.; Guo, L.-Q.; Lin, J.-F. Physicochemical, Functional and Structural Properties of the Major Protein Fractions Extracted from Cordyceps militaris Fruit Body. Food Res. Int. 2021, 142, 110211. [Google Scholar] [CrossRef]
- Dong, C.-H.; Yang, T.; Lian, T. A Comparative Study of the Antimicrobial, Antioxidant, and Cytotoxic Activities of Methanol Extracts from Fruit Bodies and Fermented Mycelia of Caterpillar Medicinal Mushroom Cordyceps militaris (Ascomycetes). Int. J. Med. Mushrooms 2014, 16, 485–495. [Google Scholar] [CrossRef]
- Prieto-Bermejo, R.; Romo-González, M.; Pérez-Fernández, A.; Ijurko, C.; Hernández-Hernández, Á. Reactive Oxygen Species in Haematopoiesis: Leukaemic Cells Take a Walk on the Wild Side. J. Exp. Clin. Cancer Res. 2018, 37, 125. [Google Scholar] [CrossRef] [Green Version]
- Tuli, H.S.; Sharma, A.K.; Sandhu, S.S.; Kashyap, D. Cordycepin: A Bioactive Metabolite with Therapeutic Potential. Life Sci. 2013, 93, 863–869. [Google Scholar] [CrossRef]
- Holliday, J.; Matt, C. On the Trail of the Yak Ancient Cordyceps in the Modern World. Available online: https://www.academia.edu/81461467/On%20the%20Trail%20of%20The%20Yak%20Ancient%20Cordyceps%20in%20the%20Modern%20World (accessed on 24 June 2022).
- Silva, D.; Ximenes, J.M. Using Different Cereals to Cultivate Cordyceps militaris; Assumption University: Bangkok, Thailand, 2019. [Google Scholar]
- Wang, Y.; Yang, Z.; Bao, D.; Li, B.; Yin, X.; Wu, Y.; Chen, H.; Tang, G.; Li, N.; Zou, G. Improving Hypoxia Adaption Causes Distinct Effects on Growth and Bioactive Compounds Synthesis in an Entomopathogenic Fungus Cordyceps militaris. Front. Microbiol. 2021, 12, 698436. [Google Scholar] [CrossRef]
- Ni, H.; Zhou, X.-H.; Li, H.-H.; Huang, W.-F. Column Chromatographic Extraction and Preparation of Cordycepin from Cordyceps militaris Waster Medium. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 2135–2141. [Google Scholar] [CrossRef]
- Roda, A.; Lucini, L.; Torchio, F.; Dordoni, R.; De Faveri, D.M.; Lambri, M. Metabolite Profiling and Volatiles of Pineapple Wine and Vinegar Obtained from Pineapple Waste. Food Chem. 2017, 229, 734–742. [Google Scholar] [CrossRef]
- Pintathong, P.; Chomnunti, P.; Sangthong, S.; Jirarat, A.; Chaiwut, P. The Feasibility of Utilizing Cultured Cordyceps militaris Residues in Cosmetics: Biological Activity Assessment of Their Crude Extracts. J. Fungi 2021, 7, 973. [Google Scholar] [CrossRef]
- Winterton, N. The Green Solvent: A Critical Perspective. Clean Technol. Environ. Policy 2021, 23, 2499–2522. [Google Scholar] [CrossRef]
- Capello, C.; Fischer, U.; Hungerbühler, K. What Is a Green Solvent? A Comprehensive Framework for the Environmental Assessment of Solvents. Green Chem. 2007, 9, 927–934. [Google Scholar] [CrossRef]
- Welton, T. Solvents and Sustainable Chemistry. Proc. Math. Phys. Eng. Sci. 2015, 471, 20150502. [Google Scholar] [CrossRef] [Green Version]
- Curzons, A.D.; Constable, D.C.; Cunningham, V.L. Solvent Selection Guide: A Guide to the Integration of Environmental, Health and Safety Criteria into the Selection of Solvents. Clean Technol. Environ. Policy 1999, 1, 82–90. [Google Scholar] [CrossRef]
- Jiménez-González, C.; Curzons, A.D.; Constable, D.J.C.; Cunningham, V.L. Expanding GSK’s Solvent Selection Guide—Application of life cycle assessment to enhance solvent selections. Clean Technol. Environ. Policy 2004, 7, 42–50. [Google Scholar] [CrossRef]
- Henderson, R.K.; Jiménez-González, C.; Constable, D.J.C.; Alston, S.R.; Inglis, G.G.A.; Fisher, G.; Sherwood, J.; Binks, S.P.; Curzons, A.D. Expanding GSK’s Solvent Selection Guide—Embedding Sustainability into Solvent Selection Starting at Medicinal Chemistry. Green Chem. 2011, 13, 854. [Google Scholar] [CrossRef]
- ACS GCI Pharmaceutical Roundtable Solvent Selection Guide Version 2.0 Issued March 21, 2011. Available online: https://www.acs.org/content/dam/acsorg/greenchemistry/industriainnovation/roundtable/acs-gci-pr-solvent-selection-guide.pdf (accessed on 11 November 2022).
- Alfonsi, K.; Colberg, J.; Dunn, P.J.; Fevig, T.; Jennings, S.; Johnson, T.A.; Peter Kleine, H.; Knight, C.; Nagy, M.A.; Perry, D.A.; et al. Green Chemistry Tools to Influence a Medicinal Chemistry and Research Chemistry Based Organisation. Green Chem. 2008, 10, 31–36. [Google Scholar] [CrossRef]
- Prat, D.; Pardigon, O.; Flemming, H.-W.; Letestu, S.; Ducandas, V.; Isnard, P.; Guntrum, E.; Senac, T.; Ruisseau, S.; Cruciani, P.; et al. Sanofi’s Solvent Selection Guide: A Step toward More Sustainable Processes. Org. Process Res. Dev. 2013, 17, 1517–1525. [Google Scholar] [CrossRef]
- Tekin, K.; Hao, N.; Karagoz, S.; Ragauskas, A.J. Ethanol: A Promising Green Solvent for the Deconstruction of Lignocellulose. ChemSusChem 2018, 11, 3559–3575. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [Green Version]
- Do, Q.D.; Angkawijaya, A.E.; Tran-Nguyen, P.L.; Huynh, L.H.; Soetaredjo, F.E.; Ismadji, S.; Ju, Y.-H. Effect of Extraction Solvent on Total Phenol Content, Total Flavonoid Content, and Antioxidant Activity of Limnophila aromatica. J. Food Drug Anal. 2014, 22, 296–302. [Google Scholar] [CrossRef] [Green Version]
- Chaves, J.O.; De Souza, M.C.; Da Silva, L.C.; Lachos-Perez, D.; Torres-Mayanga, P.C.; Machado, A.P.D.F.; Forster-Carneiro, T.; Vázquez-Espinosa, M.; González-de-Peredo, A.V.; Barbero, G.F.; et al. Extraction of Flavonoids from Natural Sources Using Modern Techniques. Front. Chem. 2020, 8, 507887. [Google Scholar] [CrossRef]
- Shanab, K.; Neudorfer, C.; Schirmer, E.; Spreitzer, H. Green Solvents in Organic Synthesis: An Overview. Curr. Org. Chem. 2013, 17, 1179–1187. [Google Scholar] [CrossRef]
- Elkhateeb, W.A.; Daba, G.M.; Thomas, P.W.; Wen, T.-C. Medicinal Mushrooms as a New Source of Natural Therapeutic Bioactive Compounds. Egypt. Pharm. J. 2019, 18, 88. [Google Scholar]
- Dong, J.Z.; Liu, M.R.; Lei, C.; Zheng, X.J.; Wang, Y. Effects of Selenium and Light Wavelengths on Liquid Culture of Cordyceps militaris Link. Appl. Biochem. Biotechnol. 2012, 166, 2030–2036. [Google Scholar] [CrossRef]
- Guo, M.; Guo, S.; Huaijun, Y.; Bu, N.; Dong, C.-H. Comparison of Major Bioactive Compounds of the Caterpillar Medicinal Mushroom, Cordyceps militaris (Ascomycetes), Fruiting Bodies Cultured on Wheat Substrate and Pupae. Int. J. Med. Mushrooms 2016, 18, 327–336. [Google Scholar] [CrossRef]
- Wang, C.-L.; Chiang, C.-J.; Chao, Y.-P.; Yu, B.; Lee, T.-T. Effect of Cordyceps militaris Waster Medium on Production Performance, Egg Traits and Egg Yolk Cholesterol of Laying Hens. J. Poult. Sci. 2015, 52, 188–196. [Google Scholar] [CrossRef]
- Hur, H. Chemical Ingredients of Cordyceps militaris. Mycobiology 2008, 36, 233–235. [Google Scholar] [CrossRef]
- Shih, I.-L.; Tsai, K.-L.; Hsieh, C. Effects of Culture Conditions on the Mycelial Growth and Bioactive Metabolite Production in Submerged Culture of Cordyceps militaris. Biochem. Eng. J. 2007, 33, 193–201. [Google Scholar] [CrossRef]
- Iamtham, S.; Kaewkam, A.; Chanprame, S.; Pan-utai, W. Effect of Spirulina Biomass Residue on Yield and Cordycepin and Adenosine Production of Cordyceps militaris Culture. Bioresour. Technol. Rep. 2022, 17, 100893. [Google Scholar] [CrossRef]
- Sies, H.; Jones, D.P. Reactive Oxygen Species (ROS) as Pleiotropic Physiological Signalling Agents. Nat. Rev. Mol. Cell Biol. 2020, 21, 363–383. [Google Scholar] [CrossRef]
- Yu, H.M.; Wang, B.-S.; Huang, S.C.; Duh, P.-D. Comparison of Protective Effects between Cultured Cordyceps militaris and Natural Cordyceps sinensis against Oxidative Damage. J. Agric. Food Chem. 2006, 54, 3132–3138. [Google Scholar] [CrossRef]
- Quy, T.; Xuan, T. Xanthine Oxidase Inhibitory Potential, Antioxidant and Antibacterial Activities of Cordyceps militaris (L.) Link Fruiting Body. Medicines 2019, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Eiamthaworn, K.; Kaewkod, T.; Bovonsombut, S.; Tragoolpua, Y. Efficacy of Cordyceps militaris Extracts against Some Skin Pathogenic Bacteria and Antioxidant Activity. J. Fungi 2022, 8, 327. [Google Scholar] [CrossRef]
- Liu, W.; Dun, M.; Liu, X.; Zhang, G.; Ling, J. Effects on Total Phenolic and Flavonoid Content, Antioxidant Properties, and Angiotensin I-Converting Enzyme Inhibitory Activity of Beans by Solid-State Fermentation with Cordyceps militaris. Int. J. Food Prop. 2022, 25, 477–491. [Google Scholar] [CrossRef]
- Shahidi, F.; Zhong, Y. Novel Antioxidants in Food Quality Preservation and Health Promotion. Eur. J. Lipid Sci. Technol. 2010, 112, 930–940. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, Y.; Zhang, L.; Cui, S.; Sun, Y. Structural Characterization and Antioxidant and Immunomodulation Activities of Polysaccharides from the Spent Rice Substrate of Cordyceps militaris. Food Sci. Biotechnol. 2015, 24, 1591–1596. [Google Scholar] [CrossRef]
- Yu, R.; Yang, W.; Song, L.; Yan, C.; Zhang, Z.; Zhao, Y. Structural Characterization and Antioxidant Activity of a Polysaccharide from the Fruiting Bodies of Cultured Cordyceps militaris. Carbohydr. Polym. 2007, 70, 430–436. [Google Scholar] [CrossRef]
- Wang, M.; Meng, X.Y.; Yang, R.L.; Qin, T.; Wang, X.Y.; Zhang, K.Y.; Fei, C.Z.; Li, Y.; Hu, Y.L.; Xue, F.Q. Cordyceps militaris Polysaccharides Can Enhance the Immunity and Antioxidation Activity in Immunosuppressed Mice. Carbohydr. Polym. 2012, 89, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, N.; Dulger, H.; Kiymaz, N.; Yilmaz, C.; Gudu, B.O.; Demir, I. Activity of Mannitol and Hypertonic Saline Therapy on the Oxidant and Antioxidant System during the Acute Term after Traumatic Brain Injury in the Rats. Brain Res. 2007, 1164, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, F.; Zhang, Z.; Terry, N. Optimization of Polysaccharide Production from Cordyceps militaris by Solid-State Fermentation on Rice and Its Antioxidant Activities. Foods 2019, 8, 590. [Google Scholar] [CrossRef] [Green Version]
- Sokołowska, E.; Sadowska, A.; Sawicka, D.; Kotulska-Bąblińska, I.; Car, H. A Head-to-head Comparison Review of Biological and Toxicological Studies of Isomaltulose, D-tagatose, and Trehalose on Glycemic Control. Crit. Rev. Food Sci. Nutr. 2022, 62, 5679–5704. [Google Scholar] [CrossRef]
- Taherimehr, Z.; Zaboli, M.; Torkzadeh-Mahani, M. New Insight into the Molecular Mechanism of the Trehalose Effect on Urate Oxidase Stability. J. Biomol. Struct. Dyn. 2022, 40, 1461–1471. [Google Scholar] [CrossRef]
- Wang, Z.-J.; Liang, C.-L.; Li, G.-M.; Yu, C.-Y.; Yin, M. Stearic acid protects primary cultured cortical neurons against oxidative stress. Acta Pharmacol. Sin. 2007, 28, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Boumerfeg, S.; Baghiani, A.; Messaoudi, D.; Khennouf, S.; Arrar, L. Antioxidant Properties and Xanthine Oxidase Inhibitory Effects of Tamus communis L. Root Extracts. Phytother. Res. 2009, 23, 283–288. [Google Scholar] [CrossRef]
- Holighaus, G.; Rohlfs, M. Fungal Allelochemicals in Insect Pest Management. Appl. Microbiol. Biotechnol. 2016, 100, 5681–5689. [Google Scholar] [CrossRef]
- Quy, T.N.; Xuan, T.D.; Andriana, Y.; Tran, H.-D.; Khanh, T.D.; Teschke, R. Cordycepin Isolated from Cordyceps militaris: Its Newly Discovered Herbicidal Property and Potential Plant-Based Novel Alternative to Glyphosate. Molecules 2019, 24, 2901. [Google Scholar] [CrossRef] [Green Version]
- Cimmino, A.; Masi, M.; Evidente, M.; Superchi, S.; Evidente, A. Fungal Phytotoxins with Potential Herbicidal Activity: Chemical and Biological Characterization. Nat. Prod. Rep. 2015, 32, 1629–1653. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.N.; Robinson, R.W.; Buultjens, A.; Al Harun, M.A.Y.; Shampa, S.H. Role of Allelopathy of Phragmites Australis in Its Invasion Processes. J. Exp. Mar. Bio. Ecol. 2017, 486, 237–244. [Google Scholar] [CrossRef]
- Henderson, A.M.; Gervais, J.A.; Luukinen, B.; Buhl, K.; Stone, D.; Strid, A.; Cross, A.; Jenkins, J. Glyphosate Technical Fact Sheet. Available online: http://npic.orst.edu/factsheets/archive/glyphotech.html (accessed on 24 June 2022).
- Li, S.P.; Li, P.; Dong, T.T.; Tsim, K.W. Determination of Nucleosides in Natural Cordyceps sinensis and Cultured Cordyceps mycelia by Capillary Electrophoresis. Electrophoresis 2001, 22, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Molyneux, P. The Use of the Stable Free Radical Diphenylpicrylhydrazyl (DPPH) for Estimating Antioxidant. Warasan Songkhla Nakharin 2004, 26, 211–219. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Unno, T.; Sugimoto, A.; Kakuda, T. Xanthine Oxidase Inhibitors from the Leaves of Lagerstroemia speciosa (L.) Pers. J. Ethnopharmacol. 2004, 93, 391–395. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, B.; Xie, K.; Liu, Y.; Zhang, Y.; Wang, Y.; Guo, Y.; Bu, X.; Liu, C.; Zhang, G.; et al. Determination of Dinitolmide and Its Metabolite 3-ANOT in Chicken Tissues via ASE-SPE-GC–MS/MS. J. Food Compost. Anal. 2018, 71, 94–103. [Google Scholar] [CrossRef]
- Minh, T.N.; Xuan, T.D.; Van, T.M.; Andriana, Y.; Viet, T.D.; Khanh, T.D.; Tran, H.-D. Phytochemical Analysis and Potential Biological Activities of Essential Oil from Rice Leaf. Molecules 2019, 24, 546. [Google Scholar] [CrossRef]
Extracts | Code | Adenosine (mg/g) | Cordycepin (mg/g) |
---|---|---|---|
EtOH | W0 | 0.002 ± 0.0003 d | 0.018 ± 0.0004 d |
E:W = 9:1 | W1 | 0.029 ± 0.001 d | 0.25 ± 0.008 c |
E:W = 8:2 | W2 | 0.096 ± 0.001 c | 0.298 ± 0.012 c |
E:W = 7:3 | W3 | 0.092 ± 0.001 c | 0.278 ± 0.007 c |
E:W = 6:4 | W4 | 0.381 ± 0.002 a | 0.561 ± 0.011 b |
E:W = 5:5 | W5 | 0.089 ± 0.0004 c | 0.251 ± 0.008 c |
E:W = 4:6 | W6 | 0.255 ± 0.001 b | 0.511 ± 0.014 bc |
E:W = 3:7 | W7 | 0.074 ± 0.0004 c | 0.316 ± 0.014 c |
E:W = 2:8 | W8 | nd | 0.26 ± 0.008 c |
E:W = 1:9 | W9 | nd | 0.212 ± 0.001 c |
Water | W10 | nd | 0.423 ± 0.007 c |
Hot water | Wt | nd | 0.67 ± 0.012 a |
Glue | Wg | nd | nd |
HPLC | Standards | ||
Retention time (min) | - | 9.117 ± 0.108 | 12.617 ± 0.122 |
LOD (µg/mL) | - | 0.274 | 0.366 |
LOQ (µg/mL) | - | 0.831 | 1.110 |
Extract | Code | IC50 (µg/mL) | IC50 (µg/mL) | |
---|---|---|---|---|
DPPH | ABTS | XOD | ||
EtOH | W0 | 1199.9 ± 6.0 b | 1227.8 ± 8.2 b | 782.2 ± 4.6 b |
E:W = 9:1 | W1 | 1182.2 ± 7.8 b | 1246.0 ± 7.5 b | 731.6 ± 7.2 b |
E:W = 8:2 | W2 | 411.5 ± 7.4 c | 457.4 ± 4.9 c | 451.7 ± 10.0 c |
E:W = 7:3 | W3 | 424.1 ± 7.3 c | 459.9 ± 5.8 c | 448.5 ± 9.9 c |
E:W = 6:4 | W4 | 118.5 ± 2.9 d | 194.2 ± 4.9 d | 186.0 ± 1.9 d |
E:W = 5:5 | W5 | 225.2 ± 5.3 cd | 234.1 ± 3.1 cd | 450.8 ± 3.7 cd |
E:W = 4:6 | W6 | 118.2 ± 5.4 d | 198.0 ± 7.7 d | 185.2 ± 6.0 d |
E:W = 3:7 | W7 | 851.2 ± 7.8 bc | 846.6 ± 7.2 bc | 466.8 ± 10.0 bc |
E:W = 2:8 | W8 | 1234.8 ± 8.7 b | 1230.3 ± 6.7 b | 778.2 ± 13.6 b |
E:W = 1:9 | W9 | 1232.5 ± 9.5 b | 1246.2 ± 8.7 b | 750.5 ± 5.0 b |
Water | W10 | 1964.3 ± 8.0 a | 2007.0 ± 6.8 a | 1103.5 ± 6.4 a |
Hot water | Wt | 413.5 ± 7.7 c | 413.4 ± 6.7 c | 1190.7 ± 7.7 c |
Glue | Wg | nd | nd | nd |
BHT | - | 18.0 ± 0.3 e | 40.0 ± 0.6 e | - |
Allopurinol | - | - | - | 20.8 ± 0.7 e |
Extract | Codes | Major Constituents | Retention Times (min) | Peak Area (%) |
---|---|---|---|---|
EtOH | W0 | Ste, Tre, Met, Ric, Oxa, Myr | 20.30, 21.45, 22.94, 23.70, 26.56, 27.40 | 24.79, 7.33, 36.12, 8.69, 8.8, 4.22 |
E:W = 9:1 | W1 | Gly, Tre, Met, Hex, Ric | 20.80, 22.65, 22.98, 23.22, 23.72, | 4.94, 5.76, 28.9, 34.52, 7.79, 0 |
E:W = 8:2 | W2 | Aqu, Tre, Gly, Hex, Ric, Ste, Met | 20.31, 20.79, 21.45, 23.28, 23.73, 25.60, 29.04 | 11.58, 1.81, 1.27, 18.49, 7.88, 7.98, 45.95 |
E:W = 7:3 | W3 | Aqu, Tre, Gly, Ric, Hex, Ste, Met | 20.32, 20.81, 21.48, 22.89, 23.29, 23.74, 29.15 | 14.07, 6.76, 1.25, 16.44, 13.14, 4.57, 38.56 |
E:W = 6:4 | W4 | Tre, Gly, Ric, Hex, Ste, Met | 20.82, 21.49, 22.82, 23.27, 25.65, 29.16 | 19.22, 10.23, 16.68, 17.26, 5.4, 18.93 |
E:W = 5:5 | W5 | Ace, Tre, Gly, Ric, Hex, Ste, Met | 11.93, 20.85, 21.53, 22.95, 23.25, 25.62, 29.12 | 2.83, 3.86, 3.25, 12.85, 23.61, 5.18, 35.78 |
E:W = 4:6 | W6 | Ace, Tre, Gly, Ric, Met | 11.91, 20.83, 21.50, 22.56, 28.35 | 3.67, 7.75, 9.24, 23.34, 24.19 |
E:W = 3:7 | W7 | Ace, Tre, Gly, Ric, Hex, 1-T | 11.91, 20.83, 21.51, 22.19, 22.86, 23.85 | 4.57, 14.37, 9.76, 32.22, 7.06, 6.28 |
E:W = 2:8 | W8 | Ace, Tre, Gly, 1-T | 11.88, 20.80, 21.50, 23.83 | 6.09, 15.61, 10.21, 9.41 |
E:W = 1:9 | W9 | Ace, 1H-, Tre, Gly, Hex, Phl | 11.92, 13.44, 20.83, 21.52, 22.74, 23.88 | 8.18, 3.85, 18.19, 25.46, 5.13, 32.83 |
Water | W10 | Ace, Tre, Gly, 1-T | 11.95, 20.86, 21.56, 23.90 | 3.28, 8.06, 12.26, 7.69 |
Hot water | Wt | Ace, Tre, Gly | 11.89, 20.79, 21.48 | 15.43, 8.49, 18.34 |
Glue | Wg | Tre | 20.77 | 30.16 |
Extract (Code) | R. sativus IC50 (μg/mL) | E. crus-galli IC50 (μg/mL) | L. sativa IC50 (μg/mL) | B. pilosa L. IC50 (μg/mL) | ||||
---|---|---|---|---|---|---|---|---|
Shoot | Root | Shoot | Root | Shoot | Root | Shoot | Root | |
W0 | 512.2 ± 10.8 b | 529.8 ± 15.4 b | 459.6 ± 16.3 b | 438.0 ± 13.0 b | 449.7 ± 13.5 b | 439.7 ± 3.7 b | 522.5 ± 10.5 b | 523.3 ± 12.2 b |
W1 | 163.0 ± 5.6 c | 172.8 ± 2.6 c | 151.0 ± 3.5 c | 147.5 ± 3.7 c | 150.7 ± 6.7 c | 140.9 ± 7.8 c | 178.3 ± 8.7 c | 172.1 ± 8.8 c |
W2 | 125.4 ± 2.0 c | 126.4 ± 4.5 c | 114.7 ± 4.3 c | 108.4 ± 3.7 c | 110.4 ± 3.8 c | 108.0 ± 3.5 c | 128.5 ± 2.6 c | 129.9 ± 5.9 c |
W3 | 122.4 ± 1.5 c | 119.8 ± 5.8 c | 113.3 ± 1.5 c | 108.8 ± 2.5 c | 113.2 ± 1.8 c | 106.7 ± 5.7 c | 127.9 ± 7.5 c | 123.4 ± 4.3 c |
W4 | 77.5 ± 4.4 d | 78.1 ± 3.9 d | 73.1 ± 3.4 d | 64.7 ± 1.4 d | 71.9 ± 1.5 d | 65.6 ± 0.8 d | 77.3 ± 1.2 d | 76.4 ± 3.2 d |
W5 | 119.8 ± 3.5 c | 128.9 ± 5.1 c | 115.6 ± 5.3 c | 106.8 ± 2.4 c | 109.8 ± 4.9 c | 107.5 ± 2.3 c | 121.7 ± 5.1 c | 127.9 ± 2.2 c |
W6 | 79.6 ± 1.0 d | 82.0 ± 1.3 d | 76.0 ± 3.9 d | 70.7 ± 0.8 d | 74.4 ± 0.6 d | 67.7 ± 2.4 d | 86.3 ± 4.1 d | 85.5 ± 3.7 d |
W7 | 116.8 ± 2.6 c | 121.5 ± 5.6 c | 111.4 ± 1.3 c | 105.5 ± 4.2 c | 107.6 ± 2.6 c | 101.4 ± 6.4 c | 119.6 ± 3.4 c | 122.6 ± 4.1 c |
W8 | 148.7 ± 6.1 c | 152.0 ± 6.6 c | 136.1 ± 4.9 c | 129.9 ± 5.1 c | 130.5 ± 6.6 c | 126.5 ± 8.8 c | 154.7 ± 1.5 c | 154.7 ± 1.7 c |
W9 | 164.0 ± 5.0 c | 175.4 ± 9.0 c | 157.2 ± 9.8 c | 145.3 ± 0.7 c | 148.8 ± 6.0 c | 147.2 ± 10.4 c | 176.9 ± 11.7 c | 174.7 ± 1.7 c |
W10 | 99.1 ± 1.6 cd | 106.2 ± 5.0 cd | 94.6 ± 3.7 cd | 84.5 ± 1.6 cd | 87.4 ± 3.8 cd | 84.6 ± 5.8 cd | 101.6 ± 2.8 cd | 100.4 ± 6.3 cd |
Wt | 62.0 ± 1.8 d | 63.4 ± 1.0 d | 57.4 ± 0.7 d | 54.5 ± 2.8 d | 56.9 ± 1.9 d | 54.9 ± 3.8 d | 64.7 ± 1.0 d | 63.6 ± 3.5 d |
Wg | 1025.1 ± 28.6 a | 1074.7 ± 24.2 a | 950.3 ± 27.7 a | 834.6 ± 22.5 a | 915.2 ± 25.3 a | 844.2 ± 12.9 a | 1070.0 ± 28.5 a | 1054.9 ± 21.7 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minh, T.N.; Anh, L.V.; Trung, N.Q.; Minh, B.Q.; Xuan, T.D. Efficacy of Green Extracting Solvents on Antioxidant, Xanthine Oxidase, and Plant Inhibitory Potentials of Solid-Based Residues (SBRs) of Cordyceps militaris. Stresses 2023, 3, 11-21. https://doi.org/10.3390/stresses3010002
Minh TN, Anh LV, Trung NQ, Minh BQ, Xuan TD. Efficacy of Green Extracting Solvents on Antioxidant, Xanthine Oxidase, and Plant Inhibitory Potentials of Solid-Based Residues (SBRs) of Cordyceps militaris. Stresses. 2023; 3(1):11-21. https://doi.org/10.3390/stresses3010002
Chicago/Turabian StyleMinh, Truong Ngoc, Le Viet Anh, Nguyen Quang Trung, Bui Quang Minh, and Tran Dang Xuan. 2023. "Efficacy of Green Extracting Solvents on Antioxidant, Xanthine Oxidase, and Plant Inhibitory Potentials of Solid-Based Residues (SBRs) of Cordyceps militaris" Stresses 3, no. 1: 11-21. https://doi.org/10.3390/stresses3010002
APA StyleMinh, T. N., Anh, L. V., Trung, N. Q., Minh, B. Q., & Xuan, T. D. (2023). Efficacy of Green Extracting Solvents on Antioxidant, Xanthine Oxidase, and Plant Inhibitory Potentials of Solid-Based Residues (SBRs) of Cordyceps militaris. Stresses, 3(1), 11-21. https://doi.org/10.3390/stresses3010002