Relationships between Grain Weight and Other Yield Component Traits of Maize Varieties Exposed to Heat-Stress and Combined Heat- and Water-Stress Conditions
Abstract
:1. Introduction
2. Results
2.1. Correlation Coefficient Analysis
2.2. Principal Component Analysis
2.3. Path Coefficient Analysis
3. Discussion
3.1. Correlation Coefficient Analysis
3.2. Principal Component Analysis
3.3. Path Coefficient Analysis
4. Materials and Methods
4.1. Treatments, Experimental Design, and Cultural Practices
- I.
- NHWS (no heat or water stress).
- II.
- HS (heat stress with no water stress).
- III.
- CHWS (heat stress with water stress).
4.2. Measurement of Plant Traits
4.3. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- UN. The Sustainable Development Goals Report; UN: New York, NY, USA, 2020; p. 66. [Google Scholar]
- FAO. The State of Food Security and Nutrition in the World 2018: Building Climate Resilience for Food Security and Nutrition; Food & Agriculture Organization: Rome, Italy, 2018. [Google Scholar]
- IPCC. Summary for Policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK, 2021; p. 41. [Google Scholar]
- Lobell, D.B.; Bänziger, M.; Magorokosho, C.; Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nat. Clim. Change 2011, 1, 42–45. [Google Scholar] [CrossRef]
- Meseka, S.; Menkir, A.; Bossey, B.; Mengesha, W. Performance assessment of drought tolerant maize hybrids under combined drought and heat stress. Agronomy 2018, 8, 274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelimor, C.; Badu-Apraku, B.; Tetteh, A.Y.; N’Guetta, A.S.P. Assessment of genetic diversity for drought, heat and combined drought and heat stress tolerance in early maturing maize landraces. Plants 2019, 8, 518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chukwudi, U.P.; Kutu, F.R.; Mavengahama, S. Heat stress effect on the grain yield of three drought-tolerant maize varieties under varying growth conditions. Plants 2021, 10, 1532. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-Cabral, N.Y.Z.; Kumar, L.; Shabani, F. Global alterations in areas of suitability for maize production from climate change and using a mechanistic species distribution model (CLIMEX). Sci. Rep. 2017, 7, 5910. [Google Scholar] [CrossRef] [Green Version]
- ACB. The Water Efficient Maize for Africa (WEMA) Project—Profiteering Not Philanthropy; Africa Centre for Biodiversity: Johannesburg, South Africa, 2017; p. 61. [Google Scholar]
- Lobell, D.B.; Hammer, G.L.; Chenu, K.; Zheng, B.; McLean, G.; Chapman, S.C. The shifting influence of drought and heat stress for crops in northeast Australia. Glob. Change Biol. 2015, 21, 4115–4127. [Google Scholar] [CrossRef]
- Sah, R.P.; Chakraborty, M.; Prasad, K.; Pandit, M.; Tudu, V.K.; Chakravarty, M.K.; Narayan, S.C.; Rana, M.; Moharana, D. Impact of water deficit stress in maize: Phenology and yield components. Sci. Rep. 2020, 10, 2944. [Google Scholar] [CrossRef] [Green Version]
- Inyang, P.; Ene, C.O.; Emmanuel, A.; Chukwudi, U.P.; Ikeogu, U.N. Environmental impact and genetic expressions of new drought-tolerant maize genotypes in derived savannah agro-ecology. Not. Sci. Biol. 2021, 13, 10691. [Google Scholar] [CrossRef]
- Uba, C.U.; Agbo, C.U.; Chukwudi, U.P.; Efusie, A.A.; Muojiama, S.O. Field evaluation of yield and yield component traits of breeding lines of maize over two seasons in derived Savannah agro-ecology. Not. Sci. Biol. 2018, 10, 567–574. [Google Scholar] [CrossRef]
- Kandel, M.; Ghimire, S.K.; Ojha, B.R.; Shrestha, J. Correlation and path coefficient analysis for grain yield and its attributing traits of maize inbred lines (Zea mays L.) under heat stress condition. Int. J. Agric. Environ. Food Sci. 2018, 2, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Jodage, K.; Kuchanur, P.; Zaidi, P.; Patil, A.; Seetharam, K.; Vinayan, M.; Arunkumar, B. Association and path analysis for grain yield and its attributing traits under heat stress condition in tropical maize (Zea mays L.). Electron. J. Plant Breed. 2017, 8, 336–341. [Google Scholar] [CrossRef]
- Begum, S.; Ahmed, A.; Omy, S.; Rohman, M.; Amiruzzaman, M. Genetic variability, character association and path analysis in maize (Zea mays L.). Bangladesh J. Agric. Res. 2016, 41, 173–182. [Google Scholar] [CrossRef]
- Yahaya, M.; Bello, I.; Unguwanrimi, A. Correlation and path-coefficient analysis for grain yield and agronomic traits of maize (Zea mays L.). Sci. World J. 2021, 16, 10–13. [Google Scholar]
- Makore, F.; Magorokosho, C.; Dari, S.; Gasura, E.; Mazarura, U.; Kamutando, C.N.; Mhike, X. Genetic evaluation and correlation analysis among various quantitative traits in maize single-cross hybrids under diverse environments. J. Agric. Sci. 2021, 13, 104–112. [Google Scholar] [CrossRef]
- Aman, J.; Bantte, K.; Alamerew, S.; Sbhatu, D.B. Correlation and path coefficient analysis of yield and yield components of quality protein maize (Zea mays L.) hybrids at Jimma, Western Ethiopia. Int. J. Agron. 2020, 2020, 9651537. [Google Scholar] [CrossRef]
- Pahadi, P.; Sapkota, M.; Thapa, D.; Pradhan, S. Cluster and principal component analysis for the selection of maize (Zea mays L.) genotypes. Int. J. Exp. Res. Rev. 2017, 9, 5–10. [Google Scholar] [CrossRef]
- Sandeep, S.; Bharathi, M.; Reddy, V.N. Principal component analysis in inbreds of maize (Zea mays L.). Int. J. Pure App. Biosci. 2017, 5, 2008–2013. [Google Scholar] [CrossRef]
- Morrison, D. Multivariate Statistical Methods, 3rd ed.; McGraw-Hill Publishing Co.: New York, NY, USA, 1990. [Google Scholar]
- Björklund, M. Be careful with your principal components. Evolution 2019, 73, 2151–2158. [Google Scholar] [CrossRef]
- Ali, F.; Ahsan, M.; Ali, Q.; Kanwal, N. Phenotypic stability of Zea mays grain yield and its attributing traits under drought stress. Front. Plant Sci. 2017, 8, 1397. [Google Scholar] [CrossRef] [Green Version]
- Shikha, K.; Shahi, J.; Singh, S. Path coefficient analysis in maize (Zea mays L.) hybrids. J. Pharmacogn. Phytochem. 2020, 9, 278–282. [Google Scholar]
- Lenka, D.; Misra, B. Path coefficient analysis of yield in rice varieties. Indian J. Agric. Sci. 1973, 43, 376–379. [Google Scholar]
- Chen, J.; Xu, W.; Velten, J.; Xin, Z.; Stout, J. Characterization of maize inbred lines for drought and heat tolerance. J. Soil Water Conserv. 2012, 67, 354. [Google Scholar] [CrossRef]
- Gong, F.; Wu, X.; Zhang, H.; Chen, Y.; Wang, W. Making better maize plants for sustainable grain production in a changing climate. Front. Plant Sci. 2015, 6, 835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- NWPG. North West Environment Outlook Report 2018; North West Provincial Government: Mafikeng, South Africa, 2018; pp. 1–52. [Google Scholar]
- Chukwudi, U.P.; Kutu, F.R.; Mavengahama, S. Influence of heat stress, variations in soil type, and soil amendment on the growth of three drought–tolerant maize varieties. Agronomy 2021, 11, 1485. [Google Scholar] [CrossRef]
- Chukwudi, U.P.; Mavengahama, S.; Kutu, F.R. Variation in maize grain yield indices when exposed to combined heat and water stress conditions under different soil amendments. Sustainability 2022, 14, 5150. [Google Scholar] [CrossRef]
- Dewey, D.R.; Lu, K.H. A correlation and path-coefficient analysis of components of crested wheatgrass seed production. Agron. J. 1959, 51, 515–518. [Google Scholar] [CrossRef]
Traits | NHWS | HS | CHWS |
---|---|---|---|
Number of leaves+ | 0.704 ** | 0.299 * | 0.486 * |
Leaf area+ | 0.600 ** | 0.360 * | 0.103 |
Leaf chlorophyll content+ | 0.482 ** | 0.002 | 0.225 |
Stem diameter+ | 0.586 ** | 0.324 * | 0.045 |
Plant height+ | 0.085 | 0.475 ** | −0.03 |
Final plant height | −0.386 ** | 0.399 ** | 0.484 * |
Days till tassel appearance | −0.246 * | −0.352 * | −0.003 |
Days till silk appearance | −0.430 ** | −0.314 * | −0.286 |
Tassel silk interval | −0.389 ** | 0.134 | −0.389 |
Dry biomass yield | 0.881 ** | 0.631 ** | 0.842 ** |
Harvest index | 0.877 ** | 0.650 ** | 0.829 ** |
Ear number | 0.359 ** | −0.263 | −0.082 |
Ear length | 0.790 ** | 0.598 ** | 0.538 * |
Ear width | 0.572 ** | 0.603 ** | 0.728 ** |
Shelling percentage | 0.577 ** | 0.729 ** | 0.747 ** |
Grain number | 0.903 ** | 0.921 ** | 0.927 ** |
100-seed weight | 0.396 ** | 0.134 | −0.006 |
Ear weight | 0.993 ** | 0.954 ** | 0.981 ** |
Grain weight | 1 | 1 | 1 |
Traits | NHWS | HS | CHWS | |||
---|---|---|---|---|---|---|
PC1 | PC2 | PC1 | PC2 | PC1 | PC2 | |
Number of leaves+ | −0.26296 | 0.12592 | 0.25912 | 0.24752 | −0.20990 | −0.01855 |
Leaf area+ | −0.22538 | 0.16858 | 0.20787 | 0.10417 | −0.15709 | −0.04957 |
Leaf chlorophyll content+ | −0.18253 | 0.17493 | 0.03402 | −0.21334 | 0.09545 | 0.39792 |
Stem diameter+ | −0.21024 | 0.24114 | 0.14280 | 0.29094 | −0.18232 | −0.22384 |
Plant height+ | −0.03190 | −0.34015 | 0.27431 | 0.21769 | −0.09640 | 0.01222 |
Final plant height | 0.15075 | 0.31159 | 0.20805 | −0.05292 | 0.02909 | 0.44050 |
Days till tassel appearance | 0.09076 | 0.50739 | −0.20770 | −0.37127 | 0.12243 | 0.41252 |
Days till silk appearance | 0.16629 | 0.43894 | −0.18787 | −0.33136 | 0.25971 | 0.32844 |
Tassel silk interval | 0.15813 | −0.06074 | 0.09129 | 0.17049 | 0.21364 | −0.08362 |
Dry biomass yield | −0.31787 | 0.19681 | 0.28336 | −0.11548 | −0.24458 | 0.34831 |
Harvest index | −0.29671 | −0.22039 | 0.18048 | −0.31517 | −0.32894 | −0.00055 |
Ear number | −0.14364 | −0.08226 | −0.22735 | −0.10875 | −0.16180 | −0.17835 |
Ear length | −0.27926 | 0.15452 | 0.25392 | −0.01927 | −0.23845 | 0.07906 |
Ear width | −0.19985 | 0.08010 | 0.22981 | −0.09986 | −0.29970 | −0.08942 |
Shelling percentage | −0.18469 | −0.27057 | 0.23467 | −0.27131 | −0.30179 | −0.08120 |
Grain number | −0.30634 | 0.00985 | 0.26843 | −0.33075 | −0.32963 | 0.12645 |
100-seed weight | −0.16087 | 0.04280 | 0.17726 | 0.28025 | −0.08076 | −0.01250 |
Grain weight | −0.34392 | −0.00304 | 0.32830 | −0.20572 | −0.32239 | 0.23356 |
Ear weight | −0.34372 | 0.02946 | 0.33857 | −0.17921 | −0.31562 | 0.25466 |
Eigenvalue | 8.162 | 3.119 | 7.152 | 3.322 | 7.155 | 3.702 |
Percentage variation | 42.96 | 16.41 | 37.64 | 17.48 | 37.66 | 19.48 |
NoL | LCC | FPH | DS | TSI | DBY | HI | CL | CW | SP | NoG | GWt | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
NoL | −0.0246 | −0.0052 | −0.0056 | 0.0021 | −0.0044 | 0.4320 | 0.2318 | 0.0031 | 0.0012 | 0.0061 | 0.0677 | 0.704 ** |
LCC | −0.0102 | −0.0124 | 0.0016 | 0.0002 | −0.0014 | 0.3467 | 0.1126 | 0.0032 | 0.0011 | 0.0016 | 0.0386 | 0.482 ** |
FPH | 0.0057 | −0.0008 | 0.0242 | −0.0052 | 0.0012 | −0.1065 | −0.2500 | 0.0000 | −0.0003 | −0.0093 | −0.0447 | −0.386 ** |
DS | 0.0063 | 0.0003 | 0.0151 | −0.0084 | 0.0032 | −0.1007 | −0.2982 | −0.0010 | −0.0005 | −0.0118 | −0.0348 | −0.430 ** |
TSI | 0.0134 | 0.0022 | 0.0036 | −0.0033 | 0.0081 | −0.2233 | −0.1532 | −0.0019 | −0.0005 | −0.0038 | −0.0302 | −0.389 ** |
DBY | −0.0194 | −0.0078 | −0.0047 | 0.0015 | −0.0033 | 0.5482 | 0.2699 | 0.0043 | 0.0021 | 0.0064 | 0.0840 | 0.881 ** |
HI | −0.0121 | −0.0030 | −0.0128 | 0.0053 | −0.0026 | 0.3138 | 0.4716 | 0.0032 | 0.0018 | 0.0209 | 0.0913 | 0.877 ** |
CL | −0.0141 | −0.0074 | −0.0001 | 0.0015 | −0.0030 | 0.4395 | 0.2812 | 0.0054 | 0.0018 | 0.0073 | 0.0783 | 0.790 ** |
CW | −0.0074 | −0.0034 | −0.0020 | 0.0010 | −0.0011 | 0.3029 | 0.2173 | 0.0025 | 0.0039 | 0.0077 | 0.0507 | 0.572 ** |
SP | −0.0056 | −0.0008 | −0.0085 | 0.0037 | −0.0012 | 0.1318 | 0.3717 | 0.0015 | 0.0011 | 0.0265 | 0.0568 | 0.577 ** |
NoG | −0.0149 | −0.0043 | −0.0097 | 0.0026 | −0.0022 | 0.4139 | 0.3869 | 0.0038 | 0.0018 | 0.0135 | 0.1113 | 0.903 ** |
Residual | 0.0130 |
NoL | LCC | FPH | DS | TSI | DBY | HI | CL | CW | SP | NoG | GWt | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
NoL | 0.0404 | −0.0302 | 0.0127 | 0.1298 | 0.0088 | −0.0289 | 0.0004 | 0.0244 | 0.0327 | 0.0134 | 0.0960 | 0.299 * |
LCC | −0.0176 | 0.0694 | 0.0013 | −0.0681 | −0.0237 | 0.0036 | 0.0160 | −0.0086 | 0.0019 | 0.0053 | 0.0227 | 0.002 |
FPH | 0.0114 | 0.0021 | 0.0447 | 0.0314 | −0.0005 | −0.0265 | 0.0527 | 0.0386 | 0.0687 | 0.0081 | 0.1680 | 0.399 ** |
DS | −0.0254 | 0.0229 | −0.0068 | −0.2066 | 0.0350 | 0.0093 | 0.0363 | −0.0264 | −0.0227 | −0.0281 | −0.1018 | −0.314 * |
TSI | 0.0023 | −0.0109 | −0.0002 | −0.0477 | 0.1518 | −0.0067 | −0.0426 | 0.0250 | 0.0292 | −0.0184 | 0.0523 | 0.134 |
DBY | 0.0207 | −0.0044 | 0.0210 | 0.0342 | 0.0179 | −0.0565 | 0.1475 | 0.0543 | 0.0948 | 0.0506 | 0.2507 | 0.631 ** |
HI | 0.0001 | 0.0036 | 0.0075 | −0.0240 | −0.0206 | −0.0266 | 0.3134 | 0.0325 | 0.0343 | 0.0720 | 0.2573 | 0.650 ** |
CL | 0.0103 | −0.0063 | 0.0181 | 0.0572 | 0.0398 | −0.0322 | 0.1070 | 0.0953 | 0.0700 | 0.0191 | 0.2192 | 0.598 ** |
CW | 0.0062 | 0.0006 | 0.0144 | 0.0220 | 0.0208 | −0.0251 | 0.0504 | 0.0313 | 0.2131 | 0.0513 | 0.2180 | 0.603 ** |
SP | 0.0047 | 0.0032 | 0.0032 | 0.0507 | −0.0244 | −0.0249 | 0.1970 | 0.0159 | 0.0954 | 0.1146 | 0.2940 | 0.729 ** |
NoG | 0.0095 | 0.0039 | 0.0184 | 0.0515 | 0.0195 | −0.0347 | 0.1975 | 0.0512 | 0.1138 | 0.0825 | 0.4083 | 0.921 ** |
Residual | 0.0715 |
NoL | LCC | FPH | DS | TSI | DBY | HI | CL | CW | SP | NoG | GWt | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
NoL | 0.0045 | −0.0043 | 0.0047 | −0.0973 | 0.0889 | 0.0170 | 0.3873 | 0.0701 | 0.0402 | −0.0897 | 0.0648 | 0.486 * |
LCC | −0.0001 | 0.2210 | 0.0214 | 0.1460 | −0.0066 | 0.0194 | −0.2340 | −0.0003 | 0.0108 | 0.0397 | 0.0078 | 0.225 |
FPH | 0.0004 | 0.1008 | 0.0469 | 0.0425 | 0.0296 | 0.0196 | 0.2252 | 0.0342 | 0.0278 | −0.0786 | 0.0355 | 0.484 * |
DS | −0.0014 | 0.1042 | 0.0064 | 0.3097 | −0.2205 | −0.0003 | −0.5324 | −0.0294 | −0.0362 | 0.1547 | −0.0406 | −0.286 |
TSI | −0.0013 | 0.0047 | −0.0045 | 0.2199 | −0.3105 | −0.0190 | −0.2897 | −0.0465 | −0.0217 | 0.1215 | −0.0415 | −0.389 |
DBY | 0.0017 | 0.0981 | 0.0210 | −0.0019 | 0.1349 | 0.0438 | 0.4220 | 0.0842 | 0.0489 | −0.0795 | 0.0690 | 0.842 ** |
HI | 0.0018 | −0.0522 | 0.0107 | −0.1666 | 0.0909 | 0.0187 | 0.9899 | 0.0514 | 0.0876 | −0.2907 | 0.0876 | 0.829 ** |
CL | 0.0019 | −0.0003 | 0.0096 | −0.0542 | 0.0861 | 0.0220 | 0.3035 | 0.1677 | 0.0509 | −0.1038 | 0.0546 | 0.538 * |
CW | 0.0015 | 0.0199 | 0.0108 | −0.0932 | 0.0560 | 0.0178 | 0.7199 | 0.0709 | 0.1204 | −0.2698 | 0.0734 | 0.728 ** |
SP | 0.0012 | −0.0268 | 0.0113 | −0.1463 | 0.1152 | 0.0106 | 0.8787 | 0.0532 | 0.0992 | −0.3274 | 0.0782 | 0.747 ** |
NoG | 0.0028 | 0.0164 | 0.0159 | −0.1200 | 0.1230 | 0.0288 | 0.8280 | 0.0873 | 0.0844 | −0.2443 | 0.1048 | 0.927 ** |
Residual | 0.0055 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chukwudi, U.P.; Mavengahama, S.; Kutu, F.R. Relationships between Grain Weight and Other Yield Component Traits of Maize Varieties Exposed to Heat-Stress and Combined Heat- and Water-Stress Conditions. Stresses 2022, 2, 467-476. https://doi.org/10.3390/stresses2040032
Chukwudi UP, Mavengahama S, Kutu FR. Relationships between Grain Weight and Other Yield Component Traits of Maize Varieties Exposed to Heat-Stress and Combined Heat- and Water-Stress Conditions. Stresses. 2022; 2(4):467-476. https://doi.org/10.3390/stresses2040032
Chicago/Turabian StyleChukwudi, Uchechukwu Paschal, Sydney Mavengahama, and Funso Raphael Kutu. 2022. "Relationships between Grain Weight and Other Yield Component Traits of Maize Varieties Exposed to Heat-Stress and Combined Heat- and Water-Stress Conditions" Stresses 2, no. 4: 467-476. https://doi.org/10.3390/stresses2040032
APA StyleChukwudi, U. P., Mavengahama, S., & Kutu, F. R. (2022). Relationships between Grain Weight and Other Yield Component Traits of Maize Varieties Exposed to Heat-Stress and Combined Heat- and Water-Stress Conditions. Stresses, 2(4), 467-476. https://doi.org/10.3390/stresses2040032