Time Series Transformer-Based Modeling of Pavement Skid and Texture Deterioration
Abstract
1. Introduction
2. Literature Review
2.1. The Impact of Skid Resistance and Surface Texture on Road Safety
2.2. Influence of Micro-Milling Treatment on Skid Resistance and Surface Texture
2.3. Factors Affecting Skid Resistance and Surface Texture Deterioration
2.4. Deterioration Modeling of Skid Resistance and Surface Texture
2.5. Limitations and Research Gaps
3. Methodology
3.1. Problem Formulation
3.2. Time Series Transformer
3.2.1. Feature Embedding and Positional Encoding
3.2.2. Self-Attention Encoder
3.2.3. Sequence Pooling and Regression Head
3.3. Loss Function and Optimization
4. Case Study
4.1. Data Collection
4.2. Data Description
4.3. Modeling Results
5. Discussion
5.1. Practical Implications and Limitations
5.2. Future Research
6. Conclusions
6.1. Summary of Findings
6.2. Limitations
6.3. Recommendations for Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- He, Y.; Wang, C.; Yang, X.; Fan, Z.; Lu, G.; Liu, P.; Wang, D. Skid Resistance Performance Analysis and Driving Safety Evaluation in the Full Life Cycle of Asphalt Pavement. J. Transp. Eng. Part B Pavements 2024, 150, 04024047. [Google Scholar] [CrossRef]
- Canestrari, F.; Mariani, E.; Ingrassia, L.P. Use of Wehner-Schulze machine to evaluate pavement skid resistance: A review. J. Traffic Transp. Eng. (Engl. Ed.) 2024, 11, 896–917. [Google Scholar] [CrossRef]
- Subedi, A.; Acharya, S.; Singleton, P.; Mekker, M. Safety Performance Functions and Crash Modification Factors for Skid Resistance on Interstate and Non-Interstate Highways. Transp. Res. Rec. 2025, 03611981251337473. [Google Scholar] [CrossRef]
- Hibbs, B.O.; Larson, R.M. Tire Pavement Noise and Safety Performance, PCC Surface Texture Technical Working Group; Technical report; Federal Highway Administration, Office of Engineering: Washington, DC, USA, 1996. [Google Scholar]
- Kumar, A.; Gupta, A. Review of factors controlling skid resistance at tire-pavement interface. Adv. Civ. Eng. 2021, 2021, 2733054. [Google Scholar] [CrossRef]
- Yang, G.; Chen, K.T.; Wang, K.; Li, J.; Zou, Y. Field Study of Asphalt Pavement Texture and Skid Resistance under Traffic Polishing Using 0.01 mm 3D Images. Lubricants 2024, 12, 256. [Google Scholar] [CrossRef]
- Dave, E.V.; Sias, J.E.; Miech, K.; Mallick, R.B. Understanding and Improving Pavement Milling Operations; Technical report; Department of Transportation: St. Paul, MN, USA, 2025. [Google Scholar]
- Li, W.; Zheng, M.; Ning, Z.; Zhang, W.; Ding, X. The design and performance evaluation of low-noise rubber-fibre micro-surfacing pavement. Int. J. Pavement Eng. 2024, 25, 2414056. [Google Scholar] [CrossRef]
- Khasawneh, M.A.; Khasawneh, A.A.; Alnazer, T. Investigating the impact of pavement surface features on skid resistance: A review on machine learning approach. In Civil and Environmental Engineering for Resilient, Smart and Sustainable Solutions; Materials Research Proceedings; Materials Research Forum LLC.: Millersville PA, USA, 2025; Volume 48. [Google Scholar]
- Li, S.; Hu, J.; Tan, Y.; Xiao, S.; Han, M.; Li, S.; Li, J.; Wang, W. A review of non-contact approach for pavement skid resistance evaluation based on texture. Tribol. Int. 2024, 196, 109737. [Google Scholar] [CrossRef]
- Do, M.T.; Kane, M.; Tang, Z.; de Larrard, F. Physical model for the prediction of pavement polishing. Wear 2009, 267, 81–85. [Google Scholar] [CrossRef]
- de León Izeppi, E.; Flintsch, G.; Katicha, S.; McCarthy, R.; McGhee, K. Locked-Wheel and Sideway-Force CFME Friction Testing Equipment Comparison and Evaluation Report; Technical report; Federal Highway Administration: Washington, DC, USA, 2019. [Google Scholar]
- Tian, X.; Xu, Y.; Wei, F.; Gungor, O.; Li, Z.; Wang, C.; Li, S.; Shan, J. Pavement macrotexture determination using multi-view smartphone images. Photogramm. Eng. Remote Sens. 2020, 86, 643–651. [Google Scholar] [CrossRef]
- Fwa, T. Pavement skid resistance properties for safe aircraft operations. J. Road Eng. 2024, 4, 361–385. [Google Scholar] [CrossRef]
- Mayora, J.M.P.; Piña, R.J. An assessment of the skid resistance effect on traffic safety under wet-pavement conditions. Accid. Anal. Prev. 2009, 41, 881–886. [Google Scholar] [CrossRef]
- Long, K.; Wu, H.; Zhang, Z.; Murphy, M. Quantitative Relationship Between Crash Risks and Pavement Skid Resistance; Technical report; Deptement of Transportation, Research and Technology Implementation Office: Washington, DC, USA, 2014. [Google Scholar]
- Tsai, J.Y.; Wang, Z.; Gadsby, A. Evaluation of the Long-Term Performance and Benefit of Using an Enhanced Micro-Milling Resurfacing Method [GDOT 13-20]; Technical report; Department of Transportation, Office of Performance-Based: Forest Park, GA, USA, 2019. [Google Scholar]
- Gao, L.; de Fortier Smit, A.; Prozzi, J.A.; Buddhavarapu, P.; Murphy, M.; Song, L. Milled pavement texturing to optimize skid improvements. Constr. Build. Mater. 2015, 101, 602–610. [Google Scholar] [CrossRef]
- Nittinger, R.J. Milling and Planing of Flexible Pavement; Technical report; Federal Highway Administration: Washington, DC, USA, 1977. [Google Scholar]
- Cho, S.; Moncada, O.A.; Francioso, V.; Haddock, J.E. Performance-Related Specifications for Pavement Milling; Technical report; Purdue University, Joint Transportation Research Program: West Lafayette, IN, USA, 2024. [Google Scholar]
- Hui, B.; Liang, H.; Li, S.; Guo, M.; Liu, X. Quality control of micro-milling treatment on tunnel concrete pavement using 3D range data. Int. J. Pavement Eng. 2022, 23, 1612–1621. [Google Scholar] [CrossRef]
- Hung, S.S.; Rezaei, A.; Harvey, J.T. Effects of milling and other repairs on smoothness of overlays on asphalt pavements. Transp. Res. Rec. 2014, 2408, 86–94. [Google Scholar] [CrossRef]
- Khanal, S.; Gilliland, A.; Mohanraj, K. Ultra-Thin Bonding Wearing Course Case Study; Technical report; Federal Highway Administration. Office of Preconstruction: Washington, DC, USA, 2023. [Google Scholar]
- Wei, J.; Zhang, Z.; He, Y.; Tan, Q.; Yang, X.; Wang, D.; Oeser, M. Study on the skid resistance deterioration behavior of the SMA pavement. Sustainability 2022, 14, 2864. [Google Scholar] [CrossRef]
- Ünal, E.N.; Komut, M.; Altıok, Ş. Effect of aggregate and pavement types on skid resistance evolution. In Proceedings of the 7th Eurasphalt and Eurobitume Congress, Madrid, Spain, 15–17 June 2021; Kenes Group: Geneva, Switzerland, 2021. [Google Scholar]
- Kane, M.; Lim, M.; Do, M.T.; Edmondson, V. A new predictive skid resistance model (PSRM) for pavement evolution due to texture polishing by traffic. Constr. Build. Mater. 2022, 342, 128052. [Google Scholar] [CrossRef]
- Chu, L.; Zhou, B.; Fwa, T. Directional characteristics of traffic polishing effect on pavement skid resistance. Int. J. Pavement Eng. 2022, 23, 2937–2953. [Google Scholar] [CrossRef]
- Persson, B.N.; Tartaglino, U.; Albohr, O.; Tosatti, E. Rubber friction on wet and dry road surfaces: The sealing effect. Phys. Rev. B—Condens. Matter Mater. Phys. 2005, 71, 035428. [Google Scholar] [CrossRef]
- Baran, E. Temperature influence on skid resistance measurement. In Proceedings of the International Surface Friction Conference, 3rd, Gold Coast Queensland, Australia, 15–18 May 2011. [Google Scholar]
- Peng, W.; Li, P.; Gao, J.; Liu, Z.; Wang, X.; Wang, S.; Wu, W. Long-term skid resistance evolution and influence mechanism of asphalt pavement based on self-developed wear equipment. Constr. Build. Mater. 2024, 453, 139085. [Google Scholar] [CrossRef]
- Meng, Y.; Chen, Z.; Wang, Z.; Lu, H.; Qing, G.; Liu, Z.; Wang, Y. Evaluating the Anti-Skid Performance of Asphalt Pavements with Basalt and Limestone Composite Aggregates: Testing and Prediction. Buildings 2024, 14, 2339. [Google Scholar] [CrossRef]
- Zhang, C.; Zeng, L.; Wang, H.; Qu, X. The impact of coarse aggregate mineral compositions on skid resistance performance of asphalt pavement: A comprehensive study. PLoS ONE 2024, 19, e0308721. [Google Scholar] [CrossRef] [PubMed]
- Roshan, A.; Abdelrahman, M. Impact of Aggregate Characteristics on Frictional Performance of Asphalt-Based High Friction Surface Treatments. CivilEng 2025, 6, 4. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.a.; Yang, C.; Chen, S.; Yu, H.; Huang, T.; Li, X.; You, Z. Effect of coarse aggregate characteristics on skid resistance deterioration of the ultrathin wearing course. J. Mater. Civ. Eng. 2021, 33, 04021051. [Google Scholar] [CrossRef]
- AlKofahi, N.; Khedaywi, T. Evaluation the effect of asphalt film thickness on stripping resistance. Int. J. Appl. Eng. Res. 2019, 14, 560–570. [Google Scholar]
- Pranjić, I.; Deluka-Tibljaš, A.; Cuculić, M.; Skender, R. Pavement surface macrotexture analysis. In Proceedings of the 5th International Conference on Road and Rail Infrastructure CETRA, Zadar, Croatia, 17–19 May 2018; pp. 359–367. [Google Scholar]
- Putra, A.D.; Hadiwardoyo, S.P.; Sumabrata, R.J. Skid resistance performance against temperature change of hot-mix recycled asphalt pavement with added crumb rubber. In Proceedings of the 5th International Conference on Engineering, Technology, and Industrial Application (ICETIA) 2018, Surakarta, Indonesia, 12–13 December 2018; AIP Publishing: Surakarta, Indonesia, 2019; Volume 2114. [Google Scholar]
- Pasindu, H. Analytical evaluation of impact of groove deterioration on runway frictional performance. Transp. Res. Procedia 2020, 48, 3814–3823. [Google Scholar] [CrossRef]
- Anderson, D.; Henry, J. Wet-pavement friction of pavement-marking materials. Transp. Res. Rec. 1980, 777, 58–62. [Google Scholar]
- Chen, Y.; Li, Z.; Wang, Y.; Liang, G.; Yang, X. A Review of Long-Term Skid Resistance of Asphalt Pavement. Appl. Sci. 2025, 15, 1895. [Google Scholar] [CrossRef]
- Kumar, A.; Tang, T.; Gupta, A.; Anupam, K. A state-of-the-art review of measurement and modelling of skid resistance: The perspective of developing nation. Case Stud. Constr. Mater. 2023, 18, e02126. [Google Scholar] [CrossRef]
- Gao, L.; Aguiar-Moya, J.P.; Zhang, Z. Bayesian analysis of heterogeneity in modeling of pavement fatigue cracking. J. Comput. Civ. Eng. 2012, 26, 37–43. [Google Scholar] [CrossRef]
- Archilla, A.R.; Madanat, S. Development of a pavement rutting model from experimental data. J. Transp. Eng. 2000, 126, 291–299. [Google Scholar] [CrossRef]
- Gao, L.; Aguiar-Moya, J.P.; Zhang, Z. Performance modeling of infrastructure condition data with maintenance intervention. Transp. Res. Rec. 2011, 2225, 109–116. [Google Scholar] [CrossRef]
- Hu, Y.; Sun, Z.; Han, Y.; Li, W.; Pei, L. Evaluate pavement skid resistance performance based on Bayesian-LightGBM using 3D surface macrotexture data. Materials 2022, 15, 5275. [Google Scholar] [CrossRef] [PubMed]
- Fwa, T. Determination and prediction of pavement skid resistance–connecting research and practice. J. Road Eng. 2021, 1, 43–62. [Google Scholar] [CrossRef]
- Du, Y.; Qin, B.; Weng, Z.; Wu, D.; Liu, C. Promoting the pavement skid resistance estimation by extracting tire-contacted texture based on 3D surface data. Constr. Build. Mater. 2021, 307, 124729. [Google Scholar] [CrossRef]
- Ji, J.; Ren, W.; Jiang, T.; Dong, Y.; Hou, Y.; Li, H. Establishment and analysis of the relationship model between macro-texture and skid resistance performance of asphalt pavement. Coatings 2022, 12, 1464. [Google Scholar] [CrossRef]
- Koné, A.; Es-Sabar, A.; Do, M.T. Application of Machine Learning Models to the Analysis of Skid Resistance Data. Lubricants 2023, 11, 328. [Google Scholar] [CrossRef]
- Rajabipour, F.; Yoon, J. Use of Machine Learning to Predict Long-Term Skid Resistant of Concrete Pavement; Technical report; Center for Integrated Asset Management for Multimodal Transportation; U.S. Department of Transportation: Washington, DC, USA, 2021. [Google Scholar]
- Weng, Y.; Sun, Z.; Liu, H.; Gu, Y. An Interpretable Method for Asphalt Pavement Skid Resistance Performance Evaluation Under Sand-Accumulated Conditions Based on Multi-Scale Fractals. Sensors 2025, 25, 2986. [Google Scholar] [CrossRef]
- Gao, L.; Yu, K.; Lu, P. Considering the spatial structure of the road network in pavement deterioration modeling. Transp. Res. Rec. 2024, 2678, 153–161. [Google Scholar] [CrossRef]
- Liu, Y.; Qian, Z.; Hu, H.; Shi, X.; Chen, L. Developing a skid resistance prediction model for newly built pavement: Application to a case study of steel bridge deck pavement. Road Mater. Pavement Des. 2022, 23, 2334–2352. [Google Scholar] [CrossRef]
- Gao, L.; Han, Z.; Chen, Y. Deep learning–based pavement performance modeling using multiple distress indicators and road work history. J. Transp. Eng. Part B Pavements 2023, 149, 04022061. [Google Scholar] [CrossRef]
- Zhan, Y.; Liu, C.; Deng, Q.; Feng, Q.; Qiu, Y.; Zhang, A.; He, X. Integrated FFT and XGBoost framework to predict pavement skid resistance using automatic 3D texture measurement. Measurement 2022, 188, 110638. [Google Scholar] [CrossRef]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Advances in Neural Information Processing Systems 30; Neural Information Processing Systems Foundation, Inc. (NeurIPS): Long Beach, CA, USA, 2017; Volume 30, pp. 5998–6008. [Google Scholar]
- Wen, Q.; Zhou, T.; Zhang, C.; Chen, W.; Ma, Z.; Yan, J.; Sun, L. Transformers in time series: A survey. arXiv 2022, arXiv:2202.07125. [Google Scholar]
- Zerveas, G.; Jayaraman, S.; Patel, D.; Bhamidipaty, A.; Eickhoff, C. A transformer-based framework for multivariate time series representation learning. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Virtual Event, Singapore, 14–18 August 2021; pp. 2114–2124. [Google Scholar]
- Li, S.; Jin, X.; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.X.; Yan, X. Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. In Advances in Neural Information Processing Systems 32; Neural Information Processing Systems Foundation, Inc. (NeurIPS): Vancouver, BC, Canada, 2019; Volume 32, pp. 5243–5253. [Google Scholar]
- Jin, Y.; Hou, L.; Chen, Y. A time series transformer based method for the rotating machinery fault diagnosis. Neurocomputing 2022, 494, 379–395. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer normalization. arXiv 2016, arXiv:1607.06450. [Google Scholar]
- Goodfellow, I.; Bengio, Y.; Courville, A.; Bengio, Y. Deep Learning; MIT Press: Cambridge, UK, 2016; Volume 1. [Google Scholar]
Variable | Description/Encoding | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|---|
Climatic Zone | 0 = dry–freeze, 1 = dry–non-freeze | 0.40 | 0.49 | 0 | 1 |
Depth (In) | Milling depth in inches | 0.46 | 0.11 | 0.20 | 0.50 |
Drum | 0 = Fine drum (300 teeth), 1 = Standard drum (150 teeth) | 0.70 | 0.46 | 0 | 1 |
Macrotexture (mm) | Measured texture depth | 1.44 | 0.69 | 0.28 | 2.89 |
Macrotexture after milling (mm) | Texture depth after milling | 2.37 | 0.59 | 0.48 | 3.58 |
Macrotexture before milling (mm) | Texture depth before milling | 0.68 | 0.32 | 0.16 | 1.73 |
Month | Months since treatment (0 = baseline) | 9.75 | 5.77 | 3.00 | 18.00 |
Skid Number | Friction measure at given month | 29.91 | 9.59 | 10.50 | 47.00 |
Skid Number after milling | Friction measure immediately after milling | 42.37 | 12.15 | 15.00 | 58.00 |
Skid Number before milling | Friction measure before milling | 15.70 | 8.00 | 9.00 | 35.00 |
Speed (fpm) | Milling machine speed (ft/min) | 68.52 | 17.81 | 30.00 | 100.00 |
Surface Type | 0 = HMA, 1 = Seal Coat | 0.59 | 0.50 | 0 | 1 |
Model | RMSE | MAE | |
---|---|---|---|
Time series Transformer | 0.981 | 1.42 | 0.84 |
XGBoost | 0.979 | 1.46 | 0.87 |
Random Forest | 0.967 | 1.81 | 1.08 |
Decision Tree | 0.962 | 1.96 | 0.82 |
k-Nearest Neighbors | 0.920 | 2.83 | 1.35 |
Ridge Regression | 0.776 | 4.73 | 3.82 |
Linear Regression | 0.775 | 4.74 | 3.88 |
Lasso Regression | 0.726 | 5.23 | 4.42 |
MLP Regressor | 0.641 | 5.99 | 4.77 |
Model | RMSE | MAE | |
---|---|---|---|
Random Forest | 0.838 | 0.27 | 0.22 |
Time series Transformer | 0.831 | 0.28 | 0.22 |
XGBoost | 0.809 | 0.30 | 0.22 |
Decision Tree | 0.741 | 0.34 | 0.27 |
k-Nearest Neighbors | 0.719 | 0.36 | 0.29 |
Ridge Regression | 0.686 | 0.38 | 0.31 |
Linear Regression | 0.685 | 0.38 | 0.31 |
MLP Regressor | 0.646 | 0.40 | 0.33 |
Lasso Regression | 0.494 | 0.48 | 0.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, L.; Din, Z.U.; Kim, K.; Senouci, A. Time Series Transformer-Based Modeling of Pavement Skid and Texture Deterioration. Constr. Mater. 2025, 5, 55. https://doi.org/10.3390/constrmater5030055
Gao L, Din ZU, Kim K, Senouci A. Time Series Transformer-Based Modeling of Pavement Skid and Texture Deterioration. Construction Materials. 2025; 5(3):55. https://doi.org/10.3390/constrmater5030055
Chicago/Turabian StyleGao, Lu, Zia Ud Din, Kinam Kim, and Ahmed Senouci. 2025. "Time Series Transformer-Based Modeling of Pavement Skid and Texture Deterioration" Construction Materials 5, no. 3: 55. https://doi.org/10.3390/constrmater5030055
APA StyleGao, L., Din, Z. U., Kim, K., & Senouci, A. (2025). Time Series Transformer-Based Modeling of Pavement Skid and Texture Deterioration. Construction Materials, 5(3), 55. https://doi.org/10.3390/constrmater5030055