Comparison of the Corrosion Resistance of Fiber-Reinforced Concrete with Steel and Polypropylene Fibers in an Acidic Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Adsorption and Volume of Permeable Voids
2.2. Corrosion Resistance
2.3. X-Ray Analysis
3. Research Results and Analysis
3.1. Water Adsorption and Volume of Permeable Voids
3.2. Corrosion Resistance
4. Conclusions
- -
- The use of dispersed reinforcement with both types of fibers reduces the water absorption of concrete by up to 30% and the volume of permeable voids by up to 11% in comparison with control concrete without dispersed reinforcement;
- -
- A low dosage of steel and polypropylene fibers (15 kg/m3 and 2 kg/m3) does not lead to an increase in the corrosion resistance of fiber concretes. For the effective operation of industrial floors and rigid road pavements, it is recommended to use steel fibers in the amount of 20–25 kg/m3 and polypropylene fibers from 2.5 to 3 kg/m3. At the same time, visual inspection showed the absence of geometrical changes in the specimens after sulfate exposure, and the obtained results of compressive strength confirmed the effectiveness of dispersed reinforcement in terms of maintaining the design class of the concrete as C20/25 even after 12 months of exposure to an aggressive environment;
- -
- The possible mechanism of resistance of the fiber concretes in an acid medium on the basis of strength indicators and X-ray phase analysis is described, and the scenario of microstructural changes in the investigated composites is proposed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lau, C.K.; Chegenizadeh, A.; Htut, T.N.S.; Nikraz, H. Performance of the Steel Fibre Reinforced Rigid Concrete Pavement in Fatigue. Buildings 2020, 10, 186. [Google Scholar] [CrossRef]
- Patil, R.R.; Katare, V.D. Application of Fiber Reinforced Cement Composites in Rigid Pavements: A review. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Kabashi, N.; Krasniqi, C.; Hadri, R.; Sadikaj, A. Effect of Fibre Reinforced Concrete and Behaviour in Rigid Pavement. Int. J. Struct. Civ. Eng. Res. 2018, 7, 29–33. [Google Scholar] [CrossRef]
- Suksawang, N.; Yohannes, D. Using Fiber Reinforced Concrete to Control Early-Age Shrinkage in Replacement Concrete Pavement. In Fibre Reinforced Concrete: Improvements and Innovations; Serna, P., Llano-Torre, A., Martí-Vargas, J.R., Navarro-Gregori, J., Eds.; BEFIB 2020. RILEM Bookseries; Springer Nature: Berlin, Germany, 2020; Volume 30, pp. 12–23. [Google Scholar] [CrossRef]
- Awad, R.; Barakat, S.; Leblouba, M.; Altoubat, S.; Maalej, M. Reliability-based Design of Fiber Reinforced Concrete Slabs-on-Ground in Flexure as per ACI 360. Structures 2022, 39, 207–217. [Google Scholar] [CrossRef]
- Alani, A.; Beckett, D.; Khosrowshahi, F. Mechanical Behaviour of a Steel Fibre Reinforced Concrete Ground Slab. Mag. Concr. Res. 2012, 64, 593–604. [Google Scholar] [CrossRef]
- Alsharie, H. Applications and Prospects of Fiber Reinforced Concrete in Industrial Floors. Open J. Civ. Eng. 2015, 5, 185–189. [Google Scholar] [CrossRef]
- Marushchak, U.; Sydor, N.; Braichenko, S.; Margal, I.; Soltysik, R. Modified Fiber Reinforced Concrete for Industrial Floors. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Reliability and Durability of Railway Transport Engineering Structures and Buildings, Kharkiv, Ukraine, 20–22 November 2019; Volume 708. [Google Scholar] [CrossRef]
- Pombo, R.; Altamirano, M.G.; Giaccio, G.M.; Zerbino, R.L. Design and Execution of Floors on Ground and Industrial Pavements with Fibre Reinforced Concrete. In Fibre Reinforced Concrete: Improvements and Innovations II; Serna, P., Llano-Torre, A., Martí-Vargas, J.R., Navarro-Gregori, J., Eds.; BEFIB 2021. RILEM Bookseries, 36; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Dvorkin, L.; Konkol, J.; Marchuk, V.; Huts, A. Efficient, Fine-Grained Fly Ash Concrete Based on Metal and Basalt Fibers. Materials 2023, 16, 3969. [Google Scholar] [CrossRef] [PubMed]
- Kos, Z.; Kroviakov, S.; Mishutin, A.; Poltorapavlov, A. An Experimental Study on the Properties of Concrete and Fiber-Reinforced Concrete in Rigid Pavements. Materials 2023, 16, 5886. [Google Scholar] [CrossRef]
- Marushchak, U.; Sanytsky, M.; Korolko, S.; Shabatura, U.; Sydor, U. Development of Nanomodified Rapid Hardening Fiber reinforced Concretes for Special-purpose Facilities. East. Eur. J. Enterp. Technol. 2018, 2, 34–41. [Google Scholar] [CrossRef]
- Surianinov, M.; Andronov, V.; Otrosh, Y.; Makovkina, T.; Vasiukov, S. Concrete and Fiber Concrete Impact Strength. Mater. Sci. Forum 2020, 1006, 101–106. [Google Scholar] [CrossRef]
- Korneeva, I.; Neutov, S.; Suriyaninov, M. Experimental Studies of Fiber Concrete Creep. MATEC Web Conf. 2017, 116, 02021. [Google Scholar] [CrossRef]
- Spyridis, P.; Mellios, N. Tensile Performance of Headed Anchors in Steel Fiber Reinforced and Conventional Concrete in Uncracked and Cracked State. Materials 2022, 15, 1886. [Google Scholar] [CrossRef]
- Dong, S.; Wang, D.; Hui, E.; Gao, C.; Zhang, H.; Tan, Y. An Overview of the Application of Fiber-Reinforced Cementitious Composites in Spray Repair of Drainage Pipes. Buildings 2023, 13, 1119. [Google Scholar] [CrossRef]
- Kryzhanovskyi, V.; Umbach, C.; Orlowsky, J.; Middendorf, B.; Auras, M.; Grillich, P. Denkmalkonforme Instandsetzung der Beton-Glas-Fenster der St.-Mauritius-Kirche. Bautechnik 2024, 101, 299–308. [Google Scholar] [CrossRef]
- Mishutin, A.; Kroviakov, S.; Kryzhanovskyi, V.; Chintea, L. Fiber-reinforced Concrete for Rigid Road Pavements Modified with Polycarboxylate Admixture and Metakaolin. Adv. Civ. Archit. Eng. 2021, 12, 1–10. [Google Scholar] [CrossRef]
- Niu, D.; Gong, S.; Guo, B.; Cao, Z.; Wang, Y. Study on Frost Resistance of Steel-PVA Hybrid Fiber Concrete. In Advances in Frontier Research on Engineering Structures. Lecture Notes in Civil Engineering; Yang, Y., Ed.; Springer: Singapore, 2023; Volume 286, pp. 105–112. [Google Scholar] [CrossRef]
- Tan, Y.; Long, J.; Xiong, W.; Chen, X.; Zhao, B. Effects of Polypropylene Fibers on the Frost Resistance of Natural Sand Concrete and Machine-Made Sand Concrete. Polymers 2022, 14, 4054. [Google Scholar] [CrossRef] [PubMed]
- Kos, Ž.; Kroviakov, S.; Kryzhanovskyi, V.; Grynyova, I. Research of Strength, Frost Resistance, Abrasion Resistance and Shrinkage of Steel Fiber Concrete for Rigid Highways and Airfields Pavement Repair. Appl. Sci. 2022, 12, 1174. [Google Scholar] [CrossRef]
- Wu, F.; Yu, Q.; Chen, X. Effects of Steel Fibre Type and Dosage on Abrasion Resistance of Concrete Against Debris Flow. Cem. Concr. Compos. 2022, 134, 104776. [Google Scholar] [CrossRef]
- Kamel, O.A.; Abouhussien, A.A.; Hassan, A.A.; AbdelAleem, B.H. Assessment of Abrasion Resistance of Fiber-Reinforced Concrete at Cold Temperatures through Acoustic Emission Analysis. ACI Mater. J. 2023, 120, 41–54. [Google Scholar] [CrossRef]
- Seco, A.; del Castillo, J.M.; Perlot, C.; Marcelino-Sádaba, S.; Prieto, E.; Espuelas, S. Experimental Study of the Valorization of Sulfate Soils for Use as Construction Material. Sustainability 2022, 14, 6609. [Google Scholar] [CrossRef]
- Kampala, A.; Jitsangiam, P.; Pimraksa, K.; Chindaprasirt, P. An Investigation of Sulfate Effects on Compaction Characteristics and Strength Development of Cement-treated Sulfate Bearing Clay Subgrade. Road Mater. Pavement Des. 2021, 22, 2396–2409. [Google Scholar] [CrossRef]
- Adeleke, B.; Kinuthia, J.; Oti, J. Strength and Swell Performance of High-Sulphate Kaolinite Clay Soil. Sustainability 2020, 12, 10164. [Google Scholar] [CrossRef]
- Zhao, X.; Shen, A.; Guo, Y.; Li, P.; Lv, Z. Pavement Mechanic Response of Sulfate Saline Soil Subgrade Section Based on Fluid–structure Interaction Model. Int. J. Pavement Res. Technol. 2017, 10, 497–506. [Google Scholar] [CrossRef]
- Kowalska, M.; Grzesik, B.; Adamczyk, Z.; Nowak, J.; Konsek, A. Swelling of Sulfate-bearing Soil: A Case Study of A1 Highway Pavement Failure. Case Stud. Constr. Mater. 2023, 18, e02081. [Google Scholar] [CrossRef]
- Valcuende, M.; Lliso-Ferrando, J.R.; Ramón-Zamora, J.E.; Soto, J. Corrosion Resistance of Ultra-high performance Fibre- reinforced Concrete. Constr. Build. Mater. 2021, 306, 124914. [Google Scholar] [CrossRef]
- Alomayri, T.; Ali, B.; Raza, S.S.; Ahmed, H.; Hamad, M. Investigating the Effects of Polypropylene Fibers on the Mechanical Strength, Permeability, and Erosion Resistance of Freshwater and Seawater Mixed Concretes. J. Mar. Sci. Eng. 2023, 11, 1224. [Google Scholar] [CrossRef]
- Liang, N.; Mao, j.; Yan, R.; Liu, X.; Zhou, X. Corrosion Resistance of Multiscale Polypropylene Fiber-reinforced Concrete under Sulfate Attack. Case Stud. Constr. Mater. 2022, 16, e01065. [Google Scholar] [CrossRef]
- Naidu Gopu, G.; Joseph, S.A. Corrosion Behavior of Fiber-Reinforced Concrete—A Review. Fibers 2022, 10, 38. [Google Scholar] [CrossRef]
- Arivudamai, V.; Velkennedy, R. Acid Attack on Hybrid Fiber Reinforced High Strength Concrete with Manufactured Sand and Coconut Shell. J. Adv. Chem. 2017, 12, 5825–5828. [Google Scholar]
- Bankir, M.B.; Sevim, U.K. Performance Optimization of Hybrid Fiber Concretes against Acid and Sulfate Attack. J. Build. Eng. 2020, 32, 101443. [Google Scholar] [CrossRef]
- Somasekharaiah, H.M.; Shobha, M.S.; Mallikarjuna, H.M. Mechanical Properties and Acid Attack Test of Hybrid Fiber Reinforced High Performance Concrete for Fly Ash based Mineral Admixture. Mater. Today Proc. 2022, 51, 742–749. [Google Scholar] [CrossRef]
- Xu, L.; Lai, Y.; Ma, D.; Wang, J.; Li, M.; Li, L.; Gao, Z.; Liu, Y.; He, P.; Zhang, Y. Effects of Fiber and Surface Treatment on Airport Pavement Concrete against Freeze–Thawing and Salt Freezing. Materials 2022, 15, 7528. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-J.; Shin, H.; Lee, H.-N.; Park, S.-H.; Kim, H.-M.; Park, C.-G. Effect of Waste PET Fiber on the Mechanical Properties and Chloride Ion Penetration of Emergency Repair Concrete for Road Pavement. Materials 2024, 17, 5352. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Ji, Y.; Wang, J.; Wang, Z.; Yu, B.; Zhang, S. Experimental and Modeling Analysis of Polypropylene Fiber Reinforced Concrete Subjected to Alkali Attack And Freeze–Thaw Cycling Effect. Materials 2024, 17, 4529. [Google Scholar] [CrossRef]
- Chen, Y.; Waheed, M.S.; Iqbal, S.; Rizwan, M.; Room, S. Durability Properties of Macro-Polypropylene Fiber Reinforced Self-Compacting Concrete. Materials 2024, 17, 284. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, M.; Neves, R. Assessment of Fiber Corrosion Inflence in the Flexural Performance of Steel Fiber-Reinforced Concrete. Appl. Sci. 2024, 14, 5611. [Google Scholar] [CrossRef]
- Kos, Ž.; Kroviakov, S.; Kryzhanovskyi, V.; Hedulian, D. Strength, Frost Resistance, and Resistance to Acid Attacks on Fiber-Reinforced Concrete for Industrial Floors and Road Pavements with Steel and Polypropylene Fibers. Materials 2022, 15, 8339. [Google Scholar] [CrossRef] [PubMed]
- DIN EN 197-1:2011; Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements. Deutsches Institut für Normung: Berlin, Germany, 2011.
- DIN EN 196-1:2016; Methods of Testing Cement. Determination of Strength. Deutsches Institut für Normung: Berlin, Germany, 2016.
- DIN EN 12620:2008-07; Aggregates for Concrete. Deutsches Institut für Normung: Berlin, Germany, 2008.
- DSTU B V.2.7-75-98; Crushed Stone and Gravel Are Dense Natural for Building Materials, Products, Structures and Works. 1999. Available online: https://online.budstandart.com/ua/catalog/doc-page.html?id_doc=4674 (accessed on 12 December 2024).
- DSTU B V.2.7-32-95; Building Materials. Sand Dense Natural for Construction Materials, Products, Designs and Works. Specifications. 1996. Available online: https://online.budstandart.com/ua/catalog/doc-page.html?id_doc=4053 (accessed on 12 December 2024).
- Information about MC-PowerFlow 3200 on the Official Website of MC-Bauchemie. Available online: https://www.mc-bauchemie.com/products/admixtures-and-additives/superplasticizers/mc-powerflow-3200.html (accessed on 12 December 2024).
- DIN EN 934-2:2012; Admixtures for Concrete, Mortar and Grout Concrete Admixtures. Definitions, Requirements, Conformity, Marking and Labelling. Deutsches Institut für Normung: Berlin, Germany, 2012.
- Information about Steel Fiber on the Official Website of Stalkanat-Silur. Available online: https://stalkanat.com.ua/en/catalog/stalnaya-fibra-s-zagnutymi-konczami-he/ (accessed on 12 December 2024).
- DIN EN 14889-1:2006; Fibres for Concrete—Part 1: Steel Fibres–Definitions, Specifications and Conformity. Deutsches Institut für Normung: Berlin, Germany, 2006.
- Information about Polypropylene Fiber on the Official Website of Bautech-Ukraine. Available online: https://bautech.com.ua/product/baumesh/ (accessed on 12 December 2024).
- DIN EN 14889-2:2006; Fibres for Concrete—Part 2: Polymer Fibres–Definitions, Specifications and Conformity. Deutsches Institut für Normung: Berlin, Germany, 2006.
- DIN EN 12350-2:2019; Testing Fresh Concrete. Slump Test. Deutsches Institut für Normung: Berlin, Germany, 2019.
- DSTU B V.2.7-114:2002; Concrete Mixtures. Test Methods. 2002. Available online: https://online.budstandart.com/ua/catalog/doc-page?id_doc=4913 (accessed on 12 December 2024).
- DIN EN 206-1:2001; Concrete. Specification, Performance, Production and Conformity. Deutsches Institut für Normung: Berlin, Germany, 2001.
- Huber, B.; Hilbig, H.; Drewes, J.E.; Müller, E. Evaluation of Concrete Corrosion after Short- and Long-term Xxposure to Chemi-cally and Microbially Generated Sulfuric Acid. Cem. Concr. Res. 2017, 94, 36–48. [Google Scholar] [CrossRef]
- Shen, Y.; Liu, B.; Lv, J.; Shen, M. Mechanical Properties and Resistance to Acid Corrosion of Polymer Concrete Incorporating Ceramsite, Fly Ash and Glass Fibers. Materials 2019, 12, 2441. [Google Scholar] [CrossRef]
- Song, Z.; Li, S.; Brouwers, H.J.H.; Yu, Q. Corrosion Risk and Corrosion-induced Deterioration of Ultra-High-Performance Fiber-reinforced Concrete Containing Initial Micro-defects. Cem. Concr. Compos. 2023, 142, 105208. [Google Scholar] [CrossRef]
- Rajkohila, A.; Prakash Chandar, S.; Ravichandran, P.T. Influence of Natural Fiber Derived from Agricultural Waste on Durability and Micro-Morphological Analysis of High-Strength Concrete. Buildings 2023, 13, 1667. [Google Scholar] [CrossRef]
- Antón, C.; Gurdián, H.; de Vera, G.; Climent, M.-Á. Effect of a Crystalline Admixture on the Permeability Properties of Concrete and the Resistance to Corrosion of Embedded Steel. Appl. Sci. 2024, 14, 1731. [Google Scholar] [CrossRef]
- Htet, P.; Chen, W.; Hao, H.; Li, Z.; Shaikh, F. Hybrid Fibre Reinforced Recycled Aggregate Concrete: Dynamic Mechanical Properties and Durability. Constr. Build. Mater. 2024, 415, 134044. [Google Scholar] [CrossRef]
- ASTM C642-21; Standard Test Method for Density, Absorption, and Voids in Hardened Concrete. ASTM International: West Conshohocken, PA, USA, 2021.
- DIN EN 12390-2:2019; Testing Hardened Concrete. Making and Curing Specimens for Strength Tests. Deutsches Institut für Normung: Berlin, Germany, 2019.
- DSTU B V.2.7-2014:2009; Building Materials. Concrete. Methods of Determining the Strength of Control Samples. Available online: https://online.budstandart.com/ua/catalog/doc-page.html?id_doc=25943 (accessed on 12 December 2024).
- DSTU B GOST 27677:2011; Corrosion Protection in Construction. Concretes. General Requirements for Testing. 2011. Available online: http://online.budstandart.com/ua/catalog/doc-page?id_doc=28066 (accessed on 12 December 2024).
- Wang, Y.; Li, L.; An, M.; Sun, Y.; Yu, Z.; Huang, H. Factors Influencing the Capillary Water Absorption Characteristics of Concrete and Their Relationship to Pore Structure. Appl. Sci. 2022, 12, 2211. [Google Scholar] [CrossRef]
- Li, C. Relationship Between Water Absorption and Porosity in Concrete with Limestone Powder Addition. Struct. Concr. 2021, 23, 3284–3293. [Google Scholar] [CrossRef]
- Sun, R.; Wang, D.; Wang, Y.; Zhang, L.; Gu, Y. Durability and Improvement of Cement-Based Revetment Materials Serving in Subtidal, Intertidal, and Supratidal Environments. Materials 2022, 15, 3210. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.; Gencturk, B. Multiphysics and Multiscale Modeling of Coupled Transport of Chloride Ions in Concrete. Materials 2021, 14, 885. [Google Scholar] [CrossRef] [PubMed]
Fiber Type | Length, mm | Diameter, mm | Ultimate Tensile Strength, MPa | E-Modul, GPa |
---|---|---|---|---|
SF | 50 | 1 | 1150 | 210 |
PF | 36 | 0.68 | 530 | 2 |
No. of Mixture | Marking | Compositions, kg/m3 | ||||||
---|---|---|---|---|---|---|---|---|
Cement | Crushed Stone | Sand | SF | PF | MC-Power Flow 3200 | Water | ||
1 | Control concrete (CC) | 360 | 1110 | 780 | – | – | 3.40 | 180 |
2 | Fiber concrete with steel fibers at 15 kg/m3 (SF 15) | 779 | 15 | – | 3.64 | |||
3 | Fiber concrete with steel fibers at 20 kg/m3 (SF 20) | 778 | 20 | – | ||||
4 | Fiber concrete with steel fibers at 25 kg/m3 (SF 25) | 777 | 25 | – | ||||
5 | Fiber concrete with polypropylene fibers at 2.0 kg/m3 (PF 2) | 1105 | 770 | – | 2.0 | 4.08 | ||
6 | Fiber concrete with polypropylene fibers at 2.5 kg/m3 (PF 2.5) | 1103 | 767 | – | 2.5 | |||
7 | Fiber concrete with polypropylene fibers at 3.0 kg/m3 (PF 3) | 1102 | 763 | – | 3.0 |
Mixture | 6 Months of Exposure | 12 Months of Exposure | ||||
---|---|---|---|---|---|---|
Strength After Soaking in Water, MPa | Strength After Aging in an Acidic Environment, MPa | Strength Reduction | Strength After Soaking in Water, MPa | Strength After Aging in an Acidic Environment, MPa | Strength Reduction | |
CC | 45.4 | 34.4 | 24% | 52.9 | 33.7 | 36% |
SF 15 | 49.5 | 36.4 | 26% | 55.2 | 36.0 | 35% |
SF 20 | 52.6 | 40.4 | 23% | 56.5 | 38.4 | 32% |
SF 25 | 53.8 | 41.6 | 23% | 56.8 | 40.3 | 29% |
PF 2 | 48.2 | 36.2 | 25% | 53.6 | 35.3 | 34% |
PF 2.5 | 50.1 | 39.4 | 21% | 54.8 | 37.9 | 31% |
PF 3 | 52.4 | 42.0 | 20% | 56.6 | 41.1 | 27% |
Mixture | Average Weight of Samples Before Aging, g | 6 Months of Exposure | 12 Months of Exposure | ||||
---|---|---|---|---|---|---|---|
Average Weight of Samples After Aging in Water, g | Average Weight of Samples After Aging in Acidic Medium, g | Difference | Average Weight of Samples After Aging in Water, g | Average Weight of Samples After Aging in Acidic Medium, g | Difference | ||
CC | 2420 | 2422 | 2437 | +0.6% | 2431 | 2248 | −7.5% |
SF 15 | 2440 | 2442 | 2404 | −1.6% | 2452 | 2407 | −1.8% |
SF 20 | 2437 | 2449 | 2404 | −1.8% | 2463 | 2407 | −2.3% |
SF 25 | 2446 | 2438 | 2402 | −1.5% | 2451 | 2408 | −1.8% |
PF 2 | 2423 | 2422 | 2402 | −0.8% | 2426 | 2399 | −1.1% |
PF 2.5 | 2425 | 2423 | 2376 | −1.9% | 2425 | 2369 | −2.3% |
PF 3 | 2426 | 2425 | 2419 | −0.2% | 2428 | 2413 | −0.6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kroviakov, S.; Kryzhanovskyi, V.; Hedulian, D. Comparison of the Corrosion Resistance of Fiber-Reinforced Concrete with Steel and Polypropylene Fibers in an Acidic Environment. Constr. Mater. 2025, 5, 6. https://doi.org/10.3390/constrmater5010006
Kroviakov S, Kryzhanovskyi V, Hedulian D. Comparison of the Corrosion Resistance of Fiber-Reinforced Concrete with Steel and Polypropylene Fibers in an Acidic Environment. Construction Materials. 2025; 5(1):6. https://doi.org/10.3390/constrmater5010006
Chicago/Turabian StyleKroviakov, Sergii, Vitalii Kryzhanovskyi, and Daria Hedulian. 2025. "Comparison of the Corrosion Resistance of Fiber-Reinforced Concrete with Steel and Polypropylene Fibers in an Acidic Environment" Construction Materials 5, no. 1: 6. https://doi.org/10.3390/constrmater5010006
APA StyleKroviakov, S., Kryzhanovskyi, V., & Hedulian, D. (2025). Comparison of the Corrosion Resistance of Fiber-Reinforced Concrete with Steel and Polypropylene Fibers in an Acidic Environment. Construction Materials, 5(1), 6. https://doi.org/10.3390/constrmater5010006