
Citation: Savvides, A.-A.; Antoniou,

A.A.; Papadopoulos, L.; Monia, A.;

Kofina, K. An Estimation of

Clayey-Oriented Rock Mass Material

Properties, Sited in Koropi, Athens,

Greece, through Feed-Forward

Neural Networks. Geotechnics 2023, 3,

975–988. https://doi.org/10.3390/

geotechnics3040052

Academic Editors: Md Rajibul Karim,

Md. Mizanur Rahman, Khoi Nguyen

and Asif Iqbal

Received: 18 August 2023

Revised: 19 September 2023

Accepted: 22 September 2023

Published: 24 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

An Estimation of Clayey-Oriented Rock Mass Material
Properties, Sited in Koropi, Athens, Greece, through
Feed-Forward Neural Networks
Ambrosios-Antonios Savvides 1,* , Andreas A. Antoniou 1, Leonidas Papadopoulos 1, Anastasia Monia 2

and Kalliopi Kofina 2

1 School of Civil Engineering, National Technical University of Athens, Zografou Campus,
Iroon Polytechniou 8, 15773 Athens, Greece; andreasan19@yahoo.com (A.A.A.);
papadopoulos_leo@mail.ntua.gr (L.P.)

2 Department of Civil Engineering, University of Thessaly-Polytechnical School Pedion Areos,
38334 Volos, Greece; anastasiamon99@gmail.com (A.M.); kofinapopi@gmail.com (K.K.)

* Correspondence: ambrosa@central.ntua.gr

Abstract: Rock mechanics and the estimation of their material properties through field tests are
important aspects and challengees in civil and geotechnical engineering. However, this procedure
is expensive and difficult to attain, while the machine learning and neural network theory provide
a computational tool for estimating the material properties with limited data. In this work, an
estimation of the Young Modulus and the cohesion of a clayey-originated rock through feed-forward
neural networks constructed from in situ data measurements is given. The input values come from the
Geological Strength Index (GSI) proposed values of the point load index Is50, the uniaxial compression
strength σs, as well as the specific gravity γ of the rock mass. The convergence analysis revealed that
the convergence occurs at approximately 2000 epochs, with the largest L2 mean square error norm
being no greater than 10−5. In addition, it is demonstrated that augmenting γ results in the estimation
of rock that is stiffer and stronger. The aforementioned increase in the specific site may be up to 20%
for the stiffness and up to 25% for the cohesion. This model, aside from readability and accuracy,
offers the convenience of enriching it with more in situ data, thereby enhancing the flexibility of the
proposed numerical tool proposed. However, its applicability is limited to the specific data acquired
from the particular site, so a more general estimation requires a substantially larger dataset. Finally,
the justification of the proposed model has been carried out based on suggestions from the literature
for common values of clayey-oriented rock, which is fairly disintegrated as seen in the field.

Keywords: neural networks; feed-forward neural networks; rock material properties; soil material
properties; GSI

1. Introduction

Rock mechanics and the subsequent estimation of material parameters are of paramount
importance in civil engineering and infrastructure design. In this context, in situ data
measurements are the tool by which to acquire the material constitutive model. The mea-
surements may be conducted through tests such as the standard/cone penetration tests
(SPT, CPT), cross-hole and down-hole methods, and material cylinder extraction [1–6].
The amount of data taken from the site and the quality of the data provide the accuracy in
the stress–strain law and, subsequently, the mass response to loading. The stress–strain law
in rock masses is typically of the Mohr–Coulomb type but can significantly differ, such as
the Hoek and Brown failure criterion and the Barton failure criterion, which rely on the
value of the Geological Strength Index (GSI) to classify the rock mass and construct the
yield function [7–11].

The evolution of computer science and the subsequent computational power of su-
percomputers led to the evolution of machine learning science. One of machine learning’s
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most prominent tools is the neural network (NN). In civil engineering, NNs have been
employed to replace analysis and simulations when the data are sufficient; however, even
with limited data, reliable models of substantial relative accuracy can be obtained [12–17].
From structural engineering to multi-scale modeling and geotechnical engineering, as
well as hydraulics and transportation, all subtopics of infrastructure design have been
employing NNs to reduce the analyses needed for the design and response prediction
of physical and mechanical systems. For the investigation of rock mass characteristics
and neural networks, scientific publications imply the computational machine learning
tools, among other methods, for tasks such as rock mass classification [18,19], predicting
the bearing capacity of pile tips embedded rock masses [20], combining and comparing
results with fuzzy and genetic programming [21,22], and estimating abutments stresses
through neural network models using data obtained from numerical analyses [23]. Most of
these have the advantage that they fit with the given data and their estimations are fairly
reliable. However, as usual, they adopt only experimental or only estimated data through
numerical analysis or literature estimations. Moreover, for general use, a substantially
increased amount of data is required.

In this work, feed-forward neural network models are proposed for the estimation of
the Young Modulus E and cohesion c for a clayey-oriented rock sited in Koropi, Athens,
Greece. A dataset of 50 points, in which the GSI method was adopted with the point load
index Is50 value, uniaxial compression strength σs value, and specific gravity γ value as the
input parameters for the NNs, while the outputs are E and c. It is demonstrated that the
mean square relative error L2 is on the order of magnitude of 10−5, which is substantial for
the applications investigated. Moreover, an increase in each input value mainly results in a
significant increase in the values of E and c. The propositions of the aforementioned NNs
are taken from in situ data measurements and are combined with an augmented dataset
estimated from nearby values. Thus, the model training is completed not only for reliable
estimations but also to prove that an enrichment of the in situ data with the estimated
data can provide a reliable and accurate NN model. In addition to the aforementioned
advantage, this model presents computational efficiency and accuracy, as well as adaptivity
and flexibility for incorporating both in situ and computational data. This presents an
advantage over alternative model formulations. In conclusion, the limitation of this model
lies in the fact that it is trained for specific sites. The enrichment of the data to accommodate
more general cases requires a substantially larger dataset.

2. Feed-Forward Neural Networks

A feed-forward neural network (FNN) refers to a set of interrelated processors called
neurons, distributed into an input, an output, and median layers. By defining Nk : Rd0 −→
Rdk+1 , an FNN with k median layers, each part of it consists of nj neurons for j = 1, 2, . . . , k.
Denoted by n0 = d0 and nk+1 = dk+1 are the input and the output layers’ neuron numbers,
respectively. Each layer, with the exception of the input, is given a weight matrix and a
bias vector: W j and bj, respectively; all of these, assumed for each of the network layers,
are the model parameters to be found. The input vector is denoted as z0 ∈ Rd0 , and the
output vector of the jth layer is denoted as zj ∈ Rdj , for j = 1, 2, . . . , k + 1. An illustration of
an FNN with one median layer is given in Figure 1.

Each layer, j, may have the following equation:

zj = δj(W jzj−1 + bj), ∀j ∈ {1, 2, . . . , k + 1} (1)

where δj(·) is a non-linear activation function calculated layer-wise. Subsequently, the FNN
is a function mapping from input parameters z0 ∈ Rd0 to output values zk+1 ∈ Rdk+1 using
Equation (1).
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Figure 1. A feed-forward neural network with one median layer.

The model parameters are found through a method called supervised learning. In su-
pervised learning, the FNN is given data with input and target (flag) values, and its
objective is to reduce the divergence, or error, between its processed output and the target
values. The error is estimated through a loss function, E(W ; b), such as the mean squared
norm. If a continuous case and a dataset {o(i), t(i)}N

i=1 are assumed, then the error function
is as follows:

E(W ; b) =
1
N

N

∑
i=1
|zk+1(o

(i))− t(i)|
2

(2)

denoting the inputs as {o(i)}N
i=1 and the targets as {t(i)}N

i=1.
The activation functions are non-linear; consequently, the reduction in the loss through

Equation (2) is a non-convex problem that may only be solved with non-linear methods,
such as stochastic gradient descent [24] and quasi-Newton procedures [25]. In the present
paper, the FNN method is implemented in order to estimate the Young Modulus and the
cohesion of a clayey-oriented rock for which in situ measurements have been taken.

3. Geological Strength Index and the Relation to the Material Variables of Strength
and Stiffness

For the classification of the rock masses and, subsequently, the estimation of the
corresponding constitutive model, the GSI has been introduced. This index is a quanti-
tative representative of the qualitative characteristics of the rock mass. More specifically,
for jointed rock masses, the surface conditions and the structure of the rock have been
characterized in five and six different ways, respectively. Then, the combination of surface
conditions and the surface of the rock result in a range of GSI values. It is recommended to
choose a range, rather than a mean value itself; however, the divergence in the estimation of
the GSI for certain conditions is not necessarily widely diverged. This way is not applicable
to structurally controlled failures. The illustration of the method of derivation of the GSI is
depicted in Figure 2. It should be noted that a fit with the experimental data to verify the
range of the chosen GSI is always important.
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Figure 2. Geological Strength Index (GSI) deriviation for joint masses as proposed in [26].

After the determination of the GSI, the Hoek and Brown criterion may be formulated.
This failure function states that a Mohr–Coulomb non-linear relation is that which defines
the pair of stresses that leads to failure. The largest principal effective stress σ́1 and the
minimal principal effective stress σ́3, which hereinafter will be denoted without the “’ ’ ” sign
for simplicity, are related to this equation:

σ1 = σ3 + σs(mb
σ3

σs
+ 1)0.5 (3)

where mb can be determined from experimental data involving five triaxial load exper-
iments, each with a minimal principal effective stress not exceeding 0.5 σs. A typical
parameter estimation, however, is possible through the quality of the rock mass as stated
in [26,27]. A proposition of mb without the experimental data is depicted in Table 1.
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Table 1. Proposal for estimation of m_b as proposed in [27].

Rock Type Class Group
Texture

Coarse Medium Fine Very Fine

Sedimentary

Clastic

Conglomerates (21 ± 3) Sandstones (17 ± 4) Slitstones (7 ± 2) Claystones (4 ± 2)

Breccias (19 ± 5) Greywackes (18 ± 3) Shales (6 ± 2)

Marls (7 ± 2)

Non-Clastic

Carbonates Crystalline
Limestone (12 ± 3)

Sparitic
Limestone (10 ± 2)

Micritic
Limestones (9 ± 2) Dolomites (9 ± 3)

Evaporites Gypsum (8 ± 2) Anhydrite (9 ± 2)

Organic Chalk (7 ± 2)

Metamorphic

Non-Foliated Marble (9 ± 3) Hornfels (19 ± 4)
Metasandstone (19 ± 3) Quartzites (20 ± 3)

Slightly Foliated Migmatite (29 ± 3) Amphibolites (26 ± 6) Gneiss (28 ± 5)

Foliated Schists (12 ± 3) Phyllites (7 ± 3) Slates (7 ± 4)

Igneous

Plutonic
Light-Felsic Granite (32 ± 3)

Granodiorite (29 ± 3)
Diorite (25 ± 5)

Granodiorite (29 ± 3)

Dark-Mafic Gabbro (27 ± 3)
Norite (20 ± 5) Dolerite (16 ± 5)

Hypabbyssal Porphyries (20 ± 5) Diabase (15 ± 5) Peridotite (25 ± 5)

Volcanic
Lava Rhyolite (25 ± 5)

Andesite (25 ± 5)
Dacite (25 ± 3)
Basalt (25 ± 5) Obsidian (19 ± 3)

Pyroclastic Agglomerate (19 ± 3) Breccia (19 ± 5) Tuff (13 ± 5)

Finally, a more generalized form of this model [28] is below:

σ1 = σ3 + σs(mb
σ3

σs
+ s)a (4)

where
s = e

GSI−100
9−3D (5)

a =
a0

6
+ 0.5 , a0 = e−

GSI
15 − e−

20
3 (6)

and D is the degree of disturbance to which the rock mass has been forced to blast damage,
and the stress relaxation in this work is assumed to be D = 1. It should be emphasized that
the range in values is intended to account for the different granularities and the interlocking
of the crystal structure. It is evident that higher values of mb represent more frictional rock
masses and high granularity. Moreover, these values pertain to intact rock specimens that
tested normal to bedding or foliation. If there is a weakness plane or the integrity of the
rock mass is reduced, these values will be significantly different.

Given the formation of the GSI and the Hoek and Brown yield criterion, it becomes
possible to estimate the Young Modulus, cohesion, and friction angle. In this work, an
empirical relation with the GSI is available and used for the derivation of the Young
Modulus [28]:

E =

√
σs(MPa)

100
10

GSI−10
40 (7)

As for cohesion and the friction angle, determining the Hoek and Brown yield function
with the assumption that this function balances over and under the Mohr–Coulomb (MC)
yield function plot areas provides values for the cohesion c and friction angle φ. Subse-
quently, the stiffness and the strength of the rock are fully determined. In this work, these
procedures have been employed in order from the experimental data to derive the rock
material properties in order to form the input data vector that will lead to the construction
of the feed-forward neural networks described above.
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4. Numerical Application-Formulation of Dataset from In Situ Measurements and
Construction of the Feed-Forward Neural Network-Discussion
4.1. Research Methodology

The aforementioned theory was applied to data measurements obtained from geotech-
nical drilling to a site of clayey-oriented, fully disintegrated cobblestone rock with sub-
stantial clayey- and calcium-oriented connecting substances, situated in Koropi, Athens,
Greece, as portrayed in Figure 3. The cobbles are limestone. From this drilling, seven
data points were obtained, and, with the estimation of the material input variable range
in the vicinity of the data point input values, the dataset vector size has been augmented
to 50. Subsequently, the procedure portrayed in Section 3 was employed with the aid
of the program Rocklab, and the values for the Young Modulus and the cohesion were
calculated through the fit of the Hoek and Brown curve to the Mohr–Coulomb circle of
failure. The friction angle φ was also estimated; however, a very small divergence from the
mean value of the dataset must result in considering and assuming the friction angle to be
a deterministic value of 34°. Then, a formulation of the feed-forward neural networks took
place, considering the L2 mean square error norm as the objective function to be minimized.
The results are depicted in Figures 4–11 and Table 2. In the aforementioned items, the largest
relative mean square error of the NN estimations and the dataset are given alongside the
amount of epochs needed to achieve convergence to this amount. Moreover, the schematic
representation of the two NN models in a 3D plot and the model projections onto each
input axis X, Y, and Z, corresponding to Is50, σs, and γ, respectively, are portrayed. Neural
Network 1 (NN1) stands for the model estimating the Young Modulus in GPa, while Neural
Network 2 (NN2) stand for the model predicting the cohesion in KPa. In conclusion,
the dataset points are also depicted in the aforementioned figures in order to illustrate the
substantial model fit to the data provided. It should be noted that the formulation of the
neural networks has been completed through the open-source numerical computational
program MSolve of the Institute of Structural Analysis of the School of Civil Engineering
(NTUA); details about this program are given in the Data Availability Statement.

4.2. Results and Discussion—Advantages and Limitations of the Proposed Models

The convergence analysis of the proposed NN sheds light on the quality of the dataset’s
vector length and the model’s estimation accuracy. The mean square error norm is investi-
gated, along with the epochs needed for convergence which are the iterations necessary for
defining the hyperparameters of the model in supervised learning algorithms. As depicted
in Table 2, the highest relative L2 mean square error values for both neural networks fall
within the range of 0.08 for the Young Modulus and 10−5 for the cohesion. Both of them,
for the mean values of the estimators, are fairly low; thus, the model accuracy is substantial
for the amount of datasets provided and for its applications in geotechnical and geological
engineering. It is evident that increasing the dataset’s vector length leads to improved
accuracy. Given that the number of epochs is in the vicinity of 2000, it can be concluded that
the model can readily be adapted to accommodate additional computational and experi-
mental data, with a reduced computational cost, in order to achieve higher accuracy in the
material parameter estimation. In conclusion, the estimations proposed by the models are
reliable as input variables for an FEM model, especially considering the standard deviation
of the material input parameters, which exhibit moderately increased values (up to or
exceeding 50%).
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Figure 3. The site of the rock mass in Koropi, Athens, Greece. The polygons refer to the positions of
the data measurements taken. Scale is 1:100.

Figure 4. The NN model for the estimation of Young Modulus E in GPa in 3D representation.
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Figure 5. The NN model for the estimation of cohesion in KPa in 3D representation.

Figure 6. NN projection of Figure 4 on input axis X (Is50 in MPa).
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Figure 7. NN projection of Figure 4 on input axis Y (σs in MPa).

Figure 8. NN projection of Figure 4 on input axis Z (γ in KN
m3 ).
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Figure 9. NN projection of Figure 5 on input axis X (Is50 in MPa).

Figure 10. NN projection of Figure 5 on input axis Y (σs in MPa).
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Figure 11. NN projection of Figure 5 on input axis Z (γ in KN
m3 ).

The considerations in the model estimating the Young Modulus shed light on the
influence of each input parameter on the actual value. The range of the model predictions
is in the subset of [3.5–4.2] in GPa. Moreover, an increase in Is50 and σs results in an increase
in the Young Modulus, whereas for γ, there are both increases and decreases in the output
value. However, the largest increase in the Young Modulus derived from the output range
is no more than about 20%. The subset range of the estimations does apply to typical values
of the Young Modulus for a clayey-oriented rock. The input values for the greatest value of
E are (Is50, σs, γ) = (5.1, 54 MPa, 24.9 KN

m3 ). These are considered to be large values for the
specific gravity and moderate values for the rest of the input variables, which correspond
to a fairly disintegrated rock that still exhibits rock behavior. Subsequently, the model
estimations represent a reliable and realistic range of estimations as stated in [26–29].

The reflections in the model approximating the cohesion portray the effect of each
input variable on the real value. The model’s estimations are in the subset of [2250–2850] in
KPa. In addition, when the Is50 and σs are augmented, the cohesion also increases with an
alternating slope, whilst for γ, there are subsets of increase and subsets of decrease in the
output estimation. Nonetheless, the largest increase in the cohesion given from the output
subset is less than in the vicinity of 26%. The subset range of the predictions corresponds
to typical cohesion values for a clayey-oriented rock. The input triad for the largest value
for c is (Is50, σs, γ) = (5.1, 54 MPa, 24.9 KN

m3 ). This is assumed to have large values for the
specific gravity and moderate values for the rest of the input variables, which correspond to
a fairly disintegrated that still exhibits rock behavior. Consequently, the model estimations
represent a reliable and realistic range of estimations. Finally, the input triad that optimizes
stiffness and strength is the same as in the specific material constitutive model proposed by
the GSI, as expected, and this drives the conclusion that the model’s formulation is realistic
and well-founded, as confirmed in [26–29].

From the discussion above, we draw two general conclusions. The NNs proposed
are reliable and realistic with substantial accuracy for geotechnical engineering. Moreover,
the convergence is fast and easy to obtain, and the formulation of the NNs does not involve
an enlarged computational effort. In addition, the input triad providing an optimization
for the stiffness and the strength of the rock material is the same as expected from the
theory proposing the material behavior of the rock mass, which leads to the conclusion
that the model is well-constructed. In addition, the adaptivity to additional data is an extra
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advantage of the proposed models, which implies that, with an alleviated computational
cost, a more precise estimation is available. There are two main limitations of the model.
First, the models are site-dependent, i.e., they apply only to specific sites that have the
same geological parameters. This would provide a broader scope within the specific site if
additional data were available. Moreover, in terms of accounting for the same geological
parameters, but at sites different than the one investigated in Koropi, a substantially
increased dataset would be necessary. However, both limitations of the model can be
tackled in a reasonable amount of computational time.

The model identities and results provide some general conclusions as well. First,
it validates the behavior of rock materials, where stiffness and strength typically align,
meaning that higher stiffness in a specific rock results in a similarly high strength. This
is not the case when the specific gravity lies within the subset [24.7–24.9] Mgr

m3 . This is
a small divergence compared to the common values for γ, so the conclusion is that, in
most cases, the stiffer stone results in a stronger one as well, and this relationship is not
linear. Moreover, the fact that the same input triad gives the maximum values for the
Young Modulus and cohesion not only validates the NNs predictions but also indicates
that the aforementioned value, which established the largest value for the estimations, is
a real-world value and not a spurious one. Moreover, the actual values of σs and γ vary
in the range of 20–25%, while the outputs have a similar relative range. Subsequently, it
is demonstrated that the NNs provide detailed information about the outputs, since they
can estimate using a fairly small range subset. Finally, the possibility of a broader dataset
was not feasible since, as the drilling procedure validated the range of material variables
under consideration.

Table 2. Estimation of maximum relative L2 mean square error for the neural networks proposed.
Both models needed about 2000 epochs for convergence.

Model Formulated (Parameter Estimated) L2 Error

NN1 (E) 0.08

NN2 (c) 10−5

5. Conclusions

In this article, feed-forward neural networks are suggested to approximate the co-
hesion c and the Young Modulus E for a clayey-originated cobblestone rock situated in
Koropi, Athens, Greece. At this position, drilling took place, and in situ measurements were
incorporated. A data vector of 50 points in length is used, implementing the GSI method
with the NN input parameters of the point load index Is50 value, uniaxial compression
strength σs value, and specific gravity γ value. With the aid of computational tools, the ma-
terial parameter approximation from the experimental data and the subsequent neural
network are formulated, and the convergence study is assessed. Moreover, an evaluation
of the model properties is postulated, and its qualitative and quantitative properties are
elucidated and depicted. In addition, the computational cost is considered and evaluated
as a comparison with other similar analyses.

The convergence study sheds light on the precision of the estimations of the output
material parameters. The relative error, after a small to moderate number of epochs and
iterations needed to define the model parameters, is in the vicinity of less than 0.1 and 10−5,
respectively, which holds significant value for all applications in geotechnical engineering.
The computational effort of the model through the computer-aided machine learning
open-source computational programs is alleviated subsequent to the formulation and
reformulation of the NN. This applies regardless of the assumed hidden layers between the
input and the output. The model is efficient, accurate, adaptive, and flexible to more data
that can be added. The output material parameters vary from 20 to 25% in relation to the
largest and the smallest values. The Young Modulus has a moderate to large estimation for
a rock that has a clayey orientation and is fairly disintegrated, and the input triad results
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in moderate values, except for the specific gravity, which is fairly large. The cohesion
has a moderate to large approximation for the aforementioned rock, and the input vector
results in moderate values, except for the specific gravity, which is augmented. It is
demonstrated that the input vector triad that optimizes the stiffness and the strength of the
material variable is the same, as expected from the theory. This validates the model and
postulates the fact that, in rock materials, a large stiffness often comes with a corresponding
augmented strength; this is not always the case in materials engineering.

In a future work, extending NNs with additional data and combining them with
other types of models could be considered. Convolutional neural networks, physics-
dnduced neural networks, and fuzzy and genetic programming methods may be adopted
for constructing similar estimations that can be compared and evaluated. Subsequently,
the aforementioned approximations may be more reliable, and any possible limitation of
one model may be addressed by the estimation of another model, thus rendering the full
range of practical situations fully predictable. Other classifications, such as RQD, RMR, and
Qslope, may also be employed, and similar NN models may be formulated. In addition,
analyses of the estimation of the material parameters originating from NN predictions may
be incorporated and compared to the regulatory and empirical estimations of material
parameters and rock mass responses in order to advance the geotechnical engineering
design by validating and improving the regulations and empirical approximations of the
material parameters and rock responses. Finally, direct NNs from data that relate the
absolute response of the rock mass may be formulated, and a similar comparison and
design optimization may take place.
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