Urban Monitoring from the Cloud: A Review of Google Earth Engine (GEE)-Based Approaches for Assessing Urban Environmental Indices
Abstract
1. Introduction
2. Materials and Methods
2.1. Information Sources and Search Strategy
2.2. Data Collection and Extraction
3. Results
3.1. Study Period 2015–2019
3.2. Study Period 2020–2024
4. Discussion
4.1. Machine Learning Techniques in the GEE Platform for Urban Monitoring
4.2. Key Metrics for Urban Monitoring Within GEE
4.3. Observation Data, Study Period, and Computational Domains
5. Conclusions
- (a)
- Machine learning applications: Conventional algorithms such as Random Forests (RFs), Support Vector Machines (SVMs), and classification/regression trees dominated, particularly for land cover classification and urban expansion mapping. Advanced approaches, including ensemble and deep learning models, are increasingly adopted for refined analyses (e.g., informal settlement detection, multi-source data integration); however, their potential within GEE is still underexplored.
- (b)
- Urban indices and environmental metrics: Widely used indices included the NDVI, NDBI, UI, and SUHI. These indices effectively quantify urbanization, impervious surfaces, and environmental impacts. The analysis highlights that GEE’s cloud-based processing environment allows researchers to perform multi-temporal analyses, visualize trends, and quantify urban growth dynamics without the need for local data storage or complex pre-processing steps. The results of the reviewed studies reveal that GEE offers a comprehensive framework for understanding the spatial and spectral complexity of urban environments.
- (c)
- Satellite data usage: The Landsat missions were the predominant source for urban analysis (64.58%), followed by Sentinel (21.88%) and MODIS (13.54%). Some studies integrated two or more satellite datasets to leverage complementary spatial and temporal resolutions.
- (d)
- Temporal trends and data integration: Landsat and Sentinel data were primarily used for long-term urban monitoring, while MODIS was valued for its dense temporal coverage for seasonal or regional-scale analyses. Various studies combined satellite imagery with open source datasets (e.g., OpenStreetMap, meteorological data, cadastral information) to improve the classification accuracy and contextual understanding of urban processes. This finding also suggests that researchers tend to favor multi-year, trend-oriented analyses in GEE-based studies.
- (e)
- Geographical patterns: The geographic distribution of the articles included in this review show that over 44% of publications originate from China, 11% from the United States, and 9% from India, while all other countries contribute fewer than 5% each. This imbalance highlights a substantial opportunity for research in underrepresented regions, indicating considerable room to expand knowledge and applications for cities worldwide.
Limitations and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhong, Q.; Ma, J.; Zhao, B.; Wang, X.; Zong, J.; Xiao, X. Assessing Spatial-Temporal Dynamics of Urban Expansion, Vegetation Greenness and Photosynthesis in Megacity Shanghai, China during 2000–2016. Remote Sens. Environ. 2019, 233, 111374. [Google Scholar] [CrossRef]
- Duncan, J.M.A.; Boruff, B.; Saunders, A.; Sun, Q.; Hurley, J.; Amati, M. Turning down the Heat: An Enhanced Understanding of the Relationship between Urban Vegetation and Surface Temperature at the City Scale. Sci. Total Environ. 2019, 656, 118–128. [Google Scholar] [CrossRef]
- Alvi, U.; Suomi, J.; Käyhkö, J. A Cost-Effective Method for Producing Spatially Continuous High-Resolution Air Temperature Information in Urban Environments. Urban Clim. 2022, 42, 101123. [Google Scholar] [CrossRef]
- United Nations—Department of Economic and Social Affairs United Nations—Sustainable Development Goals. Available online: https://sdgs.un.org/goals (accessed on 10 April 2023).
- Azzari, G.; Lobell, D.B. Landsat-Based Classification in the Cloud: An Opportunity for a Paradigm Shift in Land Cover Monitoring. Remote Sens. Environ. 2017, 202, 64–74. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, Y.; Li, R.; Li, X.; Zhang, H. Monitoring Long-Term Annual Urban Expansion (1986–2017) in the Largest Archipelago of China. Sci. Total Environ. 2021, 776, 146015. [Google Scholar] [CrossRef]
- Manson, S.M.; Kernik, M. Human–Environment Interactions and Scalable Remote Sensing. In Comprehensive Remote Sensing; Liang, S., Ed.; Elsevier: Oxford, UK, 2018; Chapter 9.02; pp. 4–16. ISBN 978-0-12-803221-3. [Google Scholar]
- Haque, M.N.; Sharif, M.S.; Rudra, R.R.; Mahi, M.M.; Uddin, M.J.; Ellah, R.G.A. Analyzing the Spatio-Temporal Directions of Air Pollutants for the Initial Wave of COVID-19 Epidemic over Bangladesh: Application of Satellite Imageries and Google Earth Engine. Remote Sens. Appl. Soc. Environ. 2022, 28, 100862. [Google Scholar] [CrossRef] [PubMed]
- Stamou, A.; Karachaliou, E.; Dosiou, A.; Tavantzis, I.; Stylianidis, E. Exploring Patterns of Surface Urban Heat Island Intensity: A Comparative Analysis of Three Greek Urban Areas. Discov. Cities 2024, 1, 18. [Google Scholar] [CrossRef]
- Goldblatt, R.; Deininger, K.; Hanson, G. Utilizing Publicly Available Satellite Data for Urban Research: Mapping Built-up Land Cover and Land Use in Ho Chi Minh City, Vietnam. Dev. Eng. 2018, 3, 83–99. [Google Scholar] [CrossRef]
- Pandey, B.; Seto, K.C. Urbanization and Agricultural Land Loss in India: Comparing Satellite Estimates with Census Data. J. Environ. Manag. 2015, 148, 53–66. [Google Scholar] [CrossRef]
- Li, X.; Yao, R.; Liu, M.; Costanzo, V.; Yu, W.; Wang, W.; Short, A.; Li, B. Developing Urban Residential Reference Buildings Using Clustering Analysis of Satellite Images. Energy Build. 2018, 169, 417–429. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Stamou, A.; Dosiou, A.; Bakousi, A.; Karachaliou, E.; Tavantzis, I.; Stylianidis, E. Assessing Spatial Correlations Between Land Cover Types and Land Surface Temperature Trends Using Vegetation Index Techniques in Google Earth Engine: A Case Study of Thessaloniki, Greece. Remote Sens. 2025, 17, 403. [Google Scholar] [CrossRef]
- Liang, J.; Xie, Y.; Sha, Z.; Zhou, A. Modeling Urban Growth Sustainability in the Cloud by Augmenting Google Earth Engine (GEE). Comput. Environ. Urban Syst. 2020, 84, 101542. [Google Scholar] [CrossRef]
- Hu, Y.; Dong, Y.; Batunacun. An Automatic Approach for Land-Change Detection and Land Updates Based on Integrated NDVI Timing Analysis and the CVAPS Method with GEE Support. ISPRS J. Photogramm. Remote Sens. 2018, 146, 347–359. [Google Scholar] [CrossRef]
- Pranckutė, R. Web of Science (WoS) and Scopus: The Titans of Bibliographic Information in Today’s Academic World. Publications 2021, 9, 12. [Google Scholar] [CrossRef]
- Goldblatt, R.; You, W.; Hanson, G.; Khandelwal, A.K. Detecting the Boundaries of Urban Areas in India: A Dataset for Pixel-Based Image Classification in Google Earth Engine. Remote Sens. 2016, 8, 634. [Google Scholar] [CrossRef]
- Huang, C.; Yang, J.; Lu, H.; Huang, H.; Yu, L. Green Spaces as an Indicator of Urban Health: Evaluating Its Changes in 28 Mega-Cities. Remote Sens. 2017, 9, 1266. [Google Scholar] [CrossRef]
- Agapiou, A. Remote Sensing Heritage in a Petabyte-Scale: Satellite Data and Heritage Earth Engine© Applications. Int. J. Digit. Earth 2017, 10, 85–102. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y.; et al. Mapping Major Land Cover Dynamics in Beijing Using All Landsat Images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Huang, C.; Yang, J.; Jiang, P. Assessing Impacts of Urban Form on Landscape Structure of Urban Green Spaces in China Using Landsat Images Based on Google Earth Engine. Remote Sens. 2018, 10, 1569. [Google Scholar] [CrossRef]
- Liu, X.; Hu, G.; Chen, Y.; Li, X.; Xu, X.; Li, S.; Pei, F.; Wang, S. High-Resolution Multi-Temporal Mapping of Global Urban Land Using Landsat Images Based on the Google Earth Engine Platform. Remote Sens. Environ. 2018, 209, 227–239. [Google Scholar] [CrossRef]
- Chen, P. Visualization of Real-Time Monitoring Datagraphic of Urban Environmental Quality. EURASIP J. Image Video Process. 2019, 2019, 42. [Google Scholar] [CrossRef]
- Khanal, N.; Uddin, K.; Matin, M.A.; Tenneson, K. Automatic Detection of Spatiotemporal Urban Expansion Patterns by Fusing OSM and Landsat Data in Kathmandu. Remote Sens. 2019, 11, 2296. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, R.; Du, W.; Wang, L.; Lu, D. High-Resolution Urban Land Mapping in China from Sentinel 1A/2 Imagery Based on Google Earth Engine. Remote Sens. 2019, 11, 752. [Google Scholar] [CrossRef]
- Hao, B.; Ma, M.; Li, S.; Li, Q.; Hao, D.; Huang, J.; Ge, Z.; Yang, H.; Han, X. Land Use Change and Climate Variation in the Three Gorges Reservoir Catchment from 2000 to 2015 Based on the Google Earth Engine. Sensors 2019, 19, 2118. [Google Scholar] [CrossRef]
- Liu, A.; Wu, Q.; Cheng, X. Using the Google Earth Engine to Estimate a 10 m Resolution Monthly Inventory of Soil Fugitive Dust Emissions in Beijing, China. Sci. Total Environ. 2020, 735, 139174. [Google Scholar] [CrossRef] [PubMed]
- Tamiminia, H.; Salehi, B.; Mahdianpari, M.; Quackenbush, L.; Adeli, S.; Brisco, B. Google Earth Engine for Geo-Big Data Applications: A Meta-Analysis and Systematic Review. ISPRS J. Photogramm. Remote Sens. 2020, 164, 152–170. [Google Scholar] [CrossRef]
- Xia, Z.; Guo, X.; Chen, R. Automatic Extraction of Aquaculture Ponds Based on Google Earth Engine. Ocean Coast. Manag. 2020, 198, 105348. [Google Scholar] [CrossRef]
- Singha, M.; Dong, J.; Sarmah, S.; You, N.; Zhou, Y.; Zhang, G.; Doughty, R.; Xiao, X. Identifying Floods and Flood-Affected Paddy Rice Fields in Bangladesh Based on Sentinel-1 Imagery and Google Earth Engine. ISPRS J. Photogramm. Remote Sens. 2020, 166, 278–293. [Google Scholar] [CrossRef]
- Ghorbanian, A.; Kakooei, M.; Amani, M.; Mahdavi, S.; Mohammadzadeh, A.; Hasanlou, M. Improved Land Cover Map of Iran Using Sentinel Imagery within Google Earth Engine and a Novel Automatic Workflow for Land Cover Classification Using Migrated Training Samples. ISPRS J. Photogramm. Remote Sens. 2020, 167, 276–288. [Google Scholar] [CrossRef]
- Wang, L.; Diao, C.; Xian, G.; Yin, D.; Lu, Y.; Zou, S.; Erickson, T.A. A Summary of the Special Issue on Remote Sensing of Land Change Science with Google Earth Engine. Remote Sens. Environ. 2020, 248, 112002. [Google Scholar] [CrossRef]
- Wang, Y.; Sha, Z.; Tan, X.; Lan, H.; Liu, X.; Rao, J. Modeling Urban Growth by Coupling Localized Spatio-Temporal Association Analysis and Binary Logistic Regression. Comput. Environ. Urban Syst. 2020, 81, 101482. [Google Scholar] [CrossRef]
- Lin, Y.; Wang, Z.; Jim, C.Y.; Li, J.; Deng, J.; Liu, J. Water as an Urban Heat Sink: Blue Infrastructure Alleviates Urban Heat Island Effect in Mega-City Agglomeration. J. Clean. Prod. 2020, 262, 121411. [Google Scholar] [CrossRef]
- Sarricolea, P.; Serrano-Notivoli, R.; Fuentealba, M.; Hernández-Mora, M.; de la Barrera, F.; Smith, P.; Meseguer-Ruiz, Ó. Recent Wildfires in Central Chile: Detecting Links Between Burned Areas and Population Exposure in the Wildland Urban Interface. Sci. Total Environ. 2020, 706, 135894. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, T.; Hsu, A.; Manya, D.; Sheriff, G. A Spatially Explicit Surface Urban Heat Island Database for the United States: Characterization, Uncertainties, and Possible Applications. ISPRS J. Photogramm. Remote Sens. 2020, 168, 74–88. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, M.; Liu, X.; Meng, Y.; Zhu, L.; Rong, Y. Spatio-Temporal Evolution of Surface Urban Heat Islands in the Chang-Zhu-Tan Urban Agglomeration. Phys. Chem. Earth Parts ABC 2020, 117, 102865. [Google Scholar] [CrossRef]
- Wellmann, T.; Lausch, A.; Andersson, E.; Knapp, S.; Cortinovis, C.; Jache, J.; Scheuer, S.; Kremer, P.; Mascarenhas, A.; Kraemer, R.; et al. Remote Sensing in Urban Planning: Contributions towards Ecologically Sound Policies? Landsc. Urban Plan. 2020, 204, 103921. [Google Scholar] [CrossRef]
- Koroso, N.H.; Zevenbergen, J.A.; Lengoiboni, M. Urban Land Use Efficiency in Ethiopia: An Assessment of Urban Land Use Sustainability in Addis Ababa. Land Use Policy 2020, 99, 105081. [Google Scholar] [CrossRef]
- Shi, L.; Gong, H.; Chen, B.; Zhou, C. Land Subsidence Prediction Induced by Multiple Factors Using Machine Learning Method. Remote Sens. 2020, 12, 4044. [Google Scholar] [CrossRef]
- Yang, C.; Li, R.; Sha, Z. Exploring the Dynamics of Urban Greenness Space and Their Driving Factors Using Geographically Weighted Regression: A Case Study in Wuhan Metropolis, China. Land 2020, 9, 500. [Google Scholar] [CrossRef]
- Zhao, J.; Yu, L.; Xu, Y.; Li, X.; Zhou, Y.; Peng, D.; Liu, H.; Huang, X.; Zhou, Z.; Wang, D.; et al. Exploring Difference in Land Surface Temperature between the City Centres and Urban Expansion Areas of China’s Major Cities. Int. J. Remote Sens. 2020, 41, 8965–8985. [Google Scholar] [CrossRef]
- Ranagalage, M.; Ratnayake, S.S.; Dissanayake, D.; Kumar, L.; Wickremasinghe, H.; Vidanagama, J.; Cho, H.; Udagedara, S.; Jha, K.K.; Simwanda, M.; et al. Spatiotemporal Variation of Urban Heat Islands for Implementing Nature-Based Solutions: A Case Study of Kurunegala, Sri Lanka. ISPRS Int. J. Geo-Inf. 2020, 9, 461. [Google Scholar] [CrossRef]
- Venter, Z.S.; Krog, N.H.; Barton, D.N. Linking Green Infrastructure to Urban Heat and Human Health Risk Mitigation in Oslo, Norway. Sci. Total Environ. 2020, 709, 136193. [Google Scholar] [CrossRef]
- Mugiraneza, T.; Nascetti, A.; Ban, Y. Continuous Monitoring of Urban Land Cover Change Trajectories with Landsat Time Series and LandTrendr-Google Earth Engine Cloud Computing. Remote Sens. 2020, 12, 2883. [Google Scholar] [CrossRef]
- Liu, D.; Chen, N.; Zhang, X.; Wang, C.; Du, W. Annual Large-Scale Urban Land Mapping Based on Landsat Time Series in Google Earth Engine and OpenStreetMap Data: A Case Study in the Middle Yangtze River Basin. ISPRS J. Photogramm. Remote Sens. 2020, 159, 337–351. [Google Scholar] [CrossRef]
- Lin, Y.; Zhang, H.; Lin, H.; Gamba, P.E.; Liu, X. Incorporating Synthetic Aperture Radar and Optical Images to Investigate the Annual Dynamics of Anthropogenic Impervious Surface at Large Scale. Remote Sens. Environ. 2020, 242, 111757. [Google Scholar] [CrossRef]
- Yang, X.; Qin, Q.; Yésou, H.; Ledauphin, T.; Koehl, M.; Grussenmeyer, P.; Zhu, Z. Monthly Estimation of the Surface Water Extent in France at a 10-m Resolution Using Sentinel-2 Data. Remote Sens. Environ. 2020, 244, 111803. [Google Scholar] [CrossRef]
- Ghasempour, F.; Sekertekin, A.; Kutoglu, S.H. Google Earth Engine Based Spatio-Temporal Analysis of Air Pollutants before and during the First Wave COVID-19 Outbreak over Turkey via Remote Sensing. J. Clean. Prod. 2021, 319, 128599. [Google Scholar] [CrossRef] [PubMed]
- Sannigrahi, S.; Kumar, P.; Molter, A.; Zhang, Q.; Basu, B.; Basu, A.S.; Pilla, F. Examining the Status of Improved Air Quality in World Cities Due to COVID-19 Led Temporary Reduction in Anthropogenic Emissions. Environ. Res. 2021, 196, 110927. [Google Scholar] [CrossRef]
- Beloconi, A.; Probst-Hensch, N.M.; Vounatsou, P. Spatio-Temporal Modelling of Changes in Air Pollution Exposure Associated to the COVID-19 Lockdown Measures across Europe. Sci. Total Environ. 2021, 787, 147607. [Google Scholar] [CrossRef]
- Naqvi, H.R.; Mutreja, G.; Shakeel, A.; Siddiqui, M.A. Spatio-Temporal Analysis of Air Quality and Its Relationship with Major COVID-19 Hotspot Places in India. Remote Sens. Appl. Soc. Environ. 2021, 22, 100473. [Google Scholar] [CrossRef]
- Purwanto, P.; Astuti, I.S.; Rohman, F.; Utomo, K.S.B.; Aldianto, Y.E. Assessment of the Dynamics of Urban Surface Temperatures and Air Pollution Related to COVID-19 in a Densely Populated City Environment in East Java. Ecol. Inform. 2022, 71, 101809. [Google Scholar] [CrossRef]
- Lu, H.; Guan, R.; Xia, M.; Zhang, C.; Miao, C.; Ge, Y.; Wu, X. Very High-Resolution Remote Sensing-Based Mapping of Urban Residential Districts to Help Combat COVID-19. Cities 2022, 126, 103696. [Google Scholar] [CrossRef]
- Lin, L.; Hao, Z.; Post, C.J.; Mikhailova, E.A. Monitoring Ecological Changes on a Rapidly Urbanizing Island Using a Remote Sensing-Based Ecological Index Produced Time Series. Remote Sens. 2022, 14, 5773. [Google Scholar] [CrossRef]
- Onačillová, K.; Gallay, M.; Paluba, D.; Péliová, A.; Tokarčík, O.; Laubertová, D. Combining Landsat 8 and Sentinel-2 Data in Google Earth Engine to Derive Higher Resolution Land Surface Temperature Maps in Urban Environment. Remote Sens. 2022, 14, 4076. [Google Scholar] [CrossRef]
- Espinoza-Molina, J.; Acosta-Caipa, K.; Chambe-Vega, E.; Huayna, G.; Pino-Vargas, E.; Abad, J. Spatiotemporal Analysis of Urban Heat Islands in Relation to Urban Development, in the Vicinity of the Atacama Desert. Climate 2022, 10, 87. [Google Scholar] [CrossRef]
- Sangiorgio, V.; Capolupo, A.; Tarantino, E.; Fiorito, F.; Santamouris, M. Evaluation of Absolute Maximum Urban Heat Island Intensity Based on a Simplified Remote Sensing Approach. Environ. Eng. Sci. 2022, 39, 296–307. [Google Scholar] [CrossRef]
- Ullah, N.; Siddique, M.A.; Ding, M.; Grigoryan, S.; Zhang, T.; Hu, Y. Spatiotemporal Impact of Urbanization on Urban Heat Island and Urban Thermal Field Variance Index of Tianjin City, China. Buildings 2022, 12, 399. [Google Scholar] [CrossRef]
- Dong, G.; Chen, S.; Liu, K.; Wang, W.; Hou, H.; Gao, L.; Zhang, F.; Su, H. Spatiotemporal Variation in Sensitivity of Urban Vegetation Growth and Greenness to Vegetation Water Content: Evidence from Chinese Megacities. Sci. Total Environ. 2023, 905, 167090. [Google Scholar] [CrossRef]
- Pokhariya, H.S.; Singh, D.P.; Prakash, R. Evaluation of Different Machine Learning Algorithms for LULC Classification in Heterogeneous Landscape by Using Remote Sensing and GIS Techniques. Eng. Res. Express 2023, 5, 045052. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, L.; Gu, X.; Zhang, L. Study on the Spatial and Temporal Evolution of Regional Green Space Morphology Outside Built-Up Areas Based on the Google Earth Engine and Biophysical Component Modeling. Land 2023, 12, 2184. [Google Scholar] [CrossRef]
- Su, Y.; Lu, C.; Su, Y.; Wang, Z.; Huang, Y.; Yang, N. Spatio-Temporal Evolution of Urban Expansion Based on a Novel Adjusted Index and GEE: A Case Study of Central Plains Urban Agglomeration, China. Chin. Geogr. Sci. 2023, 33, 736–750. [Google Scholar] [CrossRef]
- Amir Siddique, M.; Boqing, F.; Dongyun, L. Modeling the Impact and Risk Assessment of Urbanization on Urban Heat Island and Thermal Comfort Level of Beijing City, China (2005–2020). Sustainability 2023, 15, 6043. [Google Scholar] [CrossRef]
- Langenkamp, J.-P.; Rienow, A. Exploring the Use of Orthophotos in Google Earth Engine for Very High-Resolution Mapping of Impervious Surfaces: A Data Fusion Approach in Wuppertal, Germany. Remote Sens. 2023, 15, 1818. [Google Scholar] [CrossRef]
- Gxokwe, S.; Dube, T. Using Cloud Computing Techniques to Map the Geographic Extent of Informal Settlements in the Greater Cape Town Metropolitan Area. Remote Sens. Appl. Soc. Environ. 2024, 36, 101275. [Google Scholar] [CrossRef]
- Falah, N.; Solis-Guzman, J.; Falah, N. Thermal Footprint of the Urbanization Process: Analyzing the Heat Effects of the Urbanization Index (UI) on the Local Climate Zone (LCZ) and Land Surface Temperature (LST) over Two Decades in Seville. Land 2024, 13, 1877. [Google Scholar] [CrossRef]
- Paniagua-Villada, C.; Garizábal-Carmona, J.A.; Martínez-Arias, V.M.; Mancera-Rodríguez, N.J. Built vs. Green Cover: An Unequal Struggle for Urban Space in Medellín (Colombia). Urban Ecosyst. 2024, 27, 1055–1065. [Google Scholar] [CrossRef]
- Xu, X.; Wu, Y.; Lin, G.; Gong, J.; Chen, K. Exploring Diurnal and Seasonal Variabilities in Surface Urban Heat Island Intensity in the Guangdong-Hong Kong-Macao Greater Bay Area. J. Geogr. Sci. 2024, 34, 1472–1492. [Google Scholar] [CrossRef]
- Banerjee, B.; Pal, A.; Tiwari, A.K.; Kanchan, R. Assessing the Land Use Dynamics and Thermal Environment Using Geospatial Techniques in the Industrial City of Chotanagpur Plateau Region, India. Environ. Monit. Assess. 2024, 196, 609. [Google Scholar] [CrossRef]
- Wang, R.; Ding, X.; Yi, B.; Wang, J. Spatiotemporal Characteristics of Vegetation Cover Change in the Central Yunnan Urban Agglomeration from 2000 to 2020 Based on Landsat Data and Its Driving Factors. Geocarto Int. 2024, 39, 2316643. [Google Scholar] [CrossRef]
- Chen, Q.; Zhong, C.; Jing, C.; Li, Y.; Cao, B.; Cheng, Q. Rapid Mapping and Annual Dynamic Evaluation of Quality of Urban Green Spaces on Google Earth Engine. ISPRS Int. J. Geo-Inf. 2021, 10, 670. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăgu, L. Random Forest in Remote Sensing: A Review of Applications and Future Directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Qin, Y.; Cao, L.; Li, S.; Ye, F.; Boloorani, A.D.; Liang, Z.; Huang, J.; Liu, G. Multisource Geoscience Data-Driven Framework for Subsidence Risk Assessment in Urban Area. Int. J. Disaster Risk Reduct. 2024, 113, 104901. [Google Scholar] [CrossRef]
- Hu, Z.; Chu, Y.; Zhang, Y.; Zheng, X.; Wang, J.; Xu, W.; Wang, J.; Wu, G. Scale Matters: How Spatial Resolution Impacts Remote Sensing Based Urban Green Space Mapping? Int. J. Appl. Earth Obs. Geoinf. 2024, 134, 104178. [Google Scholar] [CrossRef]
- Mazhar, S.; Sun, G.; Bilal, A.; Li, Y.; Farhan, M.; Awan, H.H. Digital and Geographical Feature Detection by Machine Learning Techniques Using Google Earth Engine for CPEC Traffic Management. Wirel. Commun. Mob. Comput. 2022, 2022, 1192752. [Google Scholar] [CrossRef]
- Bille, R.A.; Jensen, K.E.; Buitenwerf, R. Global Patterns in Urban Green Space Are Strongly Linked to Human Development and Population Density. Urban For. Urban Green. 2023, 86, 127980. [Google Scholar] [CrossRef]
- Feng, L.; Hussain, S.; Pricope, N.G.; Arshad, S.; Tariq, A.; Feng, L.; Mubeen, M.; Aslam, R.W.; Fnais, M.S.; Li, W.; et al. Seasonal Dynamics in Land Surface Temperature in Response to Land Use Land Cover Changes Using Google Earth Engine. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 17983–17997. [Google Scholar] [CrossRef]
- Thenkabail, P.; Teluguntla, P.; Xiong, J.; Oliphant, A.; Congalton, R.G.; Ozdogan, M.; Gumma, M.K.; Tilton, J.; Giri, C.; Milesi, C.; et al. Global Cropland-Extent Product at 30-m Resolution (GCEP30) Derived from Landsat Satellite Time-Series Data for the Year 2015 Using Multiple Machine-Learning Algorithms on Google Earth Engine Cloud; Professional Paper; U.S. Geological Survey: Reston, VA, USA, 2021; p. 63. [Google Scholar]
- Parekh, J.R.; Poortinga, A.; Bhandari, B.; Mayer, T.; Saah, D.; Chishtie, F. Automatic Detection of Impervious Surfaces from Remotely Sensed Data Using Deep Learning. Remote Sens. 2021, 13, 3166. [Google Scholar] [CrossRef]
- Assaf, M.N.; Selma, A.; Kacem, M. Spatiotemporal Investigation of Surface Urban Heat Island (SUHI) Using Landsat: Application on African Cities. In Advances in Science, Technology & Innovation; Springer Nature: Berlin, Germany, 2023. [Google Scholar]
- Belenok, V.; Hebryn-Baidy, L.; Bielousova, N.; Gladilin, V.; Kryachok, S.; Tereshchenko, A.; Alpert, S.; Bodnar, S. Machine Learning Based Combinatorial Analysis for Land Use and Land Cover Assessment in Kyiv City (Ukraine). J. Appl. Remote Sens. 2023, 17, 014506. [Google Scholar] [CrossRef]
- Guo, F.; Fan, L.; Zhang, C.; Xue, S. A Novel Space–Spectrum Array Tile Probability Random-Forest Model Enhances LULC Mapping Accuracy on Google Earth Engine: An Experiment in Ordos, China. Ecol. Inform. 2024, 81, 102607. [Google Scholar] [CrossRef]
- Bihon, Y.T.; Mohammed, A.K.; Ayele, E.G. Spatiotemporal Analysis of Land Use and Land Cover Using Random Forest in Google Earth Engine: A Case Study of the Grand Ethiopian Renaissance Dam Basin and Reservoir, Upper Blue Nile, Ethiopia. Environ. Chall. 2025, 21, 101311. [Google Scholar] [CrossRef]
- Patel, S.; Indraganti, M.; Jawarneh, R.N. A Comprehensive Systematic Review: Impact of Land Use/ Land Cover (LULC) on Land Surface Temperatures (LST) and Outdoor Thermal Comfort. Build. Environ. 2024, 249, 111130. [Google Scholar] [CrossRef]
- Faridatul, M.I.; Wu, B. Automatic Classification of Major Urban Land Covers Based on Novel Spectral Indices. ISPRS Int. J. Geo-Inf. 2018, 7, 453. [Google Scholar] [CrossRef]
- Ding, Y.; Ding, Q.; Yang, J.; Shao, Z.; Huang, X. PRISI: A Novel Piecewise Radar Impervious Surface Index for Urban Monitoring Using Sentinel-1 Data. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103033. [Google Scholar] [CrossRef]
- Mustafa, E.K.; Liu, G.; Abd El-Hamid, H.T.; Kaloop, M.R. Simulation of Land Use Dynamics and Impact on Land Surface Temperature Using Satellite Data. GeoJournal 2021, 86, 1089–1107. [Google Scholar] [CrossRef]
- Assaf, G.; Hu, X.; Assaad, R.H. Mining and Modeling the Direct and Indirect Causalities among Factors Affecting the Urban Heat Island Severity Using Structural Machine Learned Bayesian Networks. Urban Clim. 2023, 49, 101570. [Google Scholar] [CrossRef]
- Becker, D.A.; Browning, M.H.E.M. Total Area Greenness Is Associated with Lower Per-Capita Medicare Spending, but Blue Spaces Are Not. City Environ. Interact. 2021, 11, 100063. [Google Scholar] [CrossRef]
- Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; et al. Annual Maps of Global Artificial Impervious Area (GAIA) between 1985 and 2018. Remote Sens. Environ. 2020, 236, 111510. [Google Scholar] [CrossRef]
- Abarca-Alvarez, F.J.; Campos-Sánchez, F.S.; Osuna-Pérez, F. Urban Shape and Built Density Metrics through the Analysis of European Urban Fabrics Using Artificial Intelligence. Sustainability 2019, 11, 6622. [Google Scholar] [CrossRef]
- Azmi, R.; Tekouabou Koumetio, C.S.; Diop, E.B.; Chenal, J. Exploring the Relationship between Urban Form and Land Surface Temperature (LST) in a Semi-Arid Region Case Study of Ben Guerir City—Morocco. Environ. Chall. 2021, 5, 100229. [Google Scholar] [CrossRef]
- Chen, Y.; Shu, B.; Zhang, R.; Amani-Beni, M. LST Determination of Different Urban Growth Patterns: A Modeling Procedure to Identify the Dominant Spatial Metrics. Sustain. Cities Soc. 2023, 92, 104459. [Google Scholar] [CrossRef]
- Eleftheriou, D.; Kiachidis, K.; Kalmintzis, G.; Kalea, A.; Bantasis, C.; Koumadoraki, P.; Spathara, M.E.; Tsolaki, A.; Tzampazidou, M.I.; Gemitzi, A. Determination of Annual and Seasonal Daytime and Nighttime Trends of MODIS LST over Greece—Climate Change Implications. Sci. Total Environ. 2018, 616–617, 937–947. [Google Scholar] [CrossRef]
- Shi, L.; Ling, F.; Foody, G.M.; Yang, Z.; Liu, X.; Du, Y. Seasonal SUHI Analysis Using Local Climate Zone Classification: A Case Study of Wuhan, China. Int. J. Environ. Res. Public Health 2021, 18, 7242. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo-García, D.; Arco-Díaz, J. Modeling the Surface Urban Heat Island (SUHI) to Study of Its Relationship with Variations in the Thermal Field and with the Indices of Land Use in the Metropolitan Area of Granada (Spain). Sustain. Cities Soc. 2022, 87, 104166. [Google Scholar] [CrossRef]
- Benas, N.; Chrysoulakis, N.; Cartalis, C. Trends of Urban Surface Temperature and Heat Island Characteristics in the Mediterranean. Theor. Appl. Climatol. 2017, 130, 807–816. [Google Scholar] [CrossRef]
- Musse, M.A.; Barona, D.A.; Santana Rodriguez, L.M. Urban Environmental Quality Assessment Using Remote Sensing and Census Data. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 95–108. [Google Scholar] [CrossRef]
- Hu, X.; Xu, H. A New Remote Sensing Index for Assessing the Spatial Heterogeneity in Urban Ecological Quality: A Case from Fuzhou City, China. Ecol. Indic. 2018, 89, 11–21. [Google Scholar] [CrossRef]
- Roy, B.; Bari, E.; Nipa, N.J.; Ani, S.A. Comparison of Temporal Changes in Urban Settlements and Land Surface Temperature in Rangpur and Gazipur Sadar, Bangladesh after the Establishment of City Corporation. Remote Sens. Appl. Soc. Environ. 2021, 23, 100587. [Google Scholar] [CrossRef]
- Wu, Z.; Zhang, S.; Liu, M.; Wu, Z.; Hu, X.; Lin, S. Impact of Forest Landscape Patterns on Ecological Quality in Coastal Cities of Fujian, China, from 2000 to 2020. Forests 2024, 15, 1925. [Google Scholar] [CrossRef]
- Xu, C.; Li, B.; Kong, F.; He, T. Spatial-Temporal Variation, Driving Mechanism and Management Zoning of Ecological Resilience Based on RSEI in a Coastal Metropolitan Area. Ecol. Indic. 2024, 158, 111447. [Google Scholar] [CrossRef]
- Qiu, C.; Mou, L.; Schmitt, M.; Zhu, X. Local Climate Zone-Based Urban Land Cover Classification from Multi-Seasonal Sentinel-2 Images with a Recurrent Residual Network. ISPRS J. Photogramm. Remote Sens. 2019, 154, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Ling, F. Local Climate Zone Mapping Using Multi-Source Free Available Datasets on Google Earth Engine Platform. Land 2021, 10, 454. [Google Scholar] [CrossRef]
- Data | Landsat Science. Available online: https://landsat.gsfc.nasa.gov/data/ (accessed on 7 October 2025).
- About Copernicus | Copernicus. Available online: https://www.copernicus.eu/en/about-copernicus (accessed on 7 October 2025).






| Year | No. of Articles Found in Scopus |
|---|---|
| 2015 | 2 |
| 2016 | 1 |
| 2017 | 3 |
| 2018 | 13 |
| 2019 | 25 |
| 2020 | 57 |
| 2021 | 89 |
| 2022 | 144 |
| 2023 | 172 |
| 2024 | 217 |
| Total: 723 |
| Year | 1st Screening: No. of Articles Found in Scopus | No. of Articles Excluded from Subject | No. of Articles After 2nd Screening | No. of Articles Excluded, Non-Relevant, and Filtered, Including Boolean Operator ‘AND’ Within the Keywords | No. of Articles After Final Screening |
|---|---|---|---|---|---|
| 2015 | 2 | 0 | 2 | 2 | 0 |
| 2016 | 1 | 0 | 1 | 1 | 0 |
| 2017 | 3 | 0 | 3 | 2 | 1 |
| 2018 | 13 | 1 | 12 | 9 | 3 |
| 2019 | 25 | 6 | 19 | 10 | 9 |
| 2020 | 57 | 5 | 52 | 33 | 19 |
| 2021 | 89 | 4 | 85 | 54 | 31 |
| 2022 | 144 | 7 | 137 | 75 | 62 |
| 2023 | 172 | 17 | 155 | 76 | 79 |
| 2024 | 217 | 17 | 200 | 113 | 87 |
| 723 | 57 | 666 | 375 | 291 |
| Country | No. of Articles Published in Scopus | Percentage |
|---|---|---|
| China | 127 | 43.64% |
| United States | 33 | 11.34% |
| India | 26 | 8.93% |
| Australia | 15 | 5.15% |
| Italy | 12 | 4.12% |
| Iran | 12 | 4.12% |
| United Kingdom | 10 | 3.44% |
| Pakistan | 10 | 3.44% |
| Germany | 9 | 3.09% |
| Spain | 8 | 2.75% |
| Other countries 1 (each <5 papers; cumulative) | 29 | 9.97% |
| Authors | Focus | ML Technique | Performance Metrics |
|---|---|---|---|
| Chen et al., Belgiu et al., Oliphant et al., Svoboda et al. [74,75,76,77,85,86] |
| Random Forests | Overall accuracy (OA), the producer’s accuracy (PA), the user’s accuracy (UA), and the kappa coefficient (KC) Out-of-Bag (OOB) error |
| Mugiraneza et al., Pokhariya et al., Mazhar et al., Patel et al. [47,63,78,87] |
| Support Vector Machines | Accuracy assessment (Area2) Overall accuracy (OA), the producer’s accuracy (PA), the user’s accuracy (UA), and the kappa coefficient (KC) |
| Wang et al., Faridatul and Wu, Ding et al. [35,83,88,89] |
| Maximum Likelihood (ML) | Overall accuracy (OA), the producer’s accuracy (PA), the user’s accuracy (UA), and the kappa coefficient (KC) |
| Yang et al., Bille et al., Mustafa et al. [43,79,90] |
| Single and multiple linear regression | Overall accuracy (OA), the producer’s accuracy (PA), the user’s accuracy (UA) |
| Assaf et al. [91] |
| Bayesian network | Accuracy, Precision, Recall, F-1 score |
| Urban Index | Research Focus | Reference |
|---|---|---|
| NDVI = NIR − RED/NIR +RED | Urban greenness Impervious surfaces mapping UHI | [6,9,44,62,68,72,77,92] |
| NDBI = (SWIR − NIR)/(SWIR + NIR) | Impervious surfaces mapping UHI Built-up Urban sprawl | [67,70,82,89,93,94] |
| Urban Land Index (UI) = (SWIR − NIR)/(SWIR + NIR) | Impervious surfaces mapping UHI Built-up Urban sprawl | [35,36,37,38,39,40,41] |
| Land Surface Temperature LST, with Radiative Transfer Equation (RTE) | UHI Urban sprawl Greenness mapping | [9,69,87,95,96,97] |
| Surface Urban Heat Island index (SUHI) = Turban − Trural | UHI Urban sprawl Greenness mapping | [36,38,59,61,71,83,98,99,100] |
| Urban Environmental Quality Index (UEQI) (using Land Surface Temperature, NDVI, and population density) | Assessing the quality of an urban environment | [101,102,103] |
| Differential Build and Bare Soil Index (NDBSI) NDBSI = α × IBI + β × SI where IBI = (NIR + Red) − (Blue + SWIR1)/(NIR + Red) + (Blue + SWIR1) SI = (SWIR1 + Red) − (NIR + Green)/(SWIR1 + Red) + (NIR + Green) α and β are weight coefficients, which may vary depending on the specific study and data characteristics. | Impervious surfaces mapping Ecological resilience of urban landscapes Built-up UHI Urban sprawl | [38,104,105] |
| Observation Data | Study Period Category (%) | Number of Derived Articles | % Percentage of Total Reviewed Articles (%) | Cited References |
|---|---|---|---|---|
| Landsat (5,7–9, ETM+) |
| 62 | 64.58% | [1,2,3,5,6,7,8,9,10,15,16,17,19,20,21,22,23,24,25,28,29,30,33,34,39,41,42,43,45,46,47,48,57,58,60,61,62,63,66,68,69,72,73,77,80,81,83,86,89,93,95,96,98,99,101,102,103,104,105] |
| Sentinel 1–2, 5 |
| 21 | 21.88% | [8,10,21,24,26,27,31,32,33,42,49,50,58,59,74,77,79,84,93,104,107] |
| MODIS |
| 13 | 13.54% | [3,11,37,38,44,49,51,53,54,55,62,68,97] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stamou, A.; Stylianidis, E. Urban Monitoring from the Cloud: A Review of Google Earth Engine (GEE)-Based Approaches for Assessing Urban Environmental Indices. Geographies 2025, 5, 68. https://doi.org/10.3390/geographies5040068
Stamou A, Stylianidis E. Urban Monitoring from the Cloud: A Review of Google Earth Engine (GEE)-Based Approaches for Assessing Urban Environmental Indices. Geographies. 2025; 5(4):68. https://doi.org/10.3390/geographies5040068
Chicago/Turabian StyleStamou, Aikaterini, and Efstratios Stylianidis. 2025. "Urban Monitoring from the Cloud: A Review of Google Earth Engine (GEE)-Based Approaches for Assessing Urban Environmental Indices" Geographies 5, no. 4: 68. https://doi.org/10.3390/geographies5040068
APA StyleStamou, A., & Stylianidis, E. (2025). Urban Monitoring from the Cloud: A Review of Google Earth Engine (GEE)-Based Approaches for Assessing Urban Environmental Indices. Geographies, 5(4), 68. https://doi.org/10.3390/geographies5040068
