Evaluation of the SWAT Model for the Simulation of Flow and Water Balance Based on Orbital Data in a Poorly Monitored Basin in the Brazilian Amazon
Abstract
:1. Introduction
2. Methodology and Data
2.1. Study Area
2.2. Digital Elevation Model (DEM)
2.3. Land Use and Land Cover
2.4. Soil
2.5. Climate Data
2.6. Flow Data
2.7. SWAT Model
2.8. Configuration of the Model
2.9. Calibration and Validation
3. Results
3.1. Sensitivity Analyses, Calibration, and Validation
3.2. Water Balance Components
3.3. Spatial Distribution of Water Balance Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ritter, C.D.; Zizka, A.; Barnes, C.; Nilsson, R.H.; Roger, F.; Antonelli, A. Locality or Habitat? Exploring Predictors of Biodiversity in Amazonia. Ecography 2019, 42, 321–333. [Google Scholar] [CrossRef] [Green Version]
- Paredes-Trejo, F.; Barbosa, H.; Giovannettone, J.; Kumar, T.V.L.; Kumar Thakur, M.; de Oliveira Buriti, C. Drought Variability and Land Degradation in the Amazon River Basin. Front. Earth Sci. 2022, 10, 1–16. [Google Scholar] [CrossRef]
- Fassoni-Andrade, A.C.; Fleischmann, A.S.; Papa, F.; de Paiva, R.C.D.; Wongchuig, S.; Melack, J.M.; Moreira, A.A.; Paris, A.; Ruhoff, A.; Barbosa, C.; et al. Amazon Hydrology From Space: Scientific Advances and Future Challenges. Rev. Geophys. 2021, 59, e2020RG000728. [Google Scholar] [CrossRef]
- Chaudhari, S.; Pokhrel, Y. Alteration of River Flow and Flood Dynamics by Existing and Planned Hydropower Dams in the Amazon River Basin. Water Resour. Res. 2022, 58, e2021WR030555. [Google Scholar] [CrossRef]
- Van Der Ent, R.J.; Savenije, H.H.G. Length and Time Scales of Atmospheric Moisture Recycling. Atmos. Chem. Phys. 2011, 11, 1853–1863. [Google Scholar] [CrossRef] [Green Version]
- Keys, P.W.; Wang-Erlandsson, L.; Gordon, L.J. Revealing Invisible Water: Moisture Recycling as an Ecosystem Service. PLoS ONE 2016, 11, e0151993. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, J.C.; Santos, M.J.; Dekker, S.C.; Rebel, K.T.; Tuinenburg, O.A. Atmospheric Moisture Contribution to the Growing Season in the Amazon Arc of Deforestation. Environ. Res. Lett. 2021, 16, 084026. [Google Scholar] [CrossRef]
- Silva, C.V.J.; Aragão, L.E.O.C.; Barlow, J.; Espirito-Santo, F.; Young, P.J.; Anderson, L.O.; Berenguer, E.; Brasil, I.; Brown, I.F.; Castro, B.; et al. Drought-Induced Amazonian Wildfires Instigate a Decadal-Scale Disruption of Forest Carbon Dynamics. Philos. Trans. R. Soc. B Biol. Sci. 2018, 373, 20180043. [Google Scholar] [CrossRef] [Green Version]
- Libonati, R.; Pereira, J.M.C.; Da Camara, C.C.; Peres, L.F.; Oom, D.; Rodrigues, J.A.; Santos, F.L.M.; Trigo, R.M.; Gouveia, C.M.P.; Machado-Silva, F.; et al. Twenty-First Century Droughts Have Not Increasingly Exacerbated Fire Season Severity in the Brazilian Amazon. Sci. Rep. 2021, 11, 4400. [Google Scholar] [CrossRef]
- Staal, A.; Flores, B.M.; Aguiar, A.P.D.; Bosmans, J.H.C.; Fetzer, I.; Tuinenburg, O.A. Feedback between Drought and Deforestation in the Amazon. Environ. Res. Lett. 2020, 15, 044024. [Google Scholar] [CrossRef]
- Zemp, D.C.; Schleussner, C.F.; Barbosa, H.M.J.; Hirota, M.; Montade, V.; Sampaio, G.; Staal, A.; Wang-Erlandsson, L.; Rammig, A. Self-Amplified Amazon Forest Loss Due to Vegetation-Atmosphere Feedbacks. Nat. Commun. 2017, 8, 14681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villén-Pérez, S.; Moutinho, P.; Nóbrega, C.C.; De Marco, P. Brazilian Amazon Gold: Indigenous Land Rights under Risk. Elem. Sci. Anthr. 2020, 8, 31. [Google Scholar] [CrossRef]
- Mataveli, G.; Chaves, M.; Guerrero, J.; Escobar-Silva, E.V.; Conceição, K.; de Oliveira, G. Mining Is a Growing Threat within Indigenous Lands of the Brazilian Amazon. Remote Sens. 2022, 14, 4092. [Google Scholar] [CrossRef]
- Furtado Louzada, A.; Ravena, N. Dam Safety and Risk Governance for Hydroelectric Power Plants in the Amazon. J. Risk Res. 2019, 22, 1571–1585. [Google Scholar] [CrossRef]
- Freitas, C.E.; de Almeida Mereles, M.; Pereira, D.V.; Siqueira-Souza, F.; Hurd, L.; Kahn, J.; Morais, G.; Sousa, R.G.C. Death by a Thousand Cuts: Small Local Dams Can Produce Large Regional Impacts in the Brazilian Legal Amazon. Environ. Sci. Policy 2022, 136, 447–452. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large Area Hydrologic Modeling and Assessment Part I: Model Development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Yamini Priya, R.; Manjula, R. A Review for Comparing SWAT and SWAT Coupled Models and Its Applications. Mater. Today Proc. 2020, 45, 7190–7194. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.; Kiniry, J.; Williams, J. Soil & Water Assessment Tool Theoretical Documentation Version 2009. Texas Water Resour. Inst. 2011, 543, 591–600. [Google Scholar] [CrossRef]
- Belvederesi, C.; Zaghloul, M.S.; Achari, G.; Gupta, A.; Hassan, Q.K. Modelling River Flow in Cold and Ungauged Regions: A Review of the Purposes, Methods, and Challenges. Environ. Rev. 2022, 30, 159–173. [Google Scholar] [CrossRef]
- Khan, S.R.; Khan, S.R. Assessing Poverty-Deforestation Links: Evidence from Swat, Pakistan. Ecol. Econ. 2009, 68, 2607–2618. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Carrà, B.G.; Nunes, J.P.; Bernard-Jannin, L.; Zema, D.A.; Zimbone, S.M. Impacts of Land-Use and Climate Changes on Surface Runoff in a Tropical Forest Watershed (Brazil). Hydrol. Sci. J. 2020, 65, 159–173. [Google Scholar] [CrossRef]
- Nazari-Sharabian, M.; Taheriyoun, M.; Ahmad, S.; Karakouzian, M.; Ahmadi, A. Water Quality Modeling of Mahabad Dam Watershed-Reservoir System under Climate Change Conditions, Using SWAT and System Dynamics. Water 2019, 11, 394. [Google Scholar] [CrossRef] [Green Version]
- DHI MIKE SHE. User Manual. Volume 2: Reference Guide; MIKE SHE: Hørsholm, Denmark, 2017; Volume 2, pp. 1–372. [Google Scholar]
- USACE. Hydrologic Modeling System HEC-HMS User’s Manual CPD-74A; USACE: Washington, DC, USA, 2016; 598p. [Google Scholar]
- Lindström, G.; Pers, C.; Rosberg, J.; Strömqvist, J.; Arheimer, B. Development and Testing of the HYPE (Hydrological Predictions for the Environment) Water Quality Model for Different Spatial Scales. Hydrol. Res. 2010, 41, 295–319. [Google Scholar] [CrossRef]
- Dhami, B.S.; Pandey, A. Comparative Review of Recently Developed Hydrologic Models. J. Indian Water Resour. Soc. 2013, 33, 34–41. [Google Scholar]
- Tan, M.L.; Gassman, P.W.; Yang, X.; Haywood, J. A Review of SWAT Applications, Performance and Future Needs for Simulation of Hydro-Climatic Extremes. Adv. Water Resour. 2020, 143, 103662. [Google Scholar] [CrossRef]
- Akoko, G.; Le, T.H.; Gomi, T.; Kato, T. A Review of Swat Model Application in Africa. Water 2021, 13, 1313. [Google Scholar] [CrossRef]
- Gassman, P.W.; Reyes, M.R.; Green, C.H.; Arnold, J.G. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE Am. Soc. Agric. Biol. Eng. 2007, 50, 1211–1250. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Fohrer, N. SWAT2000: Current Capabilities and Research Opportunities in Applied Watershed Modelling. Hydrol. Process. 2005, 19, 563–572. [Google Scholar] [CrossRef]
- Gassman, P.W.; Sadeghi, A.M.; Srinivasan, R. Applications of the SWAT Model Special Section: Overview and Insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef]
- Tuo, Y.; Duan, Z.; Disse, M.; Chiogna, G. Evaluation of Precipitation Input for SWAT Modeling in Alpine Catchment: A Case Study in the Adige River Basin (Italy). Sci. Total Environ. 2016, 573, 66–82. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Su, X.; Ayantobo, O.O.; Feng, K.; Guo, J. Remote-Sensing Precipitation and Temperature Evaluation Using Soil and Water Assessment Tool with Multiobjective Calibration in the Shiyang River Basin, Northwest China. J. Hydrol. 2020, 590, 125416. [Google Scholar] [CrossRef]
- EPE, Empresa de Pesquisa Energética. Bacia Hidrográfica Do Rio Jari/PA-AP Estudos de Inventário Hidrelétrico, AAI—Avaliação Ambiental Integrada Volume 1/2; EP518.RE.JR204 JAR-A-62-000.001-RE-R0; Empresa de Pesquisa Energética: Rio de Janeiro, Brazil, 2011; p. 320. [Google Scholar]
- Silveira, J.d.S.d. Aspectos Hidroclimatológicos Da Bacia Do Rio Jari No Periodo de 1968 a 2012. Bachelor’s Thesis, Universidade Federal do Amapá, Macapá, Brazil, 2014; pp. 1–60. Available online: http://repositorio.unifap.br/handle/123456789/502 (accessed on 23 May 2019).
- EDP; UHE. Santo Antônio Do Jari. Available online: https://brasil.edp.com/pt-br/uhe-jari (accessed on 4 November 2019).
- Oliveira, A.M.; da Cunha, A.C. Indicadores de Vulnerabilidade e Risco Como Subsídios à Prevenção de Impactos à Sociobiodiversidade Na Bacia Do Rio Jari (AP-PA)/Brasil. In Conhecimento e Manejo Sustentável da Biodiversidade Amapaense; Bastos, A.M., Junior, J.P.M., Silva, R.B.L.e., Eds.; Editora Edgard Blücher Ltda.: São Paulo, Brazil, 2017; pp. 161–182. ISBN 978-85-8039-219-7. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Kodama, Y. Large-Scale Common Features of Subtropical Precipitation Zones (the Baiu Frontal Zone, the SPCZ, and the SACZ) Part I: Characteristics of Subtropical Frontal Zones. J. Meteorol. Soc. Jpn. 1992, 70, 813–836. [Google Scholar] [CrossRef] [Green Version]
- Kidd, C.; Huffman, G. Global Precipitation Measurement. Meteorol. Appl. 2011, 18, 334–353. [Google Scholar] [CrossRef]
- Ferraro, R.R.; Weng, F.; Grody, N.C.; Zhao, L. Precipitation Characteristics over Land from the NOAA-15 AMSU Sensor. Geophys. Res. Lett. 2000, 27, 2669–2672. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 1–33. [Google Scholar] [CrossRef] [Green Version]
- McCuen, R.H. Hydrologig Analysis and Design, 2nd ed.; Pearson Education: Upper Saddle River, NJ, USA, 1998; ISBN 0-13-134958-9. [Google Scholar]
- de Almeida, A.C.; Soares, J.V. Comparação Entre Uso de Água Em Plantações de Eucalyptus Grandis e Floresta Ombrófila Densa (Mata Atlântica) Na Costa Leste Do Brasil. Rev. Árvore 2003, 27, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.M.; Cabral, O.M.R.; da Costa, J.P.; McWilliam, A.L.C.; Sá, T. An Overview of the Leaf Area Index and Physiological Measurements during ABRACOS. In Amazonian Deforestation and Climate; Gash, J.H.C., Nobre, C.A., Roberts, J.M., Victoria, R.L., Eds.; Wiley and Sons: New York, NY, USA, 1996; pp. 287–305. [Google Scholar]
- Samanta, A.; Knyazikhin, Y.; Xu, L.; Dickinson, R.E.; Fu, R.; Costa, M.H.; Saatchi, S.S.; Nemani, R.R.; Myneni, R.B. Seasonal Changes in Leaf Area of Amazon Forests from Leaf Flushing and Abscission. J. Geophys. Res. Biogeosci. 2012, 117, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Muller, M.M.L.; Guimarães, M.d.F.; Desjardins, T.; Martins, P.F.d.S. Degradação de Pastagens Na Região Amazônica: Propriedades Físicas Do Solo e Crescimento de Raízes. Pesqui. Agropecuária Bras. 2001, 36, 1409–1418. [Google Scholar] [CrossRef]
- Santos, R.S.; Oliveira, I.P.; Morais, R.F.; Urquiaga, S.C.; Boddey, R.M.; Alves, B.J.R. Componentes Da Parte Aérea e Raízes de Pastagens de Brachiaria Spp. Em Diferentes Idades Após a Reforma, Como Indicadores de Produtividade Em Ambiente de Cerrado. Pesq. Agropec. Trop. 2007, 37, 119–124. [Google Scholar]
- Arroio Junior, P.P. Aprimoramento Das Rotinas e Parâmetros Dos Processos Hidrológicos Do Modelo Computacional Soil and Water Assessment Tool—SWAT. Master’s Thesis, Universidade de São Paulo, Sao Paulo, Brazil, 2016. [Google Scholar]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil Water Assessment Tool (SWAT) Input/Output Documentation Version 2012; Texas Water Resources Institute: Forney, TX, USA, 2012. [Google Scholar]
- Souza, C.M.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- MapBiomas. Projeto MapBiomas. Available online: https://mapbiomas.org/ (accessed on 8 September 2020).
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.C.d.; Oliveira, V.Á.d.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.d.; Filho, J.C.d.A.; Oliveira, J.B.d.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos; Embrapa: Rio de Janeiro, Brazil, 2018; 355p. [Google Scholar]
- Baldissera, G.C. Aplicabilidade Do Modelo de Simulação Hidrológica SWAT (Soil And Water Assessment Tool), Para a Bacia Hidrográfica Do Rio Cuiabá/MT. Master’s Thesis, Universidade Federal do Mato Grosso, Cuiaba, Brazil, 2005. [Google Scholar]
- Dias, V.d.S. Simulação de Vazão Aplicada Ao Reservatório Da UHE Furnas Utilizando Modelo SWAT; Pontifícia Universidade Católica de Goiás: Goias, Brazil, 2017. [Google Scholar]
- Rosa, D.R.Q. Modelagem Hidrossedimentológica Na Bacia Hidrográfica Do Rio Pomba Utilizando o SWAT. Ph.D. Thesis, Universidade Federal de Viçosa, Viçosa, Brazil, 2016. [Google Scholar]
- NCAR. National Centers for Environmental Prediction (NCEP). Available online: https://climatedataguide.ucar.edu/climate-data/climate-forecast-system-reanalysis-cfsr (accessed on 8 September 2020).
- Dhanesh, Y.; Bindhu, V.M.; Senent-Aparicio, J.; Brighenti, T.M.; Ayana, E.; Smitha, P.S.; Fei, C.; Srinivasan, R. A Comparative Evaluation of the Performance of CHIRPS and CFSR Data for Different Climate Zones Using the SWAT Model. Remote Sens. 2020, 12, 3088. [Google Scholar] [CrossRef]
- Pang, J.; Zhang, H.; Xu, Q.; Wang, Y.; Wang, Y.; Zhang, O.; Hao, J. Hydrological Evaluation of Open-Access Precipitation Data Using SWAT at Multiple Temporal and Spatial Scales. Hydrol. Earth Syst. Sci. 2020, 24, 3603–3626. [Google Scholar] [CrossRef]
- Galván, L.; Olías, M.; Izquierdo, T.; Cerón, J.C.; Fernández de Villarán, R. Rainfall Estimation in SWAT: An Alternative Method to Simulate Orographic Precipitation. J. Hydrol. 2014, 509, 257–265. [Google Scholar] [CrossRef]
- Lobligeois, F.; Andréassian, V.; Perrin, C.; Tabary, P.; Loumagne, C. When Does Higher Spatial Resolution Rainfall Information Improve Streamflow Simulation? An Evaluation Using 3620 Flood Events. Hydrol. Earth Syst. Sci. 2014, 18, 575–594. [Google Scholar] [CrossRef] [Green Version]
- Roth, V.; Lemann, T. Comparing CFSR and Conventional Weather Data for Discharge and Soil Loss Modelling with SWAT in Small Catchments in the Ethiopian Highlands. Hydrol. Earth Syst. Sci. 2016, 20, 921–934. [Google Scholar] [CrossRef] [Green Version]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [Green Version]
- Costa, J.; Pereira, G.; Siqueira, M.E.; Cardozo, F.; da Silva, V.V. Validação Dos Dados de Precipitação Estimados Pelo Chirps Para o Brasil. Rev. Bras. Climatol. 2019, 15-V, 228–243. [Google Scholar] [CrossRef] [Green Version]
- ANA. Agência Nacional de Águas. Available online: http://www.snirh.gov.br/hidroweb/apresentacao (accessed on 19 March 2020).
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model Use, Calibration, and Validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A Continental-Scale Hydrology and Water Quality Model for Europe: Calibration and Uncertainty of a High-Resolution Large-Scale SWAT Model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Abbaspour, K.C. SWAT-CUP: SWAT Calibration and Uncertainty Programs—A User Manual; EAWAG: Dübendorf, Switzerland, 2015; 100p. [Google Scholar]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling Hydrology and Water Quality in the Pre-Alpine/Alpine Thur Watershed Using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Olsson, A.; Sandberg, G.; Dahlblom, O. On Latin Hypercube Sampling for Structural Reliability Analysis. Struct. Saf. 2003, 25, 47–68. [Google Scholar] [CrossRef]
- Song, X.; Zhang, J.; Zhan, C.; Xuan, Y.; Ye, M.; Xu, C. Global Sensitivity Analysis in Hydrological Modeling: Review of Concepts, Methods, Theoretical Framework, and Applications. J. Hydrol. 2015, 523, 739–757. [Google Scholar] [CrossRef] [Green Version]
- Abe, C.; Lobo, F.; Dibike, Y.; Costa, M.; Dos Santos, V.; Novo, E. Modelling the Effects of Historical and Future Land Cover Changes on the Hydrology of an Amazonian Basin. Water 2018, 10, 932. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, V.C.; Laurent, F.; Abe, C.; Messner, F. Hydrologic Response to Land Use Change in a Large Basin in Eastern Amazon. Water 2018, 10, 429. [Google Scholar] [CrossRef] [Green Version]
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of Different Efficiency Criteria for Hydrological Model Assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef] [Green Version]
- Faramarzi, M.; Abbaspour, K.C.; Adamowicz, W.L.; Lu, W.; Fennell, J.; Zehnder, A.J.B.; Goss, G.G. Uncertainty Based Assessment of Dynamic Freshwater Scarcity in Semi-Arid Watersheds of Alberta, Canada. J. Hydrol. Reg. Stud. 2017, 9, 48–68. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines For Systematic Quantification Of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration For Hydrologic Models: Comparison With Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models 1. A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Van Liew, M.W.; Arnold, J.G.; Garbrecht, J.D. Hydrologic Simulation on Agricultural Watersheds: Choosing Between Two Models. Trans. ASAE Am. Soc. Agric. Eng. 2003, 46, 1539–1551. [Google Scholar] [CrossRef]
- Santhi, C.; Arnold, J.G.; Williams, J.R.; Dugas, W.A.; Srinivasan, R.; Hauck, L.M. Validation of The SWAT Model on A Large River Basin With Point and Nonpoint Sources. JAWRA J. Am. Water Resour. Assoc. 2001, 37, 1169–1188. [Google Scholar] [CrossRef]
- Singh, L.; Saravanan, S. Simulation of Monthly Streamflow Using the SWAT Model of the Ib River Watershed, India. HydroResearch 2020, 3, 95–105. [Google Scholar] [CrossRef]
- Schmalz, B.; Fohrer, N. Comparing Model Sensitivities of Different Landscapes Using the Ecohydrological SWAT Model. Adv. Geosci. 2009, 21, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Lopes, T.R.; Zolin, C.A.; Mingoti, R.; Vendrusculo, L.G.; Almeida, F.T.d.; Souza, A.P.d.; Oliveira, R.F.d.; Paulino, J.; Uliana, E.M. Hydrological Regime, Water Availability and Land Use/Land Cover Change Impact on the Water Balance in a Large Agriculture Basin in the Southern Brazilian Amazon. J. South Am. Earth Sci. 2021, 108, 103224. [Google Scholar] [CrossRef]
- Serrão, E.A.d.O.; Silva, M.T.; Ferreira, T.R.; Paiva de Ataide, L.C.; Assis dos Santos, C.; Meiguins de Lima, A.M.; de Paulo Rodrigues da Silva, V.; de Assis Salviano de Sousa, F.; Cardoso Gomes, D.J. Impacts of Land Use and Land Cover Changes on Hydrological Processes and Sediment Yield Determined Using the SWAT Model. Int. J. Sediment Res. 2022, 37, 54–69. [Google Scholar] [CrossRef]
- Bressiani, D.d.A.; Gassman, P.W.; Fernandes, J.G.; Garbossa, L.H.P.; Srinivasan, R.; Bonumá, N.B.; Mendiondo, E.M. A Review of Soil and Water Assessment Tool (SWAT) Applications in Brazil: Challenges and Prospects. Int. J. Agric. Biol. Eng. 2015, 8, 1–27. [Google Scholar]
Performance | PBIAS | NS | RSR |
---|---|---|---|
Very good | PBIAS < ±10 | 0.75< NS ≤ 1.00 | 0.00 ≤ RSR ≤ 0.50 |
Good | ±10 ≤ PBIAS < ±15 | 0.65< NS ≤ 0.75 | 0.50 ≤ RSR ≤ 0.60 |
Satisfactory | ±15 ≤ PBIAS < ±25 | 0.50< NS ≤ 0.65 | 0.60 ≤ RSR ≤ 0.70 |
Unsatisfactory | PBIAS ≥ ±25 | NS ≤ 0.50 | RSR ≤ 0.70 |
Sensitivity Rank | Parameter | Description | Range | Final Value | |
---|---|---|---|---|---|
1 | v_RCHRG_DP.gw | Deep aquifer percolation fraction | 0 | 1 | 0.22 |
2 | r_CN2.mgt | Initial SCS runoff curve number for moisture condition II | −0.2 | 0.2 | −0.07 |
3 | v_GW_DELAY.gw | Groundwater delay time (days) | 0 | 450 | 46.73 |
4 | r_SOL_AWC().sol | Available water capacity of the soil layer (mm H2O/mm soil) | −0.5 | 0.5 | 0.22 |
5 | r_SOL_K().sol | Saturated hydraulic conductivity (mm/h) | −0.5 | 0.7 | 0.55 |
6 | v_ALPHA_BF.gw | Baseflow alpha factor (1/days) | 0 | 1 | 0.56 |
7 | v_GW_REVAP.gw | Groundwater “revap” coefficient | 0.02 | 0.2 | 0.04 |
8 | v_CANMX.hru_FRSE | Maximum canopy storage (mm H2O) | 0 | 40 | 17.92 |
9 | v_CH_N2.rte | Manning’s “n” value for the main channel. | 0.02 | 0.2 | 0.09 |
10 | v_CH_K2.rte | Effective hydraulic conductivity in main channel alluvium | 0 | 130 | 4.13 |
11 | v_ESCO.hru | Soil evaporation compensation factor | 0.01 | 1 | 0.29 |
12 | v_REVAPMN.gw | Threshold depth of water in the shallow aquifer for “revap” or percolation to the deep aquifer to occur (mm H2O) | 0 | 500 | 83.74 |
13 | v_GWQMN.gw | Threshold depth of water in the shallow aquifer required for return flow to occur (mm H2O) | 0 | 5000 | 4570.37 |
14 | v_BIOMIX.mgt | Biological mixing efficiency | 0.2 | 1 | 0.72 |
15 | v_CANMX.hru_EUCA | Maximum canopy storage (mm H2O) | 0 | 30 | 4.21 |
16 | v_SURLAG.bsn | Surface runoff lag coefficient | 1 | 24 | 2.37 |
17 | v_EPCO.hru | Plant uptake compensation factor | 0.01 | 1 | 0.69 |
18 | r_SOL_ALB().sol | Moist soil albedo | −0.5 | 0.5 | 0.08 |
NS | PBIAS | RSR | R2 | bR2 | p-Factor | r-Factor |
---|---|---|---|---|---|---|
0.85 | −9.5 | 0.39 | 0.88 | 0.88 | 0.84 | 0.84 |
0.89 | −0.6 | 0.33 | 0.90 | 0.90 | 0.93 | 0.78 |
Very Good | Very Good | Very Good | Good | Good | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rufino, P.R.; Gücker, B.; Faramarzi, M.; Boëchat, I.G.; Cardozo, F.d.S.; Santos, P.R.; Zanin, G.D.; Mataveli, G.; Pereira, G. Evaluation of the SWAT Model for the Simulation of Flow and Water Balance Based on Orbital Data in a Poorly Monitored Basin in the Brazilian Amazon. Geographies 2023, 3, 1-18. https://doi.org/10.3390/geographies3010001
Rufino PR, Gücker B, Faramarzi M, Boëchat IG, Cardozo FdS, Santos PR, Zanin GD, Mataveli G, Pereira G. Evaluation of the SWAT Model for the Simulation of Flow and Water Balance Based on Orbital Data in a Poorly Monitored Basin in the Brazilian Amazon. Geographies. 2023; 3(1):1-18. https://doi.org/10.3390/geographies3010001
Chicago/Turabian StyleRufino, Paulo Ricardo, Björn Gücker, Monireh Faramarzi, Iola Gonçalves Boëchat, Francielle da Silva Cardozo, Paula Resende Santos, Gustavo Domingos Zanin, Guilherme Mataveli, and Gabriel Pereira. 2023. "Evaluation of the SWAT Model for the Simulation of Flow and Water Balance Based on Orbital Data in a Poorly Monitored Basin in the Brazilian Amazon" Geographies 3, no. 1: 1-18. https://doi.org/10.3390/geographies3010001