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Abstract: The total phosphorus (TP) concentration, as the primary limiting eutrophication factor in
the Mahabad Dam reservoir in Iran, was studied, considering the combined impacts of climate change,
as well as the scenarios on changes in upstream TP loadings and downstream dam water allocations.
Downscaled daily projected climate data were obtained from the Beijing Normal University Earth
System Model (BNU-ESM) under moderate (RCP4.5) and extreme (RCP8.5) scenarios. These data
were used as inputs of a calibrated Soil and Water Assessment Tool (SWAT) model of the watershed
in order to determine the effects of climate change on runoff yields in the watershed from 2020 to
2050. The SWAT model was calibrated/validated using the SUFI-2 algorithm in the SWAT Calibration
Uncertainties Program (SWAT-CUP). Moreover, to model TP concentration in the reservoir and to
investigate the effects of upstream/downstream scenarios, along with forecasted climate-induced
changes in streamflow and evaporation rates, the System Dynamics (SD) model was implemented.
The scenarios covered a combination of changes in population, agricultural and livestock farming
activities, industrialization, water conservation, and pollution control. Relative to the year 2011 in
which the water quality data were available, the SD results showed the highest TP concentrations in
the reservoir under scenarios in which the inflow to the reservoir had decreased, while the upstream
TP loadings and downstream dam water allocations had increased (+29.9%). On the other hand, the
lowest TP concentration was observed under scenarios in which upstream TP loadings and dam
water allocations had decreased (−18.5%).
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1. Introduction

Human activities have influenced the water quality in aquatic ecosystems by altering nutrient
fluxes into receiving water bodies. Complex interactions of inflow, weather, and soil and land use
practices impact external nutrient loadings, which are the main driving forces of eutrophication
in reservoirs. Moreover, the recent global warming is expected to affect nutrient loss dynamics in
watersheds by changing atmospheric and meteorological properties, such as precipitation patterns,
atmospheric water vapor, and evaporation. This situation could make lakes and reservoirs more
vulnerable to eutrophication [1–3]. In recent years, climate change and its impacts on the quantitative
and qualitative aspects of water have been the focus of several studies [4–6]. Various climate models
and scenarios were used to investigate possible climate change impacts on hydrological variables [7,8].
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Watershed-scale models were implemented to study the effects of climate change and land management
practices on watershed yields. Moreover, System Dynamics (SD) modeling, based on the notion of
systems thinking, has emerged to facilitate a holistic analysis of complex human–environmental
systems, such as water resource systems [9].

According to the literature, in a study by Woznicki and Nejadhashemi (2012) [10], the Soil and
Water Assessment Tool (SWAT) outputs, under future climate change scenarios, showed increased
sediment, Total Nitrogen (TN), and Total Phosphorus (TP) yields in agricultural and rangeland
watersheds in Kansas and Nebraska. Michalak et al. (2013) [11] studied the Maumee River basin
using SWAT and concluded that the precipitation intensity, timing of fertilizer application, and tillage
practices affect the Dissolved Reactive Phosphorus (DRP) yields. Moreover, Bosch et al. (2014) [12]
studied the impact of climate change on Lake Erie until 2100. The SWAT model of the Maumee River
basin showed a 5–11% increase in streamflow, a 2–32% increase in sediment yield, a 1–5% increase
in DRP, and a 0–7% increase in TP loading. The authors illustrated that Best Management Practices
(BMPs) could significantly reduce the amount of climate change-induced increases in sediment and
nutrient loads. In another research study by Malagó et al. (2017) [13], the SWAT model was used to
model water and nutrient fluxes in the Danube River basin in Europe, which is under great nutrient
pressure. The authors concluded that the main sinks of TN and TP diffuse emissions were plant uptake,
soil retention, riparian filter strips, and river retention. More recently, Du et al. (2019) [14] implemented
the SWAT model to study the impacts of different land use and climate change scenarios on the runoff
yield of the Dagu River basin in China. The authors found climate change impacts more influential
on runoff than land use change. In another study, Abbasi et al. (2019) [15] used the SWAT model to
simulate the discharge of sediment and pesticides into the Malewa River Basin in Kenya. Based on
the model results, higher concentrations of pesticides were found between May and mid-July. Finally,
the authors concluded that considering the similarity between measured and simulated pesticides,
the SWAT model could be used as an initial evaluation modeling tool for upstream to downstream
suspended sediment and pesticide transport in catchments.

Furthermore, SD has been used for various water management [16–19] and environmental
management studies [20–23]. More specifically, SD has been used for studies involving flood
management [24–27], water allocation [28–30], climate change impact on water [31–33], carbon
footprint of water [34–36], and energy planning [37]. Models have also been developed [38] for
Lake Mead and the Las Vegas water supply system to educate the public about water conservation.
A review of SD applications in water resources is provided by Mirchi et al. (2012) [39].

Dawadi et al. (2013) [32] investigated the effects of climate change and population increase on the
water resources of the Las Vegas Valley (LVV) in southern Nevada. Using an SD model, the authors
studied the impact of climate change on water demand and the water supply from the Colorado River.
Mirchi and Watkins Jr. (2013) [40] developed an integrated SD model to simulate the natural processes
driving eutrophication in Lake Allegan in Michigan and the interactions between socioeconomic
subsystems. The model was used to characterize the lake’s recovery from its hypereutrophic state and
to assess the effectiveness of a number of proposed Total Maximum Daily Load (TMDL) reduction
policies. In another study, Liu et al. (2015) [41] developed an SD framework for managing the water
quality of the Dianchi Lake in Yunnan Province in China under four scenarios: the business-as-usual,
spatial adjustment of industries and population (S1), wastewater treatment capacity construction (S2),
and structural adjustment of agriculture (S3). The authors concluded that S2 was the most effective
for improving the lake’s water quality. Moreover, Duran-Encalada (2017) [42] studied the US–Mexico
border region of the Rio Grande/Rio Bravo Water Basin, estimated the variation in the quality/quantity
of water due to climate change, and assessed its impact on community development. The authors
proposed an SD model to understand the complex interaction of factors affecting water quality and
quantity and their impacts on social and economic conditions.

Based on the literature review, numerous studies were performed through isolated approaches
to investigate the hydrological climate change impact solely or its impact on either watersheds or
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reservoirs. Previous studies provided a variety of scenarios for management practices, while the effects
of global warming and how it might interfere with other possible future anthropogenic alterations have
not received sufficient attention. Considering the crucial importance of the issue, there is a need for an
accurate and more credible assessment of the cumulative effects of the climate change phenomena on
watershed–reservoir systems.

In this regard, to study climate change impacts on the Mahabad Dam watershed–reservoir
system, downscaled daily climate predictions from the Beijing Normal University Earth System
Model (BNU-ESM), under moderate (RCP4.5) and extreme (RCP8.5) scenarios, were used as input
to a calibrated SWAT Ver. 2012.10.21 model of the Mahabad Dam watershed. The SWAT model was
used to simulate streamflow in the watershed. Moreover, the Sequential Uncertainty FItting Ver. 2
(SUFI-2) program of the Calibration and Uncertainty Procedures (SWAT-CUP) Ver. 5.1.6.2 program was
implemented for the sensitivity analysis, calibration, and validation of the developed SWAT model.
Finally, the effects of upstream/downstream scenarios (increase or decrease in pollution and water
allocations), along with the climate change impacts on TP concentration in the Mahabad Dam reservoir
were evaluated using the Stella Ver. 9.0.2 SD model. These simulations were carried out for the period
2020–2050, and the average TP concentration values in the reservoir were compared with the values
during 2011 in which the water quality data were available. Figure 1 shows the framework of the
present study.
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2. Materials and Methods

2.1. Study Area and Data

The Mahabad Dam watershed (808 km2) is located in the West-Azerbaijan province in the
northwest of Iran (36◦44′ N, 45◦39′ E) and is one of the Urmia Lake subbasins. According to the
meteorological records, during 1988 to 2012, the average annual temperature and precipitation in the
area were 12 ◦C and 350 mm, respectively [43]. This watershed is mostly covered by agricultural fields
and grasslands. The Kauter and Beytas Rivers originate from the southern heights of the plain and run
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to the north in parallel. They join and create the Mahabad Dam reservoir and continue running as
the Mahabad River. The soil map and land use map of the Mahabad Dam watershed are presented
in Figure 2. Based on the records from hydrometric stations, the average flow rate of the Kauter and
Beytas Rivers during 1988–2012 were 6.18 m3/s and 1.82 m3/s, respectively [44].
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Figure 2. (a) A soil map and (b) land use map of the Mahabad Dam watershed.

Tables 1 and 2 represent the land use and soil classification of the watershed, respectively.

Table 1. The land use classification of the Mahabad Dam watershed.

Land Use Type Watershed Area (%)

Dryland Farming 66.37
Dense Pasture 13.82

Non-Dense Pasture 11.09
Irrigated Farming 4.49

Forest 2.95
Water 1.03

Urban (Medium Density) 0.13

Table 2. The soil types in the Mahabad Dam watershed.

Soil Type Sand (%) Silt (%) Clay (%) Watershed Area (%)

Taconic 43 35 23 72
Benson 35 37 30 28

The Mahabad Dam has a storage capacity of 200 million cubic meters and provides water for
agriculture (71%), industry (11%), drinking (7%), and other miscellaneous purposes (11%). In recent
years, the Mahabad Dam has experienced various environmental issues due to excess nutrient loading
from its watershed, causing year-round eutrophication in the reservoir. Based on field measurements,
phosphorus is the rate-limiting nutrient in the reservoir, which generates from upstream land use
practices (72%), residential areas (16%), and livestock farming activities (12%) [44].
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In order to perform this research study, downscaled and bias-corrected future daily precipitation
and temperature data forecasted by the BNU-ESM were downloaded from the National Aeronautics
and Space Administration (NASA) Earth Exchange (NEX) archive under RCP4.5 and RCP8.5
scenarios [45]. Moreover, in order to delineate the watershed, a Digital Elevation Model (DEM)
with 30 m spatial resolution was acquired from the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER) global DEM data source [46]. The soil map was retrieved from the Food
and Agriculture Organization of the United Nations (FAO) soils portal using the Harmonized World
Soil Database (HWSD) V. 1.2 [47]. The land use data were provided by Mahab Ghodss Consulting
Engineering Company [44], and the meteorological data were provided by the Islamic Republic of Iran
Meteorological Organization (IRIMO) for the weather station of Mahabad [43].

2.2. The Climate Change Model and Scenarios

General Circulation Models (GCMs) have been widely used to make climate predictions on
seasonal to decadal timescales. GCMs represent the physical atmospheric and oceanic processes.
On the other hand, Earth System Models (ESMs) include physical, chemical, and biological processes.
Therefore, they reach far beyond GCMs and simulate all relevant aspects of the earth’s system.
The Beijing Normal University Earth System Model (BNU-ESM) was developed at Beijing Normal
University and can simulate several observed features of the earth’s climate system with high accuracy.
The model can be used to study climate variability at different timescales, interactions between the
ocean and atmosphere, and carbon-climate feedback [48].

Representative Concentration Pathways (RCPs) are four greenhouse gas concentration trajectories
adopted by the Intergovernmental Panel on Climate Change (IPCC) for its Fifth Assessment Report
(AR5) in 2014 [49]. RCP2.6, RCP4.5, RCP6.5, and RCP8.5 are groups of several scenarios that consider
future atmospheric conditions and land use/land cover changes. RCPs are used to investigate the
response of the climate system to various anthropogenic greenhouse gas emissions. The numbers
associated with them indicate the predicted amount of increase of radiative forcing to be reached by
the year 2100 [50].

In this study, the BNU-ESM under RCP4.5 and RCP8.5 was implemented in order to obtain
temperature, precipitation, and evaporation values for the period of 2020 to 2050.

2.3. The Soil and Water Assessment Tool

Among the most commonly used continuous-time, semi-distributed, and physically-based models
is the SWAT model, which can address different pollution problems for watershed scales. To model
processes within a watershed, the SWAT integrates weather, surface and groundwater hydrology,
soil properties, plant growth, nutrient cycles, and land management practices [51]. Based on interior
outlet points along the stream network, the SWAT divides the watershed area into several subbasins.
Then in each subbasin, areas with similar soil types, land uses, slopes, and management practices
are subdivided into Hydrologic Response Units (HRUs). HRUs represent percentages of the total
subbasin area. In each HRU, yields are calculated and then summed to determine the total subbasin
output. This means that at the subbasin scale, the SWAT uses spatially distributed parameterization,
while at the HRU scale, it uses lumped parameterization [52]. To delineate the watershed, the SWAT
incorporates four primary data files: a DEM, a land use map, a soil map, and meteorological data
(precipitation, minimum and maximum temperatures, wind, relative humidity, and solar radiation).
In cases where any of the meteorological data are not introduced into the model, the SWAT utilizes a
built-in weather generator model (WXGEN) to stochastically generate daily weather values based on
historical monthly averages of parameters such as temperature, precipitation, relative humidity, wind,
and solar radiation.

In this study, the outputs of the BNU-ESM under RCP4.5 and RCP8.5 were used as the input of
the SWAT model to simulate streamflow in the watershed during 2020 to 2050.
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2.4. The SWAT Calibration and Uncertainty Procedures

The SWAT-CUP program has been developed for the calibration, validation, and sensitivity
analysis of the SWAT model parameters. Prior to the model calibration, more sensitive parameters
have to be identified. In the SWAT-CUP, t-stat values and p-values are used to measure the sensitivities
of parameters. Parameters that show higher t-stat values (lower p-values) are more sensitive and a
have more significant impact on the target variable [53].

Calibration means adjusting the model input parameters with the goal of achieving the best
fit between the observed and simulated values. In the SWAT-CUP, the goodness of calibration is
measured using the p-factor (the fraction of data in the range of a 95% prediction uncertainty (95 ppu))
and the r-factor (the average thickness of the 95 ppu band, divided by the standard deviation of the
observed data). The p-factor is a value between 0 and 1, and the r-factor has a range of 0 to ∞. When
the p-factor = 1 and the r-factor = 0, the simulated model is precisely in accordance with the observed
data. In general, p-factors greater than 0.7 and r-factors smaller than 1.5 show satisfactory calibration
and validation results [54].

The SWAT-CUP uses five different calibration procedures: SUFI-2, Particle Swarm Optimization
(PSO), Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol), and
Markov Chain Monte Carlo (MCMC). For large-scale models in which the calibration process can be
very time-consuming, the semiautomated SUFI-2 is quite efficient [55]. The SWAT-CUP adjusts model
parameters within a user-defined range to achieve the desired value of an objective function, such as
the coefficient of determination (R2) (Equation (1)), the Nash–Sutcliffe (NS) model efficiency coefficient
(Equation (2)), and percent bias (PBIAS) (Equation (3)):

R2 =

[
∑i(Qm,i −Qm)

(
Qs,i −Qs

)]2

∑i
(
Qm,i −Qm

)2
∑i

(
Qs,i −Qs

)2 (1)

NS = 1− ∑i|Qm −Qs|2i
∑i

∣∣Qm,i −Qm
∣∣2
i

(2)

PBIAS = 100× ∑n
i=1(Qm −Qs)i

∑n
i=1 Qm,i

(3)

where “Q” is a variable such as streamflow; “m” and “s” stand for measured and simulated; the bar
indicates the average; and “i” is the ith measured or simulated value. Higher R2 values show that the
model fits the observed values better. The NS function has a range of −∞ to 1. NS = 1 corresponds to
a perfect match of simulated values to the observed data. The values between 0 and 1 indicate that
the simulated and observed values are close to each other, whereas values less than 0 show that the
model has no predictive power [56]. Moreover, percent bias measures the average tendency of the
simulated data to be larger or smaller than the observations. The optimum value is zero, where low
magnitude values indicate better simulations. Positive values indicate model underestimation, and
negative values indicate model over estimation [57].

2.5. System Dynamics Modeling and Scenarios

The computer-based, object-oriented SD modeling is based on feedback control and nonlinear
dynamics to model complex systems. It assumes that to obtain the behavior of a whole system,
parameters such as time delays, nonlinearities, system feedbacks, amplifications, and structural
relationships between a system’s elements should be studied instead of the individual components
themselves. SD provides a more in-depth understanding, as well as a dynamic view of the behavior
of complex systems and how they evolve. The first step in developing an SD model is to create a
conceptual model that is generally referred to as a causal loop diagram. This dynamic hypothesis is then
quantified and simulated using stock and flow diagrams [58]. Stocks, flows, converters, and connectors
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are the basic building blocks for SD models. Stocks represent accumulations, while flows transport
quantities into or out of a stock. In water resource science, a poor understanding of the interconnections
among different subsystems inhibits researchers from developing sustainable solutions [59]. Hence,
decision-making in water resource engineering should be based on a holistic view that considers the
system’s sophisticated dynamics and feedback processes, as well as the interdependencies between
the different processes. A consideration of the combined effects of system dynamics can improve
management decisions and reduce the possibilities of adverse side effects or unintended consequences
of policy decisions [60].

In order to investigate how upstream/downstream scenarios, along with climate change impact,
affect the TP concentration in the reservoir, six scenarios were proposed, as presented in Table 3.
Although the change in precipitation patterns changes TP loadings in the watershed, only the
streamflow was simulated using the SWAT model, and it was assumed that under each scenario,
the TP loadings change in a range of 10–30% higher or lower than the observed values in 2011. This
gives the researchers more freedom in studying the impacts of proposed anthropogenic changes on
upstream TP loadings.

Table 3. System Dynamics (SD) model scenarios.

# Scenario Description

1 Population increase Increase in phosphorus loading from residential sources
and increase in domestic water use

2 Increase in agriculture and
livestock farming activities

Increase in phosphorus loadings from agricultural fields
and livestock farming activities and increase in

agricultural water use

3 Industrialization Increase in industrial water use

4 Water conservation Decrease in water allocations

5 Pollution control Decrease in phosphorus loadings from pollution sources

6 Water conservation and pollution
control

Decrease in water allocations and phosphorus loadings
from pollution sources (combination of Scenario 4 and 5)

3. Results and Discussion

3.1. Climate Change Impacts on Temperature, Precipitation, and Evaporation

Figure 3 shows the average future temperature, precipitation, and evaporation values for the
period of 2020–2050 and for the year 2011, under both scenarios.
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The results show that under climate change conditions and comparing the average values during
2020–2050 with 2011, temperature and evaporation will increase, while precipitation will decrease.
Compared with the temperature in 2011, the RCP4.5 and RCP8.5 predicted an 18.11% and a 22.50%
increase in the average temperature during 2020–2050, respectively (Figure 3a). Comparing the same
periods, the RCP4.5 and RCP8.5 predicted a 2.93% and 2.25% decrease in precipitation, respectively
(Figure 3b). Moreover, the evaporation will increase 19% under the RCP4.5, and 23% under the RCP8.5
(Figure 3c). The ultimate result of these changes will be less rainfall and higher evaporation rates,
which can impact both the quantitative and qualitative aspects of the water resources in the study area.

3.2. Climate Change Impacts on Streamflow

The watershed was delineated within the ArcGIS interface using the ArcSWAT automatic
watershed delineation tool. The streams were laid out based on the model recommended minimum
drainage area of 1589.78 ha, and a total number of 45 subbasins and 165 HRUs were formed. HRUs
were generated based on the land use and soil types that made up at least 20% of a given subbasin’s
area. Figure 4 shows the delineated Mahabad Dam watershed in the ArcSWAT.
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Figure 4. The delineated watershed in ArcSWAT.

Using monthly streamflow data, the SWAT model was calibrated from 1988 to 2004. These data
were obtained from the hydrometric stations located at the Kauter and Beytas Rivers’ entry points to
the reservoir. A three-year model warmup from 1988 to 1991 was set in order to stabilize base-flow
conditions in the model. Following calibration, the streamflow was validated for the period of
2005–2012. Table 4 shows the calibrated values for the most sensitive parameters affecting streamflow
in this watershed, and Figure 5a,b show the observed and simulated streamflow values for the Kauter
and Beytas Rivers, respectively.
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Table 4. The calibrated values for parameters affecting streamflow in the Mahabad Dam watershed.

Parameter Description Subbasins Calibrated
Value

DEEPST.gw Initial depth of water in the deep
aquifer (mm) All 7566.89

ALPHA_BF.gw Baseflow alpha factor (1/days) All 0.87

REVAPMN.gw

Threshold depth of water in the
shallow aquifer for “revap” or

percolation to the deep aquifer to
occur (mm)

All 702.66

SNO_SUB.sub Initial snow water content (mm) All 28.308

CH_K1.sub
Effective hydraulic conductivity in
tributary channel alluvium (mm/h)

11, 13, 14, 21, 24–26, 28, 36 215.298

15–20, 22, 23, 27, 29–35, 37–45 5.06

CH_N1.sub
Manning’s “n” value for the

tributary channels
11, 13, 14, 21, 24–26, 28, 36 26.46

15–20, 22, 23, 27, 29–35, 37–45 17.279

CH_N2.rte Manning’s “n” value for the main
channel

11, 13, 14, 21, 24–26, 28, 36 0.235

15–20, 22, 23, 27, 29–35, 37–45 0.116

CH_K2.rte
Effective hydraulic conductivity in

main channel alluvium (mm/h)
11, 13, 14, 21, 24–26, 28, 36 160.026

15–20, 22, 23, 27, 29–35, 37–45 371.048

EPCO.hru Plant uptake compensation factor All 0.825

CANMX.hru Maximum canopy storage (mm) All 3.417

OV_N.hru Manning’s “n” value for the
overland flow

11, 13, 14, 21, 24–26, 28, 36 10.78

15–20, 22, 23, 27, 29–35, 37–45 22.0

SOL_AWC(1).sol____TACONIC Available water capacity of the soil
layer (mm H2O/mm soil) All 0.12

SOL_K(1).sol____TACONIC Saturated hydraulic conductivity
(mm/h) All 15.41

SOL_BD(1).sol____TACONIC Moist bulk density (g/cm3) All 0.9

SOL_ZMX.sol____TACONIC Maximum rooting depth of soil
profile (mm) All 1124.15

SOL_AWC(1).sol____BENSON Available water capacity of the soil
layer (mm H2O/mm soil) All 0.21

SOL_K(1).sol____BENSON Saturated hydraulic conductivity
(mm/h) All 19.91

SOL_BD(1).sol____BENSON Moist bulk density (g/cm3) All 1.26

SOL_ZMX.sol____BENSON Maximum rooting depth of soil
profile (mm) All 2036.35

According to criteria set by Moriasi et al. (2007) [56] for evaluating the model performance in
calibration and validation, an NS value between 0.50 and 0.65 is considered “satisfactory,” a value
between 0.65 and 0.75 is rated as “good”, and “very good” is attributed to values between 0.75 and
1.00. Therefore, except for the streamflow validation in the Beytas River, which fits into the satisfactory
category, the other calibration and validation values were very good. Moreover, the PBIAS value for
the streamflow calibration in the Kauter River is positive, which indicates model underestimation. On
the other hand, the PBIAS value for the streamflow validation in the Kauter River and the streamflow
calibration and validation in the Beytas River are negative, indicating model overestimation.

After performing the calibration and validation, the outputs of the BNU-ESM, under the RCP4.5
and RCP8.5 scenarios were used to run the SWAT model from 2020 to 2050 in order to simulate the
future streamflow in the watershed. Figure 6 shows the average yearly streamflow in the watershed
from 2020 to 2050 under climate change conditions.
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As precipitation is forecasted to decrease and temperature and evaporation to rise, the SWAT
model predicted reduced streamflow under both RCPs. The overall average streamflow of thirty years,
simulated under the RCP4.5 and RCP8.5 scenarios, predicts a 5.1% and 3% decrease in streamflow,
respectively, compared to the average streamflow in 2011.

3.3. TP Concentration in the Reservoir

Figure 7 shows the developed stock and flow diagram. Three stocks were used in the model to
represent the reservoir volume, TP load in the reservoir, and TP load in sediments. As illustrated, the
reservoir volume is a function of inflows, outflows, and evaporation. The TP load in the reservoir
fluctuates based on inflows and outflows, along with settling and resuspension processes. Furthermore,
the TP load in sediments changes with settling, resuspension, and burial processes.Water 2019, 11, x FOR PEER REVIEW 12 of 17 
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In the next step, the TP concentration in the reservoir was calibrated by adjusting the initial TP
load in the reservoir, initial TP load in sediments, TP settling rate, TP resuspension rate, and TP burial
rate. Table 5 presents the parameters and their calibrated values used to calibrate the TP concentration
in the reservoir.
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Table 5. The calibrated values for the parameters affecting the total phosphorus (TP) concentration in
the reservoir.

Parameter Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

TP settling rate
(×10−6 m/s) 0.35 0.59 1.12 3.54 2.8 2.06 2.31 0.63 3.39 2.39 0.94 1.52

TP resuspension
rate

(×10−7 m/s)
0 0 0.5 0 0 0 0 2.2 0.5 0.22 0.18 0.24

TP burial rate
(×10−8 m/s) 1 1 1 1 1 1 1 0 0 0 1 1

Initial TP load in
the reservoir (ton) 4.85

Initial TP load in
sediments (ton) 100

Table 6 summarizes the simulation results of the average annual TP concentration in the reservoir.
In each scenario, the inflow and evaporation rates represent the average change during 2020–2050, due
to climate change conditions. Other parameters in each of the six scenarios were varied between 10
and 30 percent higher or lower than the observed value during 2011. Since the water quality records
in the reservoir were only available for one year, the average projected TP concentration values were
compared with the TP concentration in the reservoir during 2011 (84.13 µg/L).

Table 6. The average annual TP concentration in the reservoir under climate change and TP
loading scenarios.

Scenario

Upstream (%TP Change) Downstream
(%Water Allocations Change)

TP
Concentration

(µg/L)
% Change

A
gr

ic
ul

tu
re

Li
ve

st
oc

k
Fa

rm
in

g

R
es

id
en

ti
al

A
gr

ic
ul

tu
re

In
du

st
ry

D
om

es
ti

c

O
th

er

RCP4.5 (Inflow = −5.1%, Evaporation = +19%)
1 ↑ ↑ 88.5–90.4 (+5.2)–(+7.5)
2 ↑ ↑ ↑ 93.2–109.3 (+10.8)–(+29.9)
3 ↑ 87.8–88.2 (+4.4)–(+4.8)

4 ↓ ↓ ↓ ↓ 83.9–86.1 (−0.3)–(+2.3)

5 ↓ ↓ ↓ 73.0–82.8 (−13.2)–(−1.6)
6 ↓ ↓ ↓ ↓ ↓ ↓ ↓ 69.4–81.3 (−17.5)–(−3.4)

RCP8.5 (Inflow = −3.0%, Evaporation = +23%)
1 ↑ ↑ 87.3–89.1 (+3.8)–(+5.9)
2 ↑ ↑ ↑ 91.8–106.2 (+9.1)–(+26.2)
3 ↑ 86.6–87.0 (+2.9)–(+3.4)

4 ↓ ↓ ↓ ↓ 82.9–85.1 (−1.5)–(+1.2)

5 ↓ ↓ ↓ 72.1–81.7 (−14.3)–(−2.9)
6 ↓ ↓ ↓ ↓ ↓ ↓ ↓ 68.6–80.3 (−18.5)–(−4.6)

↑: +(10–30); ↓: −(10–30)

The results show that Scenario 2 (increase in agriculture and livestock farming activities) created
the maximum TP concentrations in the reservoir under both RCPs. Relative to the year 2011, the
TP concentration in the reservoir increased from 10.8% to 29.9% for RCP4.5 and 9.1% to 26.2% for
RCP8.5. In this scenario, the inflow to the reservoir decreased, while the TP loading from upstream,
water use downstream, and evaporation rate increased. Since 72% of the watershed phosphorus load
generates from upstream land use practices, such as agriculture and livestock farming activities, the
TP concentration in the reservoir showed a high sensitivity to changes in loadings from these pollution
sources. Moreover, as agriculture takes up a significant portion of the dam’s water allocation, the
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decreased volume of the reservoir, as a result of the increased agricultural water use, resulted in higher
TP concentrations in the reservoir.

Among all scenarios, Scenario 6 (water conservation and pollution control) resulted in the
minimum TP concentrations in the reservoir under both RCPs. Relative to the year 2011, the TP
concentration in the reservoir decreased from 3.4% to 17.5% for RCP4.5 and 4.6% to 18.5% for RCP8.5.
In this scenario, the phosphorus loading from all pollution sources decreased, as well as the outflow
from the dam.

Based on the findings of this study, even under the most optimistic scenarios, serious conservation
tactics will be necessary to lower the reservoir TP concentrations to oligotrophic (0–12 µg/L) or
mesotrophic (12–24 µg/L) levels. To counteract this situation, adaptations to reduce upstream nutrient
loading and restrictions on dam water allocations are required. Adjustments can include nutrient and
soil management practices, as well as procedures to minimize nutrient loss to surface waters, such as
the establishment of wetlands and riparian buffer zones, and restrictions on dam water allocations,
such as less intensive agriculture and reduced domestic water use.

4. Conclusions

Using the BNU-ESM under the RCP4.5 (moderate) and RCP8.5 (extreme) scenarios, as well as
the SWAT and an SD approach, the combined impacts of climate change scenarios on upstream TP
loadings and dam water allocations were investigated on the TP concentration in the Mahabad Dam
reservoir in Iran. This study indicated that climate change would have a significant impact on the
meteorological conditions and the water yield in the Mahabad Dam watershed during the period of
2020–2050. Comparing the average value during this period with the average value in 2011, under the
RCP4.5 and RCP8.5, the BNU-ESM predicted an 18.11% and a 22.50% increase in temperature, and a
2.93% and 2.25% decrease in precipitation, respectively. Consequently, as a result of altered climatic
conditions, the SWAT predicted a 5.1% and 3.0% decrease in streamflow under RCP4.5 and RCP8.5,
respectively. Scenarios on population increase, changes in upstream pollution rates, and dam water
allocations, along with streamflow and evaporation rate alterations due to climate change, showed
that the trophic state of the Mahabad Dam reservoir would deteriorate under scenarios in which the
TP loadings from upstream and water use downstream increased. Therefore, the scenario of increased
agriculture and livestock activities yielded the highest TP concentration in the reservoir (109.3 µg/L).
On the other hand, the TP concentration in the reservoir showed the lowest values under scenarios in
which the TP loadings from upstream and water use downstream decreased (68.6 µg/L). This situation
was most evident in the scenario of water conservation and pollution control. As the results of this
study indicated, even the most optimistic scenarios of TP loadings and dam water allocations still
created eutrophic conditions in the reservoir. This situation demands serious bans or limiting strategies
on activities that generate pollution upstream and the precise management of dam water allocations to
improve the trophic state of the reservoir.
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