Similar Postural Response Improvements Following a Single Session of Transcranial Direct Current Stimulation in Fallers and Non-Fallers with Parkinson’s Disease: A Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moraca, G.A.G.; Beretta, V.S.; dos Santos, P.C.R.; Nóbrega-Sousa, P.; Orcioli-Silva, D.; Vitório, R.; Gobbi, L.T.B. Center of pressure responses to unpredictable external perturbations indicate low accuracy in predicting fall risk in people with Parkinson’s disease. Eur. J. Neurosci. 2021, 53, 2901–2911. [Google Scholar] [CrossRef] [PubMed]
- Mancini, M.; Nutt, J.G.; Horak, F.B. Chapter 4—How are postural responses to external perturbations affected by PD? In Balance Dysfunction in Parkinson’s Disease; Mancini, M., Nutt, J.G., Horak, F.B., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 63–81. [Google Scholar] [CrossRef]
- Beretta, V.S.; Vitório, R.; Santos, P.C.R.D.; Orcioli-Silva, D.; Gobbi, L.T.B. Postural control after unexpected external perturbation: Effects of Parkinson’s disease subtype. Hum. Mov. Sci. 2019, 64, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Takakusaki, K.; Saitoh, K.; Harada, H.; Kashiwayanagi, M. Role of basal ganglia-brainstem pathways in the control of motor behaviors. Neurosci. Res. 2004, 50, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Mierau, A.; Pester, B.; Hulsdunker, T.; Schiecke, K.; Struder, H.K.; Witte, H. Cortical Correlates of Human Balance Control. Brain Topogr. 2017, 30, 434–446. [Google Scholar] [CrossRef]
- Peterson, D.S.; Horak, F.B. Neural control of walking in people with parkinsonism. Physiology 2016, 31, 95–107. [Google Scholar] [CrossRef]
- Bloem, B.R.; Beckley, D.J.; Van Dijk, J.G.; Zwinderman, A.H.; Remler, M.P.; Roos, R.A.C. Influence of dopaminergic medication on automatic postural responses and balance impairment in Parkinson’s disease. Mov. Disord. 1996, 11, 509–521. [Google Scholar] [CrossRef]
- Horak, F.B.; Dimitrova, D.; Nutt, J.G. Direction-specific postural instability in subjects with Parkinson’s disease. Exp. Neurol. 2005, 193, 504–521. [Google Scholar] [CrossRef]
- Horak, F.B. Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age Ageing 2006, 35, ii7–ii11. [Google Scholar] [CrossRef]
- Beretta, V.S.; Vitório, R.; Nóbrega-Sousa, P.; Conceição, N.R.; Orcioli-Silva, D.; Pereira, M.P.; Gobbi, L.T.B. Effect of Different Intensities of Transcranial Direct Current Stimulation on Postural Response to External Perturbation in Patients with Parkinson’s Disease. Neurorehabil. Neural Repair. 2020, 34, 1009–1019. [Google Scholar] [CrossRef]
- Beretta, V.S.; Santos, P.C.R.; Orcioli-Silva, D.; Zampier, V.C.; Vitório, R.; Gobbi, L.T.B. Transcranial direct current stimulation for balance rehabilitation in neurological disorders: A systematic review and meta-analysis. Ageing Res. Rev. 2022, 81, 101736. [Google Scholar] [CrossRef]
- Klooster, D.; de Louw, A.; Aldenkamp, A.; Besseling, R.; Mestrom, R.; Carrette, S.; Zinger, S.; Bergmans, J.; Mess, W.; Vonck, K.; et al. Technical aspects of neurostimulation: Focus on equipment, electric field modeling, and stimulation protocols. Neurosci. Biobehav. Rev. 2016, 65, 113–141. [Google Scholar] [CrossRef] [PubMed]
- Beretta, V.S.; Orcioli-Silva, D.; Conceição, N.R.; Nóbrega-Sousa, P.; Pereira, M.P.; Gobbi, L.T.B.; Vitório, R. tDCS application for postural control in Parkinson’s disease: Effects are associated with baseline characteristics. Park. Relat. Disord. 2021, 93, 62–65. [Google Scholar] [CrossRef] [PubMed]
- Araújo, H.A.G.O.; Smaili, S.M.; Morris, R.; Graham, L.; Das, J.; McDonald, C.; Walker, R.; Stuart, S.; Vitório, R. Combination of Clinical and Gait Measures to Classify Fallers and Non-Fallers in Parkinson’s Disease. Sensors 2023, 23, 4651. [Google Scholar] [CrossRef] [PubMed]
- Latt, M.D.; Menz, H.B.; Fung, V.S.; Lord, S.R. Acceleration Patterns of the Head and Pelvis During Gait in Older People with Parkinson’s Disease: A Comparison of Fallers and Nonfallers. J. Gerontol. A Biol. Sci. Med. Sci. 2009, 64A, 700–706. [Google Scholar] [CrossRef]
- Hughes, A.J.; Daniel, S.E.; Kilford, L.; Lees, A.J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: A clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 1992, 55, 181–184. [Google Scholar] [CrossRef]
- Brucki, S.M.; Nitrini, R.; Caramelli, P.; Bertolucci, P.H.; Okamoto, I.H. Suggestions for utilization of the mini-mental state examination in Brazil. Arq. Neuropsiquiatr. 2003, 61, 777–781. [Google Scholar] [CrossRef]
- Lamb, S.E.; Jørstad-Stein, E.C.; Hauer, K.; Becker, C. Development of a common outcome data set for fall injury prevention trials: The Prevention of Falls Network Europe consensus. J. Am. Geriatr. Soc. 2005, 53, 1618–1622. [Google Scholar] [CrossRef]
- Nonnekes, J.; Arrogi, A.; Munneke, M.A.M.; Van Asseldonk, E.H.F.; Nijhuis, L.B.O.; Geurts, A.C.; Weerdesteyn, V. Subcortical structures in humans can be facilitated by transcranial direct current stimulation. PLoS ONE 2014, 9, e107731. [Google Scholar] [CrossRef]
- Fregni, F.; Boggio, P.S.; Santos, M.C.; Lima, M.; Vieira, A.L.; Rigonatti, S.P.; Silva, M.T.A.; Barbosa, E.R.; Nitsche, M.A.; Pascual-Leone, A. Noninvasive cortical stimulation with transcranial direct current stimulation in Parkinson’s disease. Mov. Disord. 2006, 21, 1693–1702. [Google Scholar] [CrossRef]
- Boonstra, T.A.; Van Vugt, J.P.P.; Van Der Kooij, H.; Bloem, B.R. Balance asymmetry in Parkinson’s disease and its contribution to freezing of gait. PLoS ONE 2014, 9, e102493. [Google Scholar] [CrossRef]
- Alon, G.; Yungher, D.A.; Shulman, L.M.; Rogers, M.W. Safety and Immediate Effect of Noninvasive Transcranial Pulsed Current Stimulation on Gait and Balance in Parkinson Disease. Neurorehabil. Neural Repair. 2012, 26, 1089–1095. [Google Scholar] [CrossRef] [PubMed]
- Antal, A.; Alekseichuk, I.; Bikson, M.; Brockmöller, J.; Brunoni, A.; Chen, R.; Cohen, L.; Dowthwaite, G.; Ellrich, J.; Flöel, A.; et al. Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory and application guidelines. Clin. Neurophysiol. 2017, 128, 1774–1809. [Google Scholar] [CrossRef] [PubMed]
- Bikson, M.; Grossman, P.; Thomas, C.; Zannou, A.L.; Jiang, J.; Adnan, T.; Mourdoukoutas, A.P.; Kronberg, G.; Truong, D.; Boggio, P.; et al. Safety of Transcranial Direct Current Stimulation: Evidence Based Update 2016. Brain Stimul. 2016, 9, 641–661. [Google Scholar] [CrossRef] [PubMed]
- Fonteneau, C.; Redoute, J.; Haesebaert, F.; Le Bars, D.; Costes, N.; Suaud-Chagny, M.-F.; Brunelin, J. Frontal transcranial direct current stimulation induces dopamine release in the ventral striatum in human. Cereb. Cortex 2018, 28, 2636–2646. [Google Scholar] [CrossRef]
- Hermens, H.J.; Freriks, B.; Disselhorst-Klug, C.; Rau, G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000, 10, 361–374. [Google Scholar] [CrossRef]
- de Freitas, P.B.; Knight, C.A.; Barela, J.A. Postural reactions following forward platform perturbation in young, middle-age, and old adults. J. Electromyogr. Kinesiol. 2010, 20, 693–700. [Google Scholar] [CrossRef]
- Cleworth, T.W.; Chua, R.; Inglis, J.T.; Carpenter, M.G. Influence of virtual height exposure on postural reactions to support surface translations. Gait Posture 2016, 47, 96–102. [Google Scholar] [CrossRef]
- Winter, K.F.D.A. Quantitative assessment of co-contraction at the ankle joint in walking. Electromyogr. Clin. Neurophysiol. 1985, 25, 135–149. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1998. [Google Scholar] [CrossRef]
- Feller, K.J.; Peterka, R.J.; Horak, F.B. Sensory re-weighting for postural control in Parkinson’s disease. Front. Hum. Neurosci. 2019, 13, 126. [Google Scholar] [CrossRef]
- Feitosa, M.M.; Larsson, M.H.M.A.; Ushikoshi, W.S.; Perri, S.H.V. Determinação da velocidade de condução nervosa motora dos nervos radial e ulnar de cães clinicamente sadios. Arq. Bras. Med. Vet. Zootec. 2000, 52, 185–190. [Google Scholar] [CrossRef]
- Vieira, W.H.B.; Nogueira, J.F.S.; Souza, J.C.; Prestes, J. O Alongamento e o Aquecimento Interferem na Resposta Neuromuscular? Uma Revisão de Literatura. Rev. Bras. Ciência Mov. 2013, 21, 158–165. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, Y.; Zhou, J.; Fried, P.J.; Wang, X.; Zhang, J.; Fang, J.; Pascual-Leone, A.; Manor, B. Direct current stimulation over the human sensorimotor cortex modulates the brain’s hemodynamic response to tactile stimulation. Eur. J. Neurosci. 2015, 42, 1933–1940. [Google Scholar] [CrossRef] [PubMed]
- Beckley, D.J.; Bloem, B.R.; Remler, M.P. Impaired scaling of long latency postural reflexes in patients with Parkinson’s disease. Electroencephalogr. Clin. Neurophysiol./Evoked Potentials Sect. 1993, 89, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Moya-Jofré, C.; Valencia, O.; León-Barrera, M.; Valenzuela, O.A.; Guzmán-Venegas, R. Tiempos de activación muscular frente a una desestabilización en pacientes con enfermedad de Parkinson en etapas iniciales. Rehabilitación 2023, 57, 100755. [Google Scholar] [CrossRef]
- Zheng, X.; Alsop, D.C.; Schlaug, G. Effects of transcranial direct current stimulation (tDCS) on human regional cerebral blood flow. Neuroimage 2011, 58, 26–33. [Google Scholar] [CrossRef]
- Herold, F.; Wiegel, P.; Scholkmann, F.; Thiers, A.; Hamacher, D.; Schega, L. Functional near-infrared spectroscopy in movement science: A systematic review on cortical activity in postural and walking tasks. Neurophotonics 2017, 4, 041403. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, Y.; Chen, B.; Meng, Q.; Hu, P.; Chen, X.; Bu, J. Common and specific effects in brain oscillations and motor symptoms of tDCS and tACS in Parkinson’s disease. Cell Rep. Med. 2025, 6, 102044. [Google Scholar] [CrossRef]
- Benninger, D.H.; Lomarev, M.; Lopez, G.; Wassermann, E.M.; Li, X.; Considine, E.; Hallett, M. Transcranial direct current stimulation for the treatment of Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2010, 81, 1105–1111. [Google Scholar] [CrossRef]
- Ferrucci, R.; Cortese, F.; Bianchi, M.; Pittera, D.; Turrone, R.; Bocci, T.; Borroni, B.; Vergari, M.; Cogiamanian, F.; Ardolino, G.; et al. Cerebellar and Motor Cortical Transcranial Stimulation Decrease Levodopa-Induced Dyskinesias in Parkinson’s Disease. Cerebellum 2016, 15, 43–47. [Google Scholar] [CrossRef]
- Doruk, D.; Gray, Z.; Bravo, G.L.; Pascual-Leone, A.; Fregni, F. Effects of tDCS on executive function in Parkinson’s disease. Neurosci. Lett. 2014, 582, 27–31. [Google Scholar] [CrossRef]
- Beretta, V.S.; Orcioli-Silva, D.; Zampier, V.C.; Moraca, G.A.G.; Pereira, M.P.; Gobbi, L.T.B.; Vitório, R. Eight sessions of transcranial electrical stimulation for postural response in people with Parkinson’s disease: A randomized trial. Gait Posture 2024, 114, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Michałowska, M.; Fiszer, U.; Krygowska-Wajs, A.; Owczarek, K. Falls in Parkinson’s disease. Causes Impact Patients’ Quality of life. Funct. Neurol. 2005, 20, 163–168. [Google Scholar] [PubMed]
- Wood, B.H.; Bilclough, J.A.; Bowron, A.; Walker, R.W. Incidence and prediction of falls in Parkinson’s disease: A prospective multidisciplinary study. J. Neurol. Neurosurg. Psychiatry 2002, 72, 721–725. [Google Scholar] [CrossRef] [PubMed]
- Allen, N.E.; Schwarzel, A.K.; Canning, C.G. Recurrent falls in parkinson’s disease: A systematic review. Park. Dis. 2013, 2013, 906274. [Google Scholar] [CrossRef]
- Curtze, C.; Nutt, J.G.; Carlson-Kuhta, P.; Mancini, M.; Horak, F.B. Levodopa Is a Double-Edged Sword for Balance and Gait in People with Parkinson’s Disease. Mov. Disord. 2015, 30, 1361–1370. [Google Scholar] [CrossRef]
- Mancini, M.; Nutt, J.G.; Horak, F.B. Chapter 6—How is dynamic balance during walking affected by PD? In Balance Dysfunction in Parkinson’s Disease; Mancini, M., Nutt, J.G., Horak, F.B., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 99–122. [Google Scholar] [CrossRef]
- Ashburn, A.; Stack, E.; Ballinger, C.; Fazakarley, L.; Fitton, C. The circumstances of falls among people with Parkinson’s disease and the use of Falls Diaries to facilitate reporting. Disabil. Rehabil. 2008, 30, 1205–1212. [Google Scholar] [CrossRef]
- Baltar, A.; Piscitelli, D.; Marques, D.; Shirahige, L.; Monte-Silva, K. Baseline Motor Impairment Predicts Transcranial Direct Current Stimulation Combined with Physical Therapy-Induced Improvement in Individuals with Chronic Stroke. Neural Plast. 2020, 2020, 8859394. [Google Scholar] [CrossRef]
- Jonasson, S.B.; Nilsson, M.H.; Lexell, J.; Carlsson, G. Experiences of fear of falling in persons with Parkinson’s disease—A qualitative study. BMC Geriatr. 2018, 18, 44. [Google Scholar] [CrossRef]
- Silva-Batista, C.; Corcos, D.M.; Kanegusuku, H.; Piemonte, M.E.P.; Gobbi, L.T.B.; de Lima-Pardini, A.C.; de Mello, M.T.; Forjaz, C.L.; Ugrinowitsch, C. Balance and fear of falling in subjects with Parkinson’s disease is improved after exercises with motor complexity. Gait Posture 2018, 61, 90–97. [Google Scholar] [CrossRef]
- Batsikadze, G.; Moliadze, V.; Paulus, W.; Kuo, M.-F.; Nitsche, M.A. Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J. Physiol. 2013, 591, 1987–2000. [Google Scholar] [CrossRef]
- Ghasemian-Shirvan, E.; Farnad, L.; Mosayebi-Samani, M.; Verstraelen, S.; Meesen, R.L.; Kuo, M.-F.; Nitsche, M.A. Age-related differences of motor cortex plasticity in adults: A transcranial direct current stimulation study. Brain Stimul. 2020, 13, 1588–1599. [Google Scholar] [CrossRef]
- Brunoni, A.R.; Amadera, J.; Berbel, B.; Volz, M.S.; Rizzerio, B.G.; Fregni, F. A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. Int. J. Neuropsychopharmacol. 2011, 14, 1133–1145. [Google Scholar] [CrossRef]



| Faller (n = 12) | Non-Faller (n = 10) | p-Value | |
|---|---|---|---|
| Sex (male/female) | 6/6 | 8/2 | 0.204 |
| Age (years) | 69.50 ± 10.11 | 68.20 ± 6.92 | 0.734 |
| Body mass (Kg) | 67.50 (61.00–73.00) | 75.00 (66.60–86.52) | 0.129 |
| Height (cm) | 162.99 ± 11.14 | 166.89 ± 10.81 | 0.417 |
| MDS-UPDRS III (0–132 pts) | 31.50 (30.00–48.50) | 36.50 (23.25–45.50) | 0.691 |
| MMSE (0–30 pts) | 28.00 (25.25–28.00) | 27.50 (25.50–28.25) | 0.946 |
| Disease time (years) | 3.00 (2.25–7.00) | 4.00 (3.00–7.50) | 0.325 |
| LEDD (mg/day) | 521.48 ± 281.41 | 611.01 ± 305.43 | 0.483 |
| Faller (n = 12) | Non-Faller (n = 10) | |||
|---|---|---|---|---|
| Active | Sham | Active | Sham | |
| Range of CoP (cm) | 3.71 ± 1.04 | 3.67 ± 1.11 | 3.25 ± 0.84 | 3.25 ± 0.60 |
| Peak of CoP vel. (cm/s) | 16.75 ± 5.69 | 16.91 ± 5.43 | 14.89 ± 4.20 | 14.8 ± 2.55 |
| iEMG MG (µV/ms) | 13.34 ± 5.70 | 11.69 ± 5.73 | 16.54 ± 27.48 | 11.85 ± 10.38 |
| iEMG TA (µV/ms) | 9.03 ± 5.93 | 15.93 ± 15.77 | 15.72 ± 22.24 | 16.66 ± 19.45 |
| MG/TA coactivation (%) | 66.66 ± 21.04 | 63.61 ± 13.31 | 61.77 ± 23.34 | 70.91 ± 9.94 |
| Faller (n = 12) | Non-Faller (n = 10) | |||||
|---|---|---|---|---|---|---|
| Active | Sham | p-Value | Active | Sham | p-Value | |
| Participant’s report | ||||||
| Headache | 0 (0–0) | 0 (0–0) | 0.32 | 0 (0–0) | 0 (0–0) | 1.00 |
| Neck pain | 0 (0–0) | 0 (0–0) | 1.00 | 0 (0–0) | 0 (0–0) | 1.00 |
| Scalp pain | 0 (0–0) | 0 (0–0) | 1.00 | 0 (0–0) | 0 (0–0) | 1.00 |
| Tingling | 0 (0–1) | 0 (0–1) | 0.317 | 1 (0–1) | 1 (0–1) | 1.00 |
| Itching | 0 (0–0.75) | 0 (0–1) | 0.564 | 0 (0–0) | 0 (0–0) | 0.317 |
| Burning sensation | 0 (0–0) | 0 (0–0) | 0.564 | 0 (0–0) | 0 (0–0) | 1.00 |
| Sleepiness | 0 (0–0) | 0 (0–0) | 0.317 | 0 (0–0) | 0 (0–0) | 1.00 |
| Metallic/iron taste | 0 (0–0) | 0 (0–0) | 1.00 | 0 (0–0) | 0 (0–0) | 1.00 |
| Fatigue | 0 (0–0) | 0 (0–0) | 1.00 | 0 (0–0) | 0 (0–0) | 1.00 |
| Trouble concentrating | 0 (0–0) | 0 (0–0) | 1.00 | 0 (0–0) | 0 (0–0) | 1.00 |
| Acute mood change | 0 (0–0) | 0 (0–0) | 1.00 | 0 (0–0) | 0 (0–0) | 1.00 |
| Investigator’s report | ||||||
| Skin redness | 0 (0–0) | 0 (0–0) | 0.157 | 0 (0–0) | 0 (0–0) | 0.317 |
| Skin irritation | 0 (0–0) | 0 (0–0) | 1.00 | 0 (0–0) | 0 (0–0) | 0.317 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Rodrigues, R.V.e.M.; Legutke, B.R.; Moraca, G.A.G.; Sirico, T.M.; Torres, M.L.; Orcioli-Silva, D.; Beretta, V.S. Similar Postural Response Improvements Following a Single Session of Transcranial Direct Current Stimulation in Fallers and Non-Fallers with Parkinson’s Disease: A Pilot Study. Biomechanics 2026, 6, 17. https://doi.org/10.3390/biomechanics6010017
Rodrigues RVeM, Legutke BR, Moraca GAG, Sirico TM, Torres ML, Orcioli-Silva D, Beretta VS. Similar Postural Response Improvements Following a Single Session of Transcranial Direct Current Stimulation in Fallers and Non-Fallers with Parkinson’s Disease: A Pilot Study. Biomechanics. 2026; 6(1):17. https://doi.org/10.3390/biomechanics6010017
Chicago/Turabian StyleRodrigues, Rute Vieira e Magalhães, Beatriz Regina Legutke, Gabriel Antonio Gazziero Moraca, Thiago Martins Sirico, Murilo Lorencetti Torres, Diego Orcioli-Silva, and Victor Spiandor Beretta. 2026. "Similar Postural Response Improvements Following a Single Session of Transcranial Direct Current Stimulation in Fallers and Non-Fallers with Parkinson’s Disease: A Pilot Study" Biomechanics 6, no. 1: 17. https://doi.org/10.3390/biomechanics6010017
APA StyleRodrigues, R. V. e. M., Legutke, B. R., Moraca, G. A. G., Sirico, T. M., Torres, M. L., Orcioli-Silva, D., & Beretta, V. S. (2026). Similar Postural Response Improvements Following a Single Session of Transcranial Direct Current Stimulation in Fallers and Non-Fallers with Parkinson’s Disease: A Pilot Study. Biomechanics, 6(1), 17. https://doi.org/10.3390/biomechanics6010017

