The Effect of Ankle Dorsiflexion on Sagittal Posture and Core Muscle Activation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insole Geometry
2.2. Procedures
2.2.1. Assessment Protocol
- In a room with a controlled temperature of 23 °C, participants were instructed to walk barefoot for 2 min.
- Participants stood barefoot on a flat platform for an initial 5 min acclimation period, after which measurements were taken.
- Subsequently, participants were instructed to walk barefoot for an additional 2 min.
- After walking, participants stood on the customized insoles placed on the same platform for another 5 min period before the second set of measurements was taken.
2.2.2. Gait and Body Positioning Analysis
2.2.3. Spinal Curvature Measurement
2.2.4. Electromyographic (EMG) Activity
2.3. Statistical Analysis
3. Results
3.1. Kinematics Parameters
3.1.1. Gait Analysis (Body Positioning)
3.1.2. Spinal Curvatures
3.2. Electromyographic Activities
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- GBD 2021 Low Back Pain Collaborators. Global, regional, and national burden of low back pain, 1990–2020, its attributable risk factors, and projections to 2050: A systematic analysis of the Global Burden of Disease Study 2021. Lancet Rheumatol. 2023, 5, e316–e329. [Google Scholar] [CrossRef]
- Hoy, D.; Bain, C.; Williams, G.; March, L.; Brooks, P.; Blyth, F.; Woolf, A.; Vos, T.; Buchbinder, R. A systematic review of the global prevalence of low back pain. Arthritis Rheumatol. 2012, 64, 2028–2037. [Google Scholar] [CrossRef]
- Vos, T.; Allen, C.; Arora, M.; Barber, R.M.; Bhutta, Z.A.; Brown, A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1545–1602. [Google Scholar] [CrossRef] [PubMed]
- Foster, N.E.; Anema, J.R.; Cherkin, D.; Chou, R.; Cohen, S.P.; Gross, D.P.; Ferreira, P.H.; Fritz, J.M.; Koes, B.W.; Peul, W.; et al. Prevention and treatment of low back pain: Evidence, challenges, and promising directions. Lancet 2018, 391, 2368–2383. [Google Scholar] [CrossRef] [PubMed]
- Hoy, D.; March, L.; Brooks, P.; Blyth, F.; Woolf, A.; Bain, C.; Williams, G.; Smith, E.; Vos, T.; Barendregt, J.; et al. The global burden of low back pain: Estimates from the Global Burden of Disease 2010 study. Ann. Rheum. Dis. 2014, 73, 968–974. [Google Scholar] [CrossRef] [PubMed]
- Bryndal, A.; Majchrzycki, M.; Grochulska, A.; Glowinski, S.; Seremak-Mrozikiewicz, A. Risk Factors Associated with Low Back Pain among A Group of 1510 Pregnant Women. J. Pers. Med. 2020, 10, 51. [Google Scholar] [CrossRef]
- Glowinski, S.; Bryndal, A.; Grochulska, A. Prevalence and risk of spinal pain among physiotherapists in Poland. PeerJ 2021, 9, e11715. [Google Scholar] [CrossRef]
- Hartvigsen, J.; Hancock, M.J.; Kongsted, A.; Louw, Q.; Ferreira, M.L.; Genevay, S.; Hoy, D.; Karppinen, J.; Pransky, G.; Sieper, J.; et al. What low back pain is and why we need to pay attention. Lancet 2018, 391, 2356–2367. [Google Scholar] [CrossRef] [PubMed]
- Steffens, D.; Maher, C.G.; Pereira, L.S.M.; Stevens, M.L.; Oliveira, V.C.; Chapple, M.; Teixeira-Salmela, L.F.; Hancock, M.J. Prevention of Low Back Pain. JAMA Intern. Med. 2016, 176, 199. [Google Scholar] [CrossRef] [PubMed]
- Williams, F.M.K.; Sambrook, P.N. Neck and back pain and intervertebral disc degeneration: Role of occupational factors. Best Pract. Res. Clin. Rheumatol. 2011, 25, 69–79. [Google Scholar] [CrossRef]
- Qaseem, A.; Wilt, T.J.; McLean, R.M.; Forciea, M.A. Noninvasive Treatments for Acute, Subacute, and Chronic Low Back Pain: A Clinical Practice Guideline From the American College of Physicians. Ann. Intern. Med. 2017, 166, 514. [Google Scholar] [CrossRef]
- Blanchard, S.; Bellaïche, L.; Kuliberda, Z.; Behr, M. Influence of Footwear on Posture and Comfort in Elite Rugby Players. Int. J. Sports Med. 2022, 43, 269–277. [Google Scholar] [CrossRef]
- Kong, L.; Zhou, X.; Huang, Q.; Zhu, Q.; Zheng, Y.; Tang, C.; Li, J.X.; Fang, M. The effects of shoes and insoles for low back pain: A systematic review and meta-analysis of randomized controlled trials. Res. Sports Med. 2020, 28, 572–587. [Google Scholar] [CrossRef]
- Chuter, V.; Searle, A.; Spink, M. Flip-flop footwear with a moulded foot-bed for the treatment of foot pain: A randomised controlled trial. BMC Musculoskelet. Disord. 2016, 17, 468. [Google Scholar] [CrossRef]
- Menez, C.; L’Hermette, M.; Lerebourg, L.; Coquart, J. Effects of Insoles on Gait Kinematics and Low Back Pain in Patients with Leg Length Inequality: A Systematic Review. J. Am. Podiatr. Med. Assoc. 2023, 113. [Google Scholar] [CrossRef]
- Nigg, B.; Federolf, P.; von Tscharner, V.; Nigg, S. Unstable shoes: Functional concepts and scientific evidence. Footwear Sci. 2012, 4, 73–82. [Google Scholar] [CrossRef]
- Nakagawa, K.; Inami, T.; Yonezu, T.; Kenmotsu, Y.; Narita, T.; Kawakami, Y.; Kanosue, K. Unstable rocker shoes promote recovery from marathon-induced muscle damage in novice runners. Scand. J. Med. Sci. Sports 2018, 28, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Nagano, H.; Begg, R. A shoe-insole to improve ankle joint mechanics for injury prevention among older adults. Ergonomics 2021, 64, 1271–1280. [Google Scholar] [CrossRef] [PubMed]
- Farzadi, M.; Nemati, Z.; Jalali, M.; Doulagh, R.S.; Kamali, M. Effects of unstable footwear on gait characteristics: A systematic review. Foot Edinb. 2017, 31, 72–76. [Google Scholar] [CrossRef]
- Franklin, S.; Grey, M.J.; Heneghan, N.; Bowen, L.; Li, F.X. Barefoot vs common footwear: A systematic review of the kinematic, kinetic and muscle activity differences during walking. Gait Posture 2015, 42, 230–239. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.M.; Auhl, M.; Menz, H.B.; Levinger, P.; Munteanu, S.E. The effect of Masai Barefoot Technology (MBT) footwear on lower limb biomechanics: A systematic review. Gait Posture 2016, 43, 76–86. [Google Scholar] [CrossRef]
- Wiedemeijer, M.; Otten, E. Effects of high heeled shoes on gait: A review. Gait Posture 2018, 61, 423–430. [Google Scholar] [CrossRef]
- Murley, G.S.; Landorf, K.B.; Menz, H.B.; Bird, A.R. Effect of foot posture, foot orthoses and footwear on lower limb muscle activity during walking and running: A systematic review. Gait Posture 2009, 29, 172–187. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.; Tavares, J.M.R.S.; Macedo, R.; Rodrigues, A.M.; Santos, R. Influence of wearing an unstable shoe on thigh and leg muscle activity and venous response in upright standing. Appl. Ergon. 2012, 43, 933–939. [Google Scholar] [CrossRef]
- Lerebourg, L.; L’Hermette, M.; Menez, C.; Coquart, J. The effects of shoe type on lower limb venous status during gait or exercise: A systematic review. PLoS ONE 2020, 15, e0239787. [Google Scholar] [CrossRef] [PubMed]
- Saggini, R.; Bellomo, R.; Iodice, P.; Lessiani, G. Venous insufficiency and foot dysmorphism: Effectiveness of visco-elastic rehabilitation systems on veno-muscle system of the foot and of the calf. Int. J. Immunopathol. Pharmacol. 2009, 22, 1–8. [Google Scholar] [CrossRef]
- Bourgit, D.; Millet, G.Y.; Fuchslocher, J. Influence of Shoes Increasing Dorsiflexion and Decreasing Metatarsus Flexion on Lower Limb Muscular Activity During Fitness Exercises, Walking, and Running. J. Strength Cond. Res. 2008, 22, 966–973. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Hong, Y. Kinematic and Electromyographic Analysis of the Trunk and Lower Limbs During Walking in Negative-Heeled Shoes. J. Am. Podiatr. Med. Assoc. 2007, 97, 447–456. [Google Scholar] [CrossRef]
- Myers, K.A.; Long, J.T.; Klein, J.P.; Wertsch, J.J.; Janisse, D.; Harris, G.F. Biomechanical implications of the negative heel rocker sole shoe: Gait kinematics and kinetics. Gait Posture 2006, 24, 323–330. [Google Scholar] [CrossRef]
- Faiss, R.; Terrier, P.; Praz, M.; Fuchslocher, J.; Gobelet, C.; Deriaz, O. Influence of initial foot dorsal flexion on vertical jump and running performance. J. Strength Cond. Res. 2010, 24, 2352–2357. [Google Scholar] [CrossRef]
- Larkins, C.; Snabb, T. Positive versus negative foot inclination for maximum height two-leg vertical jumps. Clin. Biomech. 1999, 14, 321–328. [Google Scholar] [CrossRef]
- Dodelin, D. Identifier la Pronation Podale et Son Impact Lors de la Locomotion Afin de Prévenir Les Lombalgies en Situation Professionnelle. Ph.D. Thesis, Normandie Université, Normandy, France, 2020. [Google Scholar]
- During, J.; Goudfrooij, H.; Keessen, W.; Beeker, T.W.; Crowe, A. Toward standards for posture. Postural characteristics of the lower back system in normal and pathologic conditions. Spine 1985, 10, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Levine, D.; Whittle, M.W. The Effects of Pelvic Movement on Lumbar Lordosis in the Standing Position. J. Orthop. Sports Phys. Ther. 1996, 24, 130–135. [Google Scholar] [CrossRef]
- Moalla, S.; Lebib, S.B.A.; Miri, I.; Koubaa, S.; Rahali, H.; Salah, F.B.; Dziri, C. Étude du profil postural et de la statique rachidienne chez les femmes postménopausées et lombalgiques chroniques. In Annales de Réadaptation et de Médecine Physique; Elsevier: Amsterdam, The Netherlands, 2008; Volume 51, pp. 619–629. [Google Scholar]
- Roussouly, P. Effect of the sagittal spino-pelvic organisation on degenerative evaluation of the spine. Jean-Marc VITAL Altern. À L’arthrodèse Lombaire Lombosacrée Elsevia Masson 2007, 96, 27–35. [Google Scholar]
- Adams, M.A. Biomechanics of back pain. Acupunct. Med. 2004, 22, 178–188. [Google Scholar] [CrossRef] [PubMed]
- Been, E.; Kalichman, L. Lumbar lordosis. Spine J. 2014, 14, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Masiero, S.; Carraro, E.; Celia, A.; Sarto, D.; Ermani, M. Prevalence of nonspecific low back pain in schoolchildren aged between 13 and 15 years. Acta Paediatr. 2008, 97, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Masiero, S.; Sarto, F.; Cattelan, M.; Sarto, D.; Del Felice, A.; Agostini, F.; Scanu, A. Lifetime Prevalence of Nonspecific Low Back Pain in Adolescents. Am. J. Phys. Med. Rehabil. 2021, 100, 1170–1175. [Google Scholar] [CrossRef] [PubMed]
- van den Bogaart, M.; Bruijn, S.M.; Spildooren, J.; van Dieën, J.H.; Meyns, P. Effects of age and surface instability on the control of the center of mass. Hum. Mov. Sci. 2022, 82, 102930. [Google Scholar] [CrossRef]
- Dreischarf, B.; Koch, E.; Dreischarf, M.; Schmidt, H.; Pumberger, M.; Becker, L. Comparison of three validated systems to analyse spinal shape and motion. Sci. Rep. 2022, 12, 10222. [Google Scholar] [CrossRef] [PubMed]
- Gaweł, E.; Zwierzchowska, A. Effect of compensatory mechanisms on postural disturbances and musculoskeletal pain in elite sitting volleyball players: Preparation of a compensatory intervention. Int. J. Environ. Res. Public Health 2021, 18, 10105. [Google Scholar] [CrossRef]
- Guermazi, M.; Ghroubi, S.; Kassis, M.; Jaziri, O.; Keskes, H.; Kessomtini, W.; Hammouda, I.B.; Elleuch, M.-H. Validité et reproductibilité du Spinal Mouse® pour l’étude de la mobilité en flexion du rachis lombaire. In Annales de Réadaptation et de Médecine Physique; Elsevier: Amsterdam, The Netherlands, 2006; Volume 49, pp. 172–177. [Google Scholar]
- Livanelioglu, A.; Kaya, F.; Nabiyev, V.; Demirkiran, G.; Fırat, T. The validity and reliability of “Spinal Mouse” assessment of spinal curvatures in the frontal plane in pediatric adolescent idiopathic thoraco-lumbar curves. Eur. Spine J. 2016, 25, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Post, R.; Leferink, V. Spinal mobility: Sagittal range of motion measured with the SpinalMouse, a new non-invasive device. Arch. Orthop. Trauma Surg. 2004, 124, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Cano Porras, D.; Jacobs, J.V.; Inzelberg, R.; Bahat, Y.; Zeilig, G.; Plotnik, M. Patterns of whole-body muscle activations following vertical perturbations during standing and walking. J. Neuroeng. Rehabil. 2021, 18, 75. [Google Scholar] [CrossRef]
- Colebatch, J.G.; Govender, S.; Dennis, D.L. Postural responses to anterior and posterior perturbations applied to the upper trunk of standing human subjects. Exp. Brain Res. 2016, 234, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Li, J. Gait and metabolic adaptation of walking with negative heel shoes. Res. Sports Med. 2003, 11, 277–296. [Google Scholar] [CrossRef]
- Betsch, M.; Schneppendahl, J.; Dor, L.; Jungbluth, P.; Grassmann, J.P.; Windolf, J.; Thelen, S.; Hakimi, M.; Rapp, W.; Wild, M. Influence of foot positions on the spine and pelvis. Arthritis Care Res. 2011, 63, 1758–1765. [Google Scholar] [CrossRef]
- Li, X.; Lu, Z.; Sun, D.; Xuan, R.; Zheng, Z.; Gu, Y. The influence of a shoe’s heel-toe drop on gait parameters during the third trimester of pregnancy. Bioengineering 2022, 9, 241. [Google Scholar] [CrossRef]
- Lopez, A.; Goldcher, A. Historique de la Compréhension de la Biomécanique du Pied nu; Elsevier Masson: Paris, France, 2010. [Google Scholar]
- Viel, E. Biomécanique des fonctions majeures du pied humain: Amortissement, équilibre, propulsion et pivotement. Ann. Kinésithér 1985, 12, 35–49. [Google Scholar]
- Farokhmanesh, K.; Shirzadian, T.; Mahboubi, M.; Shahri, M.N. Effect of Foot Hyperpronation on Lumbar Lordosis and Thoracic Kyphosis in Standing Position Using 3-Dimensional Ultrasound-Based Motion Analysis System. Glob. J. Health Sci. 2014, 6, 254. [Google Scholar] [CrossRef]
- Ghasemi, M.S.; Koohpayehzadeh, J.; Kadkhodaei, H.; Ehsani, A.A. The effect of foot hyperpronation on spine alignment in standing position. Med. J. Islam. Repub. Iran 2016, 30, 466. [Google Scholar] [PubMed]
- Khamis, S.; Yizhar, Z. Effect of feet hyperpronation on pelvic alignment in a standing position. Gait Posture 2007, 25, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Pinto, R.; Souza, T.; Trede, R.; Kirkwood, R.N.; Figueiredo, E.M.; Fonseca, S.T. Bilateral and unilateral increases in calcaneal eversion affect pelvic alignment in standing position. Man. Ther. 2008, 13, 513–519. [Google Scholar] [CrossRef]
- Tateuchi, H.; Wada, O.; Ichihashi, N. Effects of calcaneal eversion on three-dimensional kinematics of the hip, pelvis and thorax in unilateral weight bearing. Hum. Mov. Sci. 2011, 30, 566–573. [Google Scholar] [CrossRef]
- Rockar Jr, P. The subtalar joint: Anatomy and joint motion. J. Orthop. Sports Phys. Ther. 1995, 21, 361–372. [Google Scholar] [CrossRef] [PubMed]
- Mangione, P.; Senegas, J. L’équilibre rachidien dans le plan sagittal. Rev. Chir. Orthopédique Réparatrice L’appareil Mot. 1997, 83, 22–32. [Google Scholar]
- Izzo, R.; Guarnieri, G.; Guglielmi, G.; Muto, M. Biomechanics of the spine. Part I: Spinal stability. Eur. J. Radiol. 2013, 82, 118–126. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.H.; Choi, D.H.; Park, J.H.; Lee, J.H.; Choi, Y.S. What Is the Effect of Spino-Pelvic Sagittal Parameters and Back Muscles on Osteoporotic Vertebral Fracture? Asian Spine J. 2015, 9, 162. [Google Scholar] [CrossRef]
- Eng, J.J.; Pierrynowski, M.R. The Effect of Soft Foot Orthotics on Three-dimensional Lower-Limb Kinematics During Walking and Running. Phys. Ther. 1994, 74, 836–844. [Google Scholar] [CrossRef]
- Yoo, I.-G.; Yoo, W.-G. Effects of the wearing of tight jeans on lumbar and hip movement during trunk flexion. J. Phys. Ther. Sci. 2012, 24, 659–661. [Google Scholar] [CrossRef]
- Lavigne, A.; Noviel, D. Traité de la Semelle Orthopédique et Autres Orthèses en Podologie: Études Cliniques des Troubles de L’orthostatisme; SCERDES: Boulogne, France, 1981. [Google Scholar]
- Lavigne, A.; Noviel, D. Etude Clinique du Pied et Thérapeutique Par Orthèse; Elsevier Masson: Paris, France, 1992. [Google Scholar]
- Zing, E. Examen Clinique Élémentaire en Podologie; Elsevier Masson SAS: Envronville, France, 2008. [Google Scholar]
Subjects (n = 55) | |
---|---|
Age (years) | 43.1 ± 12.1 |
Height | 170.9 ± 8.2 |
Weight (kg) | 68.7 ± 10.4 |
Body mass index (kg·m−2) | 23.5 ± 2.9 |
Back pain (n) | |
Never | 13 |
<3 month back pain | 29 |
>3 month back pain | 13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis e Silva, M.; Lerebourg, L. The Effect of Ankle Dorsiflexion on Sagittal Posture and Core Muscle Activation. Biomechanics 2024, 4, 812-826. https://doi.org/10.3390/biomechanics4040060
Reis e Silva M, Lerebourg L. The Effect of Ankle Dorsiflexion on Sagittal Posture and Core Muscle Activation. Biomechanics. 2024; 4(4):812-826. https://doi.org/10.3390/biomechanics4040060
Chicago/Turabian StyleReis e Silva, Miguel, and Lucie Lerebourg. 2024. "The Effect of Ankle Dorsiflexion on Sagittal Posture and Core Muscle Activation" Biomechanics 4, no. 4: 812-826. https://doi.org/10.3390/biomechanics4040060
APA StyleReis e Silva, M., & Lerebourg, L. (2024). The Effect of Ankle Dorsiflexion on Sagittal Posture and Core Muscle Activation. Biomechanics, 4(4), 812-826. https://doi.org/10.3390/biomechanics4040060