Femoral Translation in Patients with Unicompartmental Osteoarthritis—A Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Analysis
2.2. Clinical Study
2.3. Recruitment and Inclusion Criteria
2.4. Motion Analysis
2.5. Motion Assessment
2.6. Statistical Analysis
3. Results
3.1. In Vitro Analysis
3.2. Case–Control Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Felson, D.T. osteoarthritis of the knee. N. Engl. J. Med. 2006, 354, 841–848. [Google Scholar] [CrossRef]
- Goodfellow, J. Unicompartmental Arthroplasty with the Oxford Knee, 2nd ed.; Goodfellow Publishers Limited: Oxford, UK, 2015. [Google Scholar]
- Zeng, X.; Ma, L.; Lin, Z.; Huang, W.; Huang, Z.; Zhang, Y.; Mao, C. Relationship between Kellgren-Lawrence score and 3D kinematic gait analysis of patients with medial knee osteoarthritis using a new gait system. Sci. Rep. 2017, 7, 4080. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Shelburne, K.B.; Torry, M.R.; Pandy, M.G. Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J. Orthop. Res. 2006, 24, 1983–1990. [Google Scholar] [CrossRef]
- Braga, L.; Renner, J.B.; Schwartz, T.A.; Woodard, J.; Helmick, C.G.; Hochberg, M.C.; Jordan, J.M. Differences in radiographic features of knee osteoarthritis in African-Americans and Caucasians: The Johnston county osteoarthritis project. Osteoarthr. Cartil. 2009, 17, 1554–1561. [Google Scholar] [CrossRef]
- Andriacchi, T.P.; Favre, J.; Erhart-Hledik, J.C.; Chu, C.R. A systems view of risk factors for knee osteoarthritis reveals insights into the pathogenesis of the disease. Ann. Biomed. Eng. 2015, 43, 376–387. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zeng, X.; Lin, F.; Huang, W.; Kong, L.; Zeng, J.; Guo, D.; Zhang, Y.; Lin, D. Chronic ACLD Knees with Early Developmental Cartilage Lesions Exhibited Increased Posterior Tibial Translation during Level Walking. Orthop. Surg. 2024, 16, 1364–1373. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Perry, J. Gait Analysis: Normal and Pathological Function; SLACK: Thorofare, NJ, USA, 1992. [Google Scholar]
- Gray, H.A.; Guan, S.; Thomeer, L.T.; Schache, A.G.; de Steiger, R.; Pandy, M.G. Three-dimensional motion of the knee-joint complex during normal walking revealed by mobile biplane X-ray imaging. J. Orthop. Res. 2019, 37, 615–630. [Google Scholar] [CrossRef]
- Koo, S.; Andriacchi, T.P. The knee joint center of rotation is predominantly on the lateral side during normal walking. J. Biomech. 2008, 41, 1269–1273. [Google Scholar] [CrossRef] [PubMed]
- Kozanek, M.; Hosseini, A.; Liu, F.; Van de Velde, S.K.; Gill, T.J.; Rubash, H.E.; Li, G. Tibiofemoral kinematics and condylar motion during the stance phase of gait. J. Biomech. 2009, 42, 1877–1884. [Google Scholar] [CrossRef] [PubMed]
- Postolka, B.; Schütz, P.; Fucentese, S.F.; Freeman, M.A.R.; Pinskerova, V.; List, R.; Taylor, W.R. Tibio-femoral kinematics of the healthy knee joint throughout complete cycles of gait activities. J. Biomech. 2020, 110, 109915. [Google Scholar] [CrossRef] [PubMed]
- Hiranaka, T. Advantages and limitations of mobile-bearing unicompartmental knee arthroplasty: An overview of the literature. Expert Rev. Med. Devices, 2024; ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Keene, D.J.; Moe-Nilssen, R.; Lamb, S.E. The application of multilevel modelling to account for the influence of walking speed in gait analysis. Gait Posture 2016, 43, 216–219. [Google Scholar] [CrossRef] [PubMed]
- Favre, J.; Jolles, B.M. Gait analysis of patients with knee osteoarthritis highlights a pathological mechanical pathway and provides a basis for therapeutic interventions. EFORT Open Rev. 2017, 1, 368–374. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mittal, A.; Meshram, P.; Kim, W.H.; Kim, T.K. Unicompartmental knee arthroplasty, an enigma, and the ten enigmas of medial UKA. J. Orthop. Traumatol. 2020, 21, 15. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rivière, C.; Sivaloganathan, S.; Villet, L.; Cartier, P.; Lustig, S.; Vendittoli, P.A.; Cobb, J. Kinematic alignment of medial UKA is safe: A systematic review. Knee Surg Sports Traumatol. Arthrosc. 2022, 30, 1082–1094. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.; Gotterbarm, T.; Bruckner, T.; Merle, C.; Streit, M.R. Total versus unicompartmental knee replacement for isolated lateral osteoarthritis: A matched-pairs study. Int. Orthop. 2014, 38, 2259–2264. [Google Scholar] [CrossRef] [PubMed]
- Walker, T.; Zahn, N.; Bruckner, T.; Streit, M.R.; Mohr, G.; Aldinger, P.R.; Clarius, M.; Gotterbarm, T. Mid-term results of lateral unicondylar mobile bearing knee arthroplasty: A multicentre study of 363 cases. Bone Jt. J. 2018, 100-B, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Van Hooren, B.; Pecasse, N.; Meijer, K.; Essers, J.M.N. The accuracy of markerless motion capture combined with computer vision techniques for measuring running kinematics. Scand. J. Med. Sci. Sports 2023, 33, 966–978. [Google Scholar] [CrossRef] [PubMed]
- Dawson, J.; Fitzpatrick, R.; Murray, D.; Carr, A. Questionnaire on the perceptions of patients about total knee replacement. J. Bone Jt. Surg. Br. 1998, 80, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Insall, J.N.; Dorr, L.D.; Scott, R.D.; Scott, W.N. Rationale of the Knee Society clinical rating system. Clin. Orthop. Relat. Res. 1989, 248, 13–14. [Google Scholar] [CrossRef] [PubMed]
- Downie, W.W.; Leatham, P.A.; Rhind, V.M.; Wright, V.; Branco, J.A.; Anderson, J.A. Studies with pain rating scales. Ann. Rheum. Dis. 1978, 37, 378–381. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ware, J., Jr.; Kosinski, M.; Keller, S.D. A 12-Item Short-Form Health Survey: Construction of scales and preliminary tests of reliability and validity. Med. Care 1996, 34, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Kellgren, J.H.; Lawrence, J.S. Radiological assessment of osteo-arthrosis. Ann. Rheum. Dis. 1957, 16, 494–502. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Petersson, I.F.; Boegård, T.; Saxne, T.; Silman, A.J.; Svensson, B. Radiographic osteoarthritis of the knee classified by the Ahlbäck and Kellgren & Lawrence systems for the tibiofemoral joint in people aged 35-54 years with chronic knee pain. Ann. Rheum. Dis. 1997, 56, 493–496. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Van Jan, S.S. Color Atlas of Skeletal Landmark Definitions E-Book: Guidelines for Reproducible Manual and Virtual Palpations; Churchill Livingstone: St. Louis, MO, USA, 2007. [Google Scholar]
- Alton, F.; Baldey, L.; Caplan, S.; Morrissey, M.C. A kinematic comparison of overground and treadmill walking. Clin. Biomech. 1998, 13, 434–440. [Google Scholar] [CrossRef] [PubMed]
- Bortz, J.; Schuster, C. Statistik: Für Human-und Sozialwissenschaftler: Mit 163 Tabellen, 7th ed.; Springer: Berlin, Germany, 2010. [Google Scholar]
- Woolf, A.D.; Pfleger, B. Burden of major musculoskeletal conditions. Bull. World Health Organ. 2003, 81, 646–656. [Google Scholar] [PubMed] [PubMed Central]
- Oliveria, S.A.; Felson, D.T.; Reed, J.I.; Cirillo, P.A.; Walker, A.M. Incidence of symptomatic hand, hip, and knee osteoarthritis among patients in a health maintenance organization. Arthritis Rheum. 1995, 38, 1134–1141. [Google Scholar] [CrossRef] [PubMed]
- Zeni, J.A., Jr.; Richards, J.G.; Higginson, J.S. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture 2008, 27, 710–714. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wade, L.; Needham, L.; McGuigan, P.; Bilzon, J. Applications and limitations of current markerless motion capture methods for clinical gait biomechanics. PeerJ 2022, 10, e12995. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boekesteijn, R.J.; Smolders, J.M.H.; Busch, V.J.J.F.; Geurts, A.C.; Smulders, K. Independent and sensitive gait parameters for objective evaluation in knee and hip osteoarthritis using wearable sensors. BMC Musculoskelet. Disord. 2021, 22, 242. [Google Scholar] [CrossRef]
- Wang, F.; Jia, R.; He, X.; Wang, J.; Zeng, P.; Hong, H.; Jiang, J.; Zhang, H.; Li, J. Detection of kinematic abnormalities in persons with knee osteoarthritis using markerless motion capture during functional movement screen and daily activities. Front. Bioeng. Biotechnol. 2024, 12, 1325339. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Vos, T.; Lim, S.S. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Mills, K.; Hunt, M.A.; Ferber, R. Biomechanical deviations during level walking associated with knee osteoarthritis: A systematic review and meta-analysis. Arthritis Care Res. 2013, 65, 1643–1665. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Lewis, C.L.; Gill, S.V. Effects of obesity and foot arch height on gait mechanics: A cross-sectional study. PLoS ONE 2021, 16, e0260398. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wolff, C.; Steinheimer, P.; Warmerdam, E.; Dahmen, T.; Slusallek, P.; Schlinkmann, C.; Chen, F.; Orth, M.; Pohlemann, T.; Ganse, B. Effects of age, body height, body weight, body mass index and handgrip strength on the trajectory of the plantar pressure stance-phase curve of the gait cycle. Front. Bioeng. Biotechnol. 2023, 11, 1110099. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Favre, J.; Erhart-Hledik, J.C.; Andriacchi, T.P. Age-related differences in sagittal-plane knee function at heel-strike of walking are increased in osteoarthritic patients. Osteoarthr. Cartil. 2014, 22, 464–471. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lewis, M.M.; Waltz, C.; Scelina, L.; Scelina, K.; Owen, K.M.; Hastilow, K.; Zimmerman, E.M.; Rosenfeldt, A.B.; Miller Koop, M.; Alberts, J.L. Gait patterns during overground and virtual omnidirectional treadmill walking. J. Neuroeng. Rehabil. 2024, 21, 29. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Range of Motion | Medio–Lateral | Anterior–Posterior | Cranio–Caudal |
---|---|---|---|
mean ± SD [mm] | 2.05 ± 1.05 | 2.25 ± 0.55 | 2.18 ± 0.57 |
inlay−/strings+ | 1.11 | 1.58 | 1.34 |
inlay−/strings− | 3.14 | 2.31 | 2.43 |
inlay+/strings+ | 1.21 | 2.92 | 2.47 |
inlay+/strings− | 2.75 | 2.21 | 2.50 |
Parameters | Control Group | MOA Group |
---|---|---|
age [years] | 22.07 ± 2.23 | 68.73 ± 9.22 |
height [cm] | 175.76 ± 7.79 | 179.27 ± 7.96 |
weight [kg] | 69.91 ± 12.43 | 88.27 ± 17.75 |
BMI 1 [kg/m2] | 22.5 ± 2.83 | 27.52 ± 5.59 |
Scores [Range] | Control Group | MOA Group | p-Value |
---|---|---|---|
KSS 1 [0–200] | 195.5 ± 8.38 | 126.73 ± 42.54 | <0.001 |
OKS 2 [12–60] | 12.20 ± 0.95 | 31.40 ± 4.92 | <0.001 |
UCLAAS 3 [1–10] | 9.66 ± 1.04 | 6.36 ± 1.03 | <0.001 |
NRS 4 [0–10] | 0.35 ± 0.90 | 5.36 ± 1.86 | <0.001 |
SF-12 PCS 5 | 56.80 ± 2.37 | 38.6 ± 8.48 | <0.001 |
SF-12 MCS 6 | 54.20 ± 6.94 | 54.10 ± 10.40 | 0.785 |
Parameters | Side | Control Group | MOA Group | p-Value |
---|---|---|---|---|
velocity [m/s] | 1.23 ± 0.16 | 0.86 ± 0.31 | <0.01 *,1 | |
cadence [1/min] | 105.00 ± 6.50 | 99.00 ± 15.9 | 0.07 1 | |
stride length [m] | 1.40 ± 0.16 | 1.02 ± 0.28 | <0.01 *,1 | |
ROM flexion [°] full gait cycle | left | 62.57 ± 6.99 | 50.00 ± 7.61 | <0.01 *,1 |
right | 62.58 ± 6.32 | 52.40 ± 6.58 | <0.01 *,1 | |
ROM flexion [°] loading response | left | 9.34 ± 3.81 | 7.10 ± 7 6.59 | 0.07 2 |
right | 12.35 ± 4.43 | 10.50 ± 8.95 | 0.09 2 | |
ROM ab-/adduction [°] full gait cycle | left | 12.03 ± 3.97 | 9.16 ± 2.90 | 0.04 1 |
right | 11.74 ± 4.03 | 8.24 ± 2.99 | 0.01 1 | |
ROM ab-/adduction [°] loading response | left | 3.78 ± 1.89 | 2.59 ± 1.50 | 0.07 2 |
right | 3.57 ± 1.46 | 3.00 ± 1.82 | 0.18 2 |
Axis | Side | Control Group | MOA Group | p-Value |
---|---|---|---|---|
medio–lateral [mm] | left | 5.2 ± 2.9 | 4.1 ± 2.6 | 0.27 1 |
right | 6.6 ± 4.5 | 4.6 ± 3.6 | 0.18 2 | |
anterior–posterior [mm] | left | 8.6 ± 4.4 | 7.4 ± 5.0 | 0.46 1 |
right | 8.6 ± 5.3 | 9.7 ± 7.5 | 0.79 2 | |
cranio–caudal [mm] | left | 2.6 ± 1.5 | 3.5 ± 2.8 | 0.16 1 |
right | 4.5 ± 2.4 | 5.1 ± 3.6 | 0.56 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wegner, M.; Kuwert, S.; Kratzenstein, S.; Simon, M.J.K.; Moradi, B. Femoral Translation in Patients with Unicompartmental Osteoarthritis—A Cohort Study. Biomechanics 2024, 4, 428-438. https://doi.org/10.3390/biomechanics4030029
Wegner M, Kuwert S, Kratzenstein S, Simon MJK, Moradi B. Femoral Translation in Patients with Unicompartmental Osteoarthritis—A Cohort Study. Biomechanics. 2024; 4(3):428-438. https://doi.org/10.3390/biomechanics4030029
Chicago/Turabian StyleWegner, Mathis, Simon Kuwert, Stefan Kratzenstein, Maciej J. K. Simon, and Babak Moradi. 2024. "Femoral Translation in Patients with Unicompartmental Osteoarthritis—A Cohort Study" Biomechanics 4, no. 3: 428-438. https://doi.org/10.3390/biomechanics4030029
APA StyleWegner, M., Kuwert, S., Kratzenstein, S., Simon, M. J. K., & Moradi, B. (2024). Femoral Translation in Patients with Unicompartmental Osteoarthritis—A Cohort Study. Biomechanics, 4(3), 428-438. https://doi.org/10.3390/biomechanics4030029