Intentionally Lengthening Nonparetic Step Length Inhibits the Paretic-Side Swing-Phase Ankle Motion More than Knee Motion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Evaluation
2.3. Data Analysis
2.4. Statistical Analysis
3. Results
3.1. Spatiotemporal Parameters
3.2. Kinematics
3.3. Muscle Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murphy, S.J.; Werring, D.J. Stroke: Causes and clinical features. Medicine 2020, 48, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart disease and stroke Statistics-2020 update: A report from the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [PubMed]
- Jørgensen, H.S.; Nakayama, H.; Raaschou, H.O.; Olsen, T.S. Recovery of walking function in stroke patients: The Copenhagen stroke study. Arch. Phys. Med. Rehabil. 1995, 76, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.; Garrett, M.; Gronley, J.K.; Mulroy, S.J. Classification of walking handicap in the stroke population. Stroke 1995, 26, 982–989. [Google Scholar] [CrossRef] [PubMed]
- Fulk, G.D.; He, Y.; Boyne, P.; Dunning, K. Predicting home and community walking activity poststroke. Stroke 2017, 48, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Tashiro, H.; Isho, T.; Takeda, T.; Nakamura, T.; Kozuka, N.; Hoshi, F. Life-space mobility and relevant factors in community-dwelling individuals with stroke in Japan: A cross-sectional study. Prog. Rehabil. Med. 2019, 4, 20190014. [Google Scholar] [CrossRef] [PubMed]
- Roelker, S.A.; Bowden, M.G.; Kautz, S.A.; Neptune, R.R. Paretic propulsion as a measure of walking performance and functional motor recovery post-stroke: A review. Gait Posture 2019, 68, 6–14. [Google Scholar] [CrossRef]
- Hsiao, H.; Knarr, B.A.; Higginson, J.S.; Binder-Macleod, S.A. The relative contribution of ankle moment and trailing limb angle to propulsive force during gait. Hum. Mov. Sci. 2015, 39, 212–221. [Google Scholar] [CrossRef] [PubMed]
- Lewek, M.D.; Sawicki, G.S. Trailing limb angle is a surrogate for propulsive limb forces during walking post-stroke. Clin. Biomech. 2019, 67, 115–118. [Google Scholar] [CrossRef]
- Awad, L.N.; Lewek, M.D.; Kesar, T.M.; Franz, J.R.; Bowden, M.G. These legs were made for propulsion: Advancing the diagnosis and treatment of post-stroke propulsion deficits. J. Neuroeng. Rehabil. 2020, 17, 139. [Google Scholar] [CrossRef]
- Balasubramanian, C.K.; Bowden, M.G.; Neptune, R.R.; Kautz, S.A. Relationship between step length asymmetry and walking performance in subjects with chronic hemiparesis. Arch. Phys. Med. Rehabil. 2007, 88, 43–49. [Google Scholar] [CrossRef]
- Clark, D.J.; Neptune, R.R.; Behrman, A.L.; Kautz, S.A. Locomotor adaptability task promotes intense and task-appropriate output from the paretic leg during walking. Arch. Phys. Med. Rehabil. 2016, 97, 493–496. [Google Scholar] [CrossRef] [PubMed]
- Neptune, R.R.; Kautz, S.A.; Zajac, F.E. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J. Biomech. 2001, 34, 1387–1398. [Google Scholar] [CrossRef] [PubMed]
- Matsuzawa, Y.; Miyazaki, T.; Takeshita, Y.; Higashi, N.; Hayashi, H.; Araki, S.; Nakatsuji, S.; Fukunaga, S.; Kawada, M.; Kiyama, R. Effect of leg extension angle on knee flexion angle during swing phase in post-stroke gait. Medicina 2021, 57, 1222. [Google Scholar] [CrossRef]
- Park, S.; Liu, C.; Sánchez, N.; Tilson, J.K.; Mulroy, S.J.; Finley, J.M. Using biofeedback to reduce step length asymmetry impairs dynamic balance in people poststroke. Neurorehabil. Neural. Repair. 2021, 35, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Lewek, M.D.; Hornby, T.G.; Dhaher, Y.Y.; Schmit, B.D. Prolonged quadriceps activity following imposed hip extension: A neurophysiological mechanism for stiff-knee gait? J. Neurophysiol. 2007, 98, 3153–3162. [Google Scholar] [CrossRef] [PubMed]
- Lewek, M.D.; Osborn, A.J.; Wutzke, C.J. The influence of mechanically and physiologically imposed stiff-knee gait patterns on the energy cost of walking. Arch. Phys. Med. Rehabil. 2012, 93, 123–128. [Google Scholar] [CrossRef]
- Weerdesteyn, V.; de Niet, M.; van Duijnhoven, H.J.; Geurts, A.C. Falls in individuals with stroke. J. Rehabil. Res. Dev. 2008, 45, 1195–1213. [Google Scholar] [CrossRef]
- Guzik, A.; Drużbicki, M.; Wolan-Nieroda, A.; Turolla, A.; Kiper, P. Estimating minimal clinically important differences for knee range of motion after stroke. J. Clin. Med. 2020, 9, 3305. [Google Scholar] [CrossRef]
- Tsushima, Y.; Fujita, K.; Miaki, H.; Kobayashi, Y. Effects of increasing non-paretic step length on paretic leg movement during hemiparetic gait: A pilot study. J. Phys. Ther. Sci. 2022, 34, 590–595. [Google Scholar] [CrossRef]
- Allen, J.L.; Kautz, S.A.; Neptune, R.R. Step length asymmetry is representative of compensatory mechanisms used in post-stroke hemiparetic walking. Gait Posture 2011, 33, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Choo, Y.J.; Chang, M.C. Effectiveness of an ankle-foot orthosis on walking in patients with stroke: A systematic review and meta-analysis. Sci. Rep. 2021, 11, 15879. [Google Scholar] [CrossRef] [PubMed]
- Lodha, N.; Chen, Y.T.; McGuirk, T.E.; Fox, E.J.; Kautz, S.A.; Christou, E.A.; Clark, D.J. EMG synchrony to assess impaired corticomotor control of locomotion after stroke. J. Electromyogr. Kinesiol. 2017, 37, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Berner, K.; Cockcroft, J.; Louw, Q. Kinematics and temporospatial parameters during gait from inertial motion capture in adults with and without HIV: A validity and reliability study. Biomed. Eng. Online 2020, 19, 1–25. [Google Scholar] [CrossRef] [PubMed]
- The SENIAM Project: SEMG Sensors. Available online: http://seniam.org/ (accessed on 1 September 2019).
- Berner, K.; Cockcroft, J.; Morris, L.D.; Louw, Q. Concurrent validity and within-session reliability of gait kinematics measured using an inertial motion capture system with repeated calibration. J. Bodyw. Mov. Ther. 2020, 24, 251–260. [Google Scholar] [CrossRef]
- Tyrell, C.M.; Roos, M.A.; Rudolph, K.S.; Reisman, D.S. Influence of systematic increases in treadmill walking speed on gait kinematics after stroke. Phys. Ther. 2011, 91, 392–403. [Google Scholar] [CrossRef] [PubMed]
- Turns, L.J.; Neptune, R.R.; Kautz, S.A. Relationships between muscle activity and anteroposterior ground reaction forces in hemiparetic walking. Arch. Phys. Med. Rehabil. 2007, 88, 1127–1135. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, S.R.; Ounpuu, S.; Arnold, A.S.; Gage, J.R.; Delp, S.L. Kinematic and kinetic factors that correlate with improved knee flexion following treatment for stiff-knee gait. J. Biomech. 2006, 39, 689–698. [Google Scholar] [CrossRef] [PubMed]
- Dobkin, B.H.; Xu, X.; Batalin, M.; Thomas, S.; Kaiser, W. Reliability and validity of bilateral ankle accelerometer algorithms for activity recognition and walking speed after stroke. Stroke 2011, 42, 2246–2250. [Google Scholar] [CrossRef]
- Fujita, K.; Miaki, H.; Hori, H.; Kobayashi, Y.; Nakagawa, T. How effective is physical therapy for gait muscle activity in hemiparetic patients who receive botulinum toxin injections? Eur. J. Phys. Rehabil. Med. 2019, 55, 8–18. [Google Scholar] [CrossRef]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Kesar, T.M.; Binder-Macleod, S.A.; Hicks, G.E.; Reisman, D.S. Minimal detectable change for gait variables collected during treadmill walking in individuals post-stroke. Gait Posture 2011, 33, 314–317. [Google Scholar] [CrossRef] [PubMed]
- Dalise, S.; Azzollini, V.; Chisari, C.C. Brain and muscle: How central nervous system disorders can modify the skeletal muscle. Diagnostics 2020, 10, 1047. [Google Scholar] [CrossRef]
- Hu, X.; Suresh, A.K.; Rymer, W.Z.; Suresh, N.L. Assessing altered motor unit recruitment patterns in paretic muscles of stroke survivors using surface electromyography. J. Neural Eng. 2015, 12, 066001. [Google Scholar] [CrossRef] [PubMed]
- Lamontagne, A.; Malouin, F.; Richards, C.L. Contribution of passive stiffness to ankle plantarflexor moment during gait after stroke. Arch. Phys. Med. Rehabil. 2000, 81, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Kerrigan, D.C.; Karvosky, M.E.; Riley, P.O. Spastic paretic stiff-legged gait: Joint kinetics. Am. J. Phys. Med. Rehabil. 2001, 80, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, S.R.; Ounpuu, S.; Delp, S.L. The importance of swing-phase initial conditions in stiff-knee gait. J. Biomech. 2003, 36, 1111–1116. [Google Scholar] [CrossRef] [PubMed]
- Fujita, K.; Tsushima, Y.; Hayashi, K.; Kawabata, K.; Sato, M.; Kobayashi, Y. Differences in causes of stiff knee gait in knee extensor activity or ankle kinematics: A cross-sectional study. Gait Posture 2022, 98, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Riley, P.O.; Kerrigan, D.C. Torque action of two-joint muscles in the swing period of stiff-legged gait: A forward dynamic model analysis. J. Biomech. 1998, 31, 835–840. [Google Scholar] [CrossRef]
- Burpee, J.L.; Lewek, M.D. Biomechanical gait characteristics of naturally occurring unsuccessful foot clearance during swing in individuals with chronic stroke. Clin. Biomech. 2015, 30, 1102–1107. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Andrews, A.W. Limb muscle strength is impaired bilaterally after stroke. J. Phys. Ther. Sci. 1995, 7, 1–7. [Google Scholar] [CrossRef]
Profile | Stroke (n = 15) | Control (n = 15) | p-Value | |
---|---|---|---|---|
Age | (years) | 61.8 ± 12.4 | 62.0 ± 4.4 | NS |
Height | (cm) | 163.6 ± 12.2 | 164.7 ± 10.6 | NS |
Weight | (kg) | 65.9 ± 15.2 | 63.9 ± 11.2 | NS |
Gender | (Female/male) | 3/12 | 5/10 | NS |
Months of onset | 58.6 ± 52.3 | N/A | N/A | |
Type of stroke | (CI/ICH) | 4/11 | N/A | N/A |
Paretic side | (Right/left) | 11/4 | N/A | N/A |
Fugl–Meyer assessment LE | 22.6 ± 4.5 | N/A | N/A | |
Motricity Index | Hip | 25 (0) | 33 (0) | <0.05 |
Knee | 25 (8) | 33 (0) | <0.05 | |
Ankle | 19 (6) | 33 (0) | <0.05 | |
MAS | Hip flexors | 1 (0.5) | N/A | N/A |
Knee extensors | 2 (2.5) | N/A | N/A | |
Ankle plantar flexors | 2 (1.5) | N/A | N/A | |
ROM | Hip extension (°) | 12.5 ± 7.1 | N/A | N/A |
Ankle dorsiflexion (°) | 6.7 ± 7.5 | N/A | N/A | |
Step length asymmetry (low/symmetric/high PSR) | 0/8/7 | N/A | N/A | |
Assistive device | (None/T-cane/AFO) | 6/9/0 | N/A | N/A |
Stroke (n = 15) | Control (n = 15) | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Normal | NP-Long | Normal | Contralateral-Long | |||||
LR period | % | 12.9 ± 3.0 | 10.7 ± 3.1 | * | 12.9 ± 1.7 | 12.0 ± 2.0 | ** | NS |
SS period | % | 31.0 ± 4.5 | 33.6 ± 5.0 | ** | 37.0 ± 1.9 | 39.1 ± 1.9 | ** | NS |
PSw period | % | 15.0 ± 4.3 | 12.8 ± 5.4 | ** | 13.0 ± 2.0 | 11.2 ± 1.5 | ** | NS |
Sw period | % | 41.2 ± 3.8 | 42.9 ± 3.5 | ** | 37.1 ± 1.8 | 37.8 ± 1.4 | ** | NS |
Cadence | steps/min | 84.8 ± 15.7 | 83.0 ± 16.1 | 113.1 ± 8.3 | 105.2 ± 10.8 | ** | 0.006 | |
Gait cycle time | s | 1.44 ± 0.4 | 1.48 ± 0.4 | 1.07 ± 0.08 | 1.15 ± 0.13 | ** | NS | |
Gait velocity | m/s | 0.58 ± 0.3 | 0.69 ± 0.4 | ** | 1.30 ± 0.1 | 1.34 ± 0.1 | NS | |
Stride | cm | 97.4 ± 24.7 | 117.0 ± 30.5 | ** | 139.2 ± 13.4 | 155.2 ± 10.9 | ** | NS |
Step length paretic/ipsilateral | cm | 51.0 ± 12.1 | 53.3 ± 14.9 | 69.2 ± 8.4 | 64.1 ± 8.4 | ** | 0.007 | |
Step length nonparetic/contralateral | cm | 46.4 ± 13.4 | 63.7 ± 18.6 | ** | 70.0 ± 6.8 | 91.0 ± 6.8 | ** | NS |
Stroke (n = 15) | Control (n = 15) | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|
Normal | NP-Long | Normal | Contralateral-Long | ||||||
Hip | Peak extension angle during late single support | ° | 7.2 ± 5.1 | 10.2 ± 5.4 | ** | 15.0 ± 5.4 | 19.2 ± 6.2 | ** | NS |
Peak extension angular velocity during late single support | °/s | 53.3 ± 25.8 | 62.2 ± 30.9 | ** | 120.0 ± 22.0 | 110.6 ± 32.1 | 0.004 | ||
Peak flexion angle during swing | ° | 22.2 ± 7.6 | 24.0 ± 8.0 | 31.7 ± 3.8 | 33.5 ± 4.5 | NS | |||
Range of motion during swing | ° | 21.6 ± 8.8 | 28.5 ± 9.8 | ** | 36.2 ± 5.2 | 45.8 ± 4.3 | ** | NS | |
Knee | Flexion angle at toe-off | ° | 26.5 ± 9.3 | 23.1 ± 8.7 | * | 48.7 ± 6.1 | 39.7 ± 7.2 | ** | 0.005 |
Flexion velocity at toe-off | °/s | 147.8 ± 93.7 | 158.3 ± 92.5 | 382.3 ± 50.3 | 358.2 ± 92.1 | NS | |||
Peak flexion angle during swing | ° | 34.9 ± 12.7 | 35.1 ± 12.5 | 68.5 ± 5.2 | 66.4 ± 6.9 | NS | |||
ROM during early swing | ° | 8.43 ± 10.0 | 12.0 ± 10.0 | * | 19.8 ± 3.8 | 26.8 ± 4.8 | ** | 0.016 | |
Total ROM during gait cycle | ° | 36.0 ± 11.7 | 34.9 ± 12.5 | 66.5 ± 5.1 | 63.6 ± 6.3 | ** | NS | ||
Duration of early swing | %GC | 9.9 ± 8.4 | 14.3 ± 8.9 | 9.9 ± 0.8 | 11.9 ± 1.0 | ** | NS | ||
Ankle | Plantar flexion angle at toe-off | ° | 7.4 ± 7.3 | 8.5 ± 8.8 | 8.6 ± 9.7 | 12.6 ± 10.7 | ** | NS | |
Plantar flexion velocity at toe-off | °/s | 78.9 ± 81.6 | 124.9 ± 98.4 | * | 154.7 ± 88.9 | 178.5 ± 91.6 | NS | ||
Peak dorsiflexion angle during swing | ° | −2.9 ± 8.1 | −2.1 ± 9.4 | 3.1 ± 5.9 | 7.9 ± 6.4 | ** | <0.01 | ||
Trailing limb angle (TLA) at toe-off | ° | 13.8 ± 5.9 | 19.0 ± 7.7 | ** | 26.3 ± 2.2 | 33.6 ± 3.1 | ** | NS |
Muscles | Gait Phase | Stroke (n = 15) | Control (n = 15) | p-Value | |||||
---|---|---|---|---|---|---|---|---|---|
Normal | NP-Long | Normal | Contralateral-Long | ||||||
RF | Late SS | % | 107.5 ± 39.5 | 116.4 ± 41.9 | 64.7 ± 30.5 | 120.4 ± 31.5 | ** | 0.001 | |
PSw | % | 91.6 ± 34.0 | 115.0 ± 46.4 | ** | 90.2 ± 47.6 | 81.8 ± 105.0 | * | <0.001 | |
ESw | % | 109.4 ± 85.3 | 92.5 ± 60.2 | 79.4 ± 58.4 | 67.5 ± 57.6 | ** | NS | ||
BF | Late SS | % | 115.3 ± 54.1 | 119.4 ± 49.4 | 28.7 ± 17.8 | 55.1 ± 45.3 | * | NS | |
PSw | % | 63.9 ± 47.2 | 72.0 ± 55.5 | 24.5 ± 13.2 | 90.7 ± 50.5 | ** | <0.001 | ||
ESw | % | 43.2 ± 32.1 | 41.4 ± 28.8 | 36.0 ± 38.2 | 39.4 ± 20.8 | NS | |||
TA | Late SS | % | 87.3 ± 54.8 | 90.2 ± 44.3 | 51.3 ± 18.3 | 64.5 ± 24.4 | ** | NS | |
PSw | % | 114.6 ± 39.6 | 119.1 ± 50.7 | 99.1 ± 28.4 | 110.2 ± 29.9 | * | NS | ||
ESw | % | 134.6 ± 62.5 | 122.9 ± 46.5 | 114.9 ± 32.4 | 136.3 ± 39.6 | * | 0.013 | ||
MG | Late SS | % | 145.6 ± 44.0 | 143.1 ± 48.0 | 208.0 ± 70.3 | 240.4 ± 58.0 | * | 0.019 | |
PSw | % | 98.0 ± 49.9 | 108.2 ± 49.4 | 54.8 ± 29.4 | 64.9 ± 30.6 | NS | |||
ESw | % | 61.4 ± 52.1 | 68.7 ± 69.7 | 45.9 ± 33.5 | 45.9 ± 29.4 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsushima, Y.; Fujita, K.; Hayashi, K.; Miaki, H.; Hayashi, K. Intentionally Lengthening Nonparetic Step Length Inhibits the Paretic-Side Swing-Phase Ankle Motion More than Knee Motion. Biomechanics 2024, 4, 323-332. https://doi.org/10.3390/biomechanics4020022
Tsushima Y, Fujita K, Hayashi K, Miaki H, Hayashi K. Intentionally Lengthening Nonparetic Step Length Inhibits the Paretic-Side Swing-Phase Ankle Motion More than Knee Motion. Biomechanics. 2024; 4(2):323-332. https://doi.org/10.3390/biomechanics4020022
Chicago/Turabian StyleTsushima, Yuichi, Kazuki Fujita, Koji Hayashi, Hiroichi Miaki, and Katsuhiro Hayashi. 2024. "Intentionally Lengthening Nonparetic Step Length Inhibits the Paretic-Side Swing-Phase Ankle Motion More than Knee Motion" Biomechanics 4, no. 2: 323-332. https://doi.org/10.3390/biomechanics4020022
APA StyleTsushima, Y., Fujita, K., Hayashi, K., Miaki, H., & Hayashi, K. (2024). Intentionally Lengthening Nonparetic Step Length Inhibits the Paretic-Side Swing-Phase Ankle Motion More than Knee Motion. Biomechanics, 4(2), 323-332. https://doi.org/10.3390/biomechanics4020022