Closing the Wearable Gap—Part VIII: A Validation Study for a Smart Knee Brace to Capture Knee Joint Kinematics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instrumentation
2.3. Sensor Placement and Orientation Configuration
2.4. Experimental Procedures
2.5. Data and Statistical Analysis
3. Results
4. Discussion
4.1. Limitations
4.2. Future Research
4.3. Clinical and Research Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Participant | Movement/Exercise | R2 | RMSE (in Degrees) | MAE (in Degrees) |
---|---|---|---|---|
P001 | Knee Flexion/Extension | 0.982 | 5.90 | 4.91 |
Bodyweight Air Squat | 0.949 | 9.04 | 7.41 | |
Avg. Gait Trial | 0.936 | 3.99 | 3.27 | |
P002 | Knee Flexion/Extension | 0.984 | 4.78 | 3.72 |
Bodyweight Air Squat | 0.972 | 7.70 | 6.20 | |
Avg. Gait Trial | 0.861 | 6.38 | 4.83 | |
P003 | Knee Flexion/Extension | - | - | - |
Bodyweight Air Squat | 0.991 | 3.99 | 3.28 | |
Avg. Gait Trial | 0.862 | 6.27 | 4.97 | |
P004 | Knee Flexion/Extension | 0.964 | 7.66 | 6.72 |
Bodyweight Air Squat | 0.988 | 4.24 | 3.62 | |
Avg. Gait Trial | 0.916 | 5.07 | 4.12 | |
P005 | Knee Flexion/Extension | 0.992 | 4.18 | 3.49 |
Bodyweight Air Squat | 0.992 | 3.34 | 2.70 | |
Avg. Gait Trial | 0.814 | 6.03 | 4.07 | |
P006 | Knee Flexion/Extension | 0.807 | 3.89 | 3.40 |
Bodyweight Air Squat | 0.963 | 9.57 | 7.94 | |
Avg. Gait Trial | 0.406 | 14.13 | 12.22 | |
P007 | Knee Flexion/Extension | 0.813 | 5.38 | 4.43 |
Bodyweight Air Squat | 0.954 | 9.19 | 7.50 | |
Avg. Gait Trial | 0.316 | 11.87 | 9.65 | |
P008 | Knee Flexion/Extension | 0.540 | 5.52 | 4.38 |
Bodyweight Air Squat | 0.945 | 8.55 | 7.00 | |
Avg. Gait Trial | 0.225 | 12.54 | 10.81 | |
P009 | Knee Flexion/Extension | 0.691 | 4.80 | 4.09 |
Bodyweight Air Squat | 0.979 | 6.38 | 5.53 | |
Avg. Gait Trial | 0.573 | 9.33 | 7.69 | |
P010 | Knee Flexion/Extension | 0.796 | 6.53 | 5.32 |
Bodyweight Air Squat | 0.976 | 7.73 | 6.25 | |
Avg. Gait Trial | 0.393 | 10.95 | 9.09 | |
P011 | Knee Flexion/Extension | 0.759 | 3.86 | 3.33 |
Bodyweight Air Squat | 0.972 | 7.36 | 6.15 | |
Avg. Gait Trial | 0.499 | 8.94 | 7.37 | |
P012 | Knee Flexion/Extension | 0.566 | 5.46 | 4.25 |
Bodyweight Air Squat | 0.786 | 20.16 | 17.01 | |
Avg. Gait Trial | 0.277 | 10.02 | 8.65 | |
P013 | Knee Flexion/Extension | 0.883 | 8.59 | 7.32 |
Bodyweight Air Squat | 0.953 | 11.35 | 9.84 | |
Avg. Gait Trial | 0.471 | 11.61 | 9.51 | |
P014 | Knee Flexion/Extension | 0.421 | 4.04 | 3.46 |
Bodyweight Air Squat | 0.952 | 9.23 | 7.54 | |
Avg. Gait Trial | 0.261 | 10.59 | 8.51 | |
P015 | Knee Flexion/Extension | - | - | - |
Bodyweight Air Squat | 0.953 | 8.84 | 7.65 | |
Avg. Gait Trial | 0.327 | 12.11 | 10.27 | |
P016 | Knee Flexion/Extension | 0.983 | 5.99 | 5.02 |
Bodyweight Air Squat | 0.988 | 3.37 | 2.88 | |
Avg. Gait Trial | 0.763 | 9.20 | 6.98 |
References
- González-Villanueva, L.; Cagnoni, S.; Ascari, L. Design of a Wearable Sensing System for Human Motion Monitoring in Physical Rehabilitation. Sensors 2013, 13, 7735–7755. [Google Scholar] [CrossRef] [Green Version]
- Chander, H.; Burch, R.F.; Talegaonkar, P.; Saucier, D.; Luczak, T.; Ball, J.E.; Turner, A.; Kodithuwakku Arachchige, S.N.K.; Carroll, W.; Smith, B.K.; et al. Wearable Stretch Sensors for Human Movement Monitoring and Fall Detection in Ergonomics. Int. J. Environ. Res. Public Health 2020, 17, 3554. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.C. Wearable Sensors for Human Activity Monitoring: A Review. IEEE Sens. J. 2015, 15, 1321–1330. [Google Scholar] [CrossRef]
- Greenspan, B.; Hall, M.L.; Cao, H.; Lobo, M.A. Development and Testing of a Stitched Stretch Sensor with the Potential to Measure Human Movement. J. Text. Inst. 2018, 109, 1493–1500. [Google Scholar] [CrossRef]
- Saucier, D.; Davarzani, S.; Turner, A.; Luczak, T.; Nguyen, P.; Carroll, W.; Burch V, R.F.; Ball, J.E.; Smith, B.K.; Chander, H.; et al. Closing the Wearable Gap—Part IV: 3D Motion Capture Cameras Versus Soft Robotic Sensors Comparison of Gait Movement Assessment. Electronics 2019, 8, 1382. [Google Scholar] [CrossRef] [Green Version]
- Luczak, T.; Saucier, D.; Burch V, R.F.; Ball, J.E.; Chander, H.; Knight, A.; Wei, P.; Iftekhar, T. Closing the Wearable Gap: Mobile Systems for Kinematic Signal Monitoring of the Foot and Ankle. Electronics 2018, 7, 117. [Google Scholar] [CrossRef] [Green Version]
- Saucier, D.; Luczak, T.; Nguyen, P.; Davarzani, S.; Peranich, P.; Ball, J.E.; Burch, R.F.; Smith, B.K.; Chander, H.; Knight, A.; et al. Closing the Wearable Gap—Part II: Sensor Orientation and Placement for Foot and Ankle Joint Kinematic Measurements. Sensors 2019, 19, 3509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chander, H.; Stewart, E.; Saucier, D.; Nguyen, P.; Luczak, T.; Ball, J.E.; Knight, A.C.; Smith, B.K.; Burch V, R.F.; Prabhu, R.K. Closing the Wearable Gap—Part III: Use of Stretch Sensors in Detecting Ankle Joint Kinematics During Unexpected and Expected Slip and Trip Perturbations. Electronics 2019, 8, 1083. [Google Scholar] [CrossRef] [Green Version]
- Luczak, T.; Burch V, R.F.; Smith, B.K.; Carruth, D.W.; Lamberth, J.; Chander, H.; Knight, A.; Ball, J.E.; Prabhu, R.K. Closing the Wearable Gap—Part V: Development of a Pressure-Sensitive Sock Utilizing Soft Sensors. Sensors 2020, 20, 208. [Google Scholar] [CrossRef] [Green Version]
- Davarzani, S.; Saucier, D.; Peranich, P.; Carroll, W.; Turner, A.; Parker, E.; Middleton, C.; Nguyen, P.; Robertson, P.; Smith, B.; et al. Closing the Wearable Gap—Part VI: Human Gait Recognition Using Deep Learning Methodologies. Electronics 2020, 9, 796. [Google Scholar] [CrossRef]
- Talegaonkar, P.; Saucier, D.; Carroll, W.; Peranich, P.; Parker, E.; Middleton, C.; Davarzani, S.; Turner, A.; Persons, K.; Casey, L.; et al. Closing the Wearable Gap-Part VII: A Retrospective of Stretch Sensor Tool Kit Development for Benchmark Testing. Electronics 2020, 9, 1457. [Google Scholar] [CrossRef]
- Lymberis, A. Smart Wearables for Remote Health Monitoring, from Prevention to Rehabilitation: Current R D, Future Challenges. In Proceedings of the 4th International IEEE EMBS Special Topic Conference on Information Technology Applications in Biomedicine, Birmingham, UK, 24–26 April 2003; pp. 272–275. [Google Scholar]
- Chau, K.Y.; Lam, M.H.S.; Cheung, M.L.; Tso, E.K.H.; Flint, S.W.; Broom, D.R.; Tse, G.; Lee, K.Y. Smart Technology for Healthcare: Exploring the Antecedents of Adoption Intention of Healthcare Wearable Technology. Health Psychol. Res. 2019, 7, 8099. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Jayaraman, S. Enhancing the Quality of Life through Wearable Technology. IEEE Eng. Med. Biol. Mag. 2003, 22, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Godfrey, A.; Hetherington, V.; Shum, H.; Bonato, P.; Lovell, N.H.; Stuart, S. From A to Z: Wearable Technology Explained. Maturitas 2018, 113, 40–47. [Google Scholar] [CrossRef]
- Sultan, N. Reflective Thoughts on the Potential and Challenges of Wearable Technology for Healthcare Provision and Medical Education. Int. J. Inf. Manag. 2015, 35, 521–526. [Google Scholar] [CrossRef]
- Wren, T.A.L.; Gorton, G.E.; Õunpuu, S.; Tucker, C.A. Efficacy of Clinical Gait Analysis: A Systematic Review. Gait Posture 2011, 34, 149–153. [Google Scholar] [CrossRef]
- Marin, J.; Blanco, T.; Marin, J.J. Octopus: A Design Methodology for Motion Capture Wearables. Sensors 2017, 17, 1875. [Google Scholar] [CrossRef] [Green Version]
- Francés-Morcillo, L.; Morer-Camo, P.; Rodríguez-Ferradas, M.I.; Cazón-Martín, A. Wearable Design Requirements Identification and Evaluation. Sensors 2020, 20, 2599. [Google Scholar] [CrossRef]
- Totaro, M.; Poliero, T.; Mondini, A.; Lucarotti, C.; Cairoli, G.; Ortiz, J.; Beccai, L. Soft Smart Garments for Lower Limb Joint Position Analysis. Sensors 2017, 17, 2314. [Google Scholar] [CrossRef]
- Eguchi, R.; Michael, B.; Howard, M.; Takahashi, M. Shift-Adaptive Estimation of Joint Angle Using Instrumented Brace With Two Stretch Sensors Based on Gaussian Mixture Models. IEEE Robot. Autom. Lett. 2020, 5, 5881–5888. [Google Scholar] [CrossRef]
- Shyr, T.-W.; Shie, J.-W.; Jiang, C.-H.; Li, J.-J. A Textile-Based Wearable Sensing Device Designed for Monitoring the Flexion Angle of Elbow and Knee Movements. Sensors 2014, 14, 4050–4059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litteken, D. Evaluation of Strain Measurement Devices for Inflatable Structures. In Proceedings of the 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Grapevine, TX, USA, 9 January 2017. [Google Scholar]
- Mündermann, L.; Corazza, S.; Andriacchi, T.P. The Evolution of Methods for the Capture of Human Movement Leading to Markerless Motion Capture for Biomechanical Applications. J. NeuroEng. Rehabil. 2006, 3, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winter, D.A. Biomechanical Motor Patterns in Normal Walking. J. Mot. Behav. 1983, 15, 302–330. [Google Scholar] [CrossRef] [PubMed]
- Kadaba, M.P.; Ramakrishnan, H.K.; Wootten, M.E. Measurement of Lower Extremity Kinematics during Level Walking. J. Orthop. Res. 1990, 8, 383–392. [Google Scholar] [CrossRef] [PubMed]
Movement/Exercise | Average R2 | Average RMSE (Degrees) | Average MAE (Degrees) |
---|---|---|---|
Knee Flexion/Extension | 0.799 | 5.470 | 4.560 |
Bodyweight Air Squat | 0.957 | 8.127 | 6.780 |
Gait Trials | 0.565 | 9.190 | 7.530 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Turner, A.J.; Carroll, W.; Kodithuwakku Arachchige, S.N.K.; Saucier, D.; Burch V, R.F.; Ball, J.E.; Smith, B.K.; Freeman, C.E.; Knight, A.C.; Chander, H. Closing the Wearable Gap—Part VIII: A Validation Study for a Smart Knee Brace to Capture Knee Joint Kinematics. Biomechanics 2021, 1, 152-162. https://doi.org/10.3390/biomechanics1010012
Turner AJ, Carroll W, Kodithuwakku Arachchige SNK, Saucier D, Burch V RF, Ball JE, Smith BK, Freeman CE, Knight AC, Chander H. Closing the Wearable Gap—Part VIII: A Validation Study for a Smart Knee Brace to Capture Knee Joint Kinematics. Biomechanics. 2021; 1(1):152-162. https://doi.org/10.3390/biomechanics1010012
Chicago/Turabian StyleTurner, Alana J., Will Carroll, Sachini N. K. Kodithuwakku Arachchige, David Saucier, Reuben F. Burch V, John E. Ball, Brian K. Smith, Charles E. Freeman, Adam C. Knight, and Harish Chander. 2021. "Closing the Wearable Gap—Part VIII: A Validation Study for a Smart Knee Brace to Capture Knee Joint Kinematics" Biomechanics 1, no. 1: 152-162. https://doi.org/10.3390/biomechanics1010012
APA StyleTurner, A. J., Carroll, W., Kodithuwakku Arachchige, S. N. K., Saucier, D., Burch V, R. F., Ball, J. E., Smith, B. K., Freeman, C. E., Knight, A. C., & Chander, H. (2021). Closing the Wearable Gap—Part VIII: A Validation Study for a Smart Knee Brace to Capture Knee Joint Kinematics. Biomechanics, 1(1), 152-162. https://doi.org/10.3390/biomechanics1010012