Ferroelectric Materials Based Coupled Nanogenerators
Abstract
:1. Introduction
2. Ferroelectric Materials
2.1. Fortunes of Ferroelectric Materials
2.2. Crystal Structures
2.3. Ferroelectricity and Hysteresis
2.4. Ferroelectric Domains and Phase Transition
3. Energy Harvesting Ferroelectric Materials for Nanogenerators (NGs)
3.1. Piezoelectric Effect and Piezoelectric Nanogenerators
3.2. Pyroelectric Effect and Pyroelectric Nanogenerators
3.3. Triboelectric Effect and Triboelectric Nanogenerators
3.4. Ferroelectric Photovoltaic Effect and Photovoltaic Cells
3.5. Coupled Effects NGs
4. Device Structure and Performances of Ferroelectric NGs
4.1. Device Design and Output Power Optimization in Piezoelectric PENGs
4.2. Device Design and Output Power Optimization in Pyroelectric PyENGs
4.3. Device Design and Output Power Optimization in Triboelectric Nanogenerators TENG
4.4. Device Design and Output Power Optimization in Ferroelectric Photovoltaics (PVC)
4.5. Device Design and Output Power Optimization of Coupled Effect Nanogenerators
5. Applications
6. Conclusions and Future Prospect
Author Contributions
Funding
Conflicts of Interest
References
- Kim, T.Y.; Kim, S.K.; Kim, S.-W. Application of ferroelectric materials for improving output power of energy harvesters. Nano Converg. 2018, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Tiwari, P.; Zymbler, M. Internet of Things is a revolutionary approach for future technology enhancement: A review. J. Big Data 2019, 6, 111. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.-S.; Han, M.-D.; Wang, R.-X.; Zhu, F.-Y.; Li, Z.-H.; Wang, W.; Zhang, H. Frequency-Multiplication High-Output Triboelectric Nanogenerator for Sustainably Powering Biomedical Microsystems. Nano Lett. 2013, 13, 1168–1172. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Tran, V.H.; Wang, J.; Fuh, Y.-K.; Lin, L. Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency. Nano Lett. 2010, 10, 726–731. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Song, J. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef]
- Yang, Y. Hybridized and Coupled Nanogenerators: Design, Performance, and Applications; Wiley-VCH GmbH: Weinheim, Germany, 2020. [Google Scholar]
- Kasap, S.; Capper, P. Springer Handbook of Electronic and Photonic Materials, 2nd ed.; Springer: New York, NY, USA, 2007. [Google Scholar]
- Jin, W.; Wang, Z.; Huang, H.; Hu, X.; He, Y.; Li, M.; Li, L.; Gao, Y.; Hu, Y.; Gu, H. High-performance piezoelectric energy harvesting of vertically aligned Pb(Zr,Ti)O3 nanorod arrays. RSC Adv. 2018, 8, 7422–7427. [Google Scholar] [CrossRef] [Green Version]
- Mikolajick, T.; Schroeder, U.; Slesazeck, S. The Past, the Present, and the Future of Ferroelectric Memories. IEEE Trans. Electron Devices 2020, 67, 1434–1443. [Google Scholar] [CrossRef]
- Scott, J.F. Ferroelectric Memories, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2000. [Google Scholar] [CrossRef]
- Martienssen, W.; Warlimont, H. Springer Handbook of Condensed Matter and Materials Data, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Milano, G.; Porro, S.; Valov, I.; Ricciardi, C. Nanowire Memristors: Recent Developments and Perspectives for Memristive Devices Based on Metal Oxide Nanowires. Adv. Electron. Mater. 2019, 5, 1970044. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Shi, Z.; Wang, H.; Zhang, K.; Dastan, D.; Sun, K.; Fan, R. Ultrahigh discharge efficiency and improved energy density in rationally designed bilayer polyetherimide–BaTiO3/P(VDF-HFP) composites. J. Mater. Chem. A 2020, 8, 5750–5757. [Google Scholar] [CrossRef]
- Yang, J.; Zhu, X.; Wang, H.; Wang, X.; Hao, C.; Fan, R.; Dastan, D.; Shi, Z. Achieving excellent dielectric performance in polymer composites with ultralow filler loadings via constructing hollow-structured filler frameworks. Compos. Part A Appl. Sci. Manuf. 2020, 131, 105814. [Google Scholar] [CrossRef]
- Patterson, E.A.; Staruch, M.; Matis, B.R.; Young, S.; Lofland, S.E.; Antonelli, L.; Blackmon, F.; Damjanovic, D.; Cain, M.G.; Thompson, P.B.J.; et al. Dynamic piezoelectric response of relaxor single crystal under electrically driven inter-ferroelectric phase transformations. Appl. Phys. Lett. 2020, 116, 222903. [Google Scholar] [CrossRef]
- Butler, K.T.; Frost, J.M.; Walsh, A. Ferroelectric materials for solar energy conversion: Photoferroics revisited. Energy Environ. Sci. 2014, 8, 838–848. [Google Scholar] [CrossRef] [Green Version]
- Almadhoun, M.N.; Bhansali, U.S.; Alshareef, H.N. Nanocomposites of ferroelectric polymers with surface-hydroxylated BaTiO3 nanoparticles for energy storage applications. J. Mater. Chem. 2012, 22, 11196–11200. [Google Scholar] [CrossRef]
- Kumar, A.; Mukherjee, S.; Roy, A. Solar energy harvesting with ferroelectric materials. In Ferroelectric Materials for Energy Harvesting and Storage; Woodhead Publishing: Sawston, UK, 2021; pp. 43–84. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Wang, Z.L.; Yang, Y. Efficient Scavenging of Solar and Wind Energies in a Smart City. ACS Nano 2016, 10, 5696–5700. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, S.; Pisignano, D.; Persano, L.; Yang, Y.; Su, Y. On the evaluation of output voltages for quantifying the performance of pyroelectric energy harvesters. Nano Energy 2021, 86, 106045. [Google Scholar] [CrossRef]
- Lee, S.; Hinchet, R.; Lee, Y.; Yang, Y.; Lin, Z.-H.; Ardila, G.; Montès, L.; Mouis, M.; Wang, Z.L. Ultrathin Nanogenerators as Self-Powered/Active Skin Sensors for Tracking Eye Ball Motion. Adv. Funct. Mater. 2013, 24, 1163–1168. [Google Scholar] [CrossRef]
- Zhu, G.; Lin, Z.-H.; Jing, Q.; Bai, P.; Pan, C.; Yang, Y.; Zhou, Y.; Wang, Z.L. Toward Large-Scale Energy Harvesting by a Nanoparticle-Enhanced Triboelectric Nanogenerator. Nano Lett. 2013, 13, 847–853. [Google Scholar] [CrossRef]
- Lin, Z.-H.; Yang, Y.; Wu, J.M.; Liu, Y.; Zhang, F.; Wang, Z.L. BaTiO3 Nanotubes-Based Flexible and Transparent Nanogenerators. J. Phys. Chem. Lett. 2012, 3, 3599–3604. [Google Scholar] [CrossRef] [Green Version]
- Kim, P.; Doss, N.M.; Tillotson, J.P.; Hotchkiss, P.J.; Pan, M.-J.; Marder, S.R.; Li, J.; Calame, J.P.; Perry, J.W. High Energy Density Nanocomposites Based on Surface-Modified BaTiO3 and a Ferroelectric Polymer. ACS Nano 2009, 3, 2581–2592. [Google Scholar] [CrossRef]
- Mikolajick, T. Ferroelectric Nonvolatile Memories. In Encyclopedia of Materials: Science and Technology; Elsevier: Amsterdam, The Netherlands, 2002; Volume 2, pp. 1–5. [Google Scholar] [CrossRef]
- Lee, H.; Kim, H.; Kim, D.Y.; Seo, Y. Pure Piezoelectricity Generation by a Flexible Nanogenerator Based on Lead Zirconate Titanate Nanofibers. ACS Omega 2019, 4, 2610–2617. [Google Scholar] [CrossRef] [Green Version]
- Xue, H.; Yang, Q.; Wang, D.; Luo, W.; Wang, W.; Lin, M.; Liang, D.; Luo, Q. A wearable pyroelectric nanogenerator and self-powered breathing sensor. Nano Energy 2017, 38, 147–154. [Google Scholar] [CrossRef]
- Seung, W.; Yoon, H.-J.; Kim, T.Y.; Ryu, H.; Kim, J.; Lee, J.-H.; Lee, J.H.; Kim, S.; Park, Y.K.; Park, Y.J.; et al. Boosting Power-Generating Performance of Triboelectric Nanogenerators via Artificial Control of Ferroelectric Polarization and Dielectric Properties. Adv. Energy Mater. 2016, 7, 1600988. [Google Scholar] [CrossRef]
- Mistewicz, K.; Nowak, M.; Stróż, D. A Ferroelectric-Photovoltaic Effect in SbSI Nanowires. Nanomaterials 2019, 9, 580. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhang, H.; Liu, R.; Wen, X.; Hou, T.-C.; Wang, Z.L. Fully Enclosed Triboelectric Nanogenerators for Applications in Water and Harsh Environments. Adv. Energy Mater. 2013, 3, 1563–1568. [Google Scholar] [CrossRef]
- Jiang, Q.; Chen, B.; Yang, Y. Wind-Driven Triboelectric Nanogenerators for Scavenging Biomechanical Energy. ACS Appl. Energy Mater. 2018, 1, 4269–4276. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, H.; Lin, Z.-H.; Zhou, Y.; Jing, Q.; Su, Y.; Yang, J.; Chen, J.; Hu, C.; Wang, Z.L. Human Skin Based Triboelectric Nanogenerators for Harvesting Biomechanical Energy and as Self-Powered Active Tactile Sensor System. ACS Nano 2013, 7, 9213–9222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanani, Z.; Izanzar, I.; Amjoud, M.; Mezzane, D.; Lahcini, M.; Uršič, H.; Prah, U.; Saadoune, I.; El Marssi, M.; Luk’Yanchuk, I.A.; et al. Lead-free nanocomposite piezoelectric nanogenerator film for biomechanical energy harvesting. Nano Energy 2020, 81, 105661. [Google Scholar] [CrossRef]
- Bairagi, S.; Ali, S.W. Flexible lead-free PVDF/SM-KNN electrospun nanocomposite based piezoelectric materials: Significant enhancement of energy harvesting efficiency of the nanogenerator. Energy 2020, 198, 117385. [Google Scholar] [CrossRef]
- Yuan, H.; Lei, T.; Qin, Y.; Yang, R. Flexible electronic skins based on piezoelectric nanogenerators and piezotronics. Nano Energy 2019, 59, 84–90. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Y.; Wu, J.M.; Wang, Z.L. Single Micro/Nanowire Pyroelectric Nanogenerators as Self-Powered Temperature Sensors. ACS Nano 2012, 6, 8456–8461. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, S.; Zhang, Y.; Wang, Z.L. Pyroelectric Nanogenerators for Driving Wireless Sensors. Nano Lett. 2012, 12, 6408–6413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Guo, W.; Pradel, K.C.; Zhu, G.; Zhou, Y.; Zhang, Y.; Hu, Y.; Lin, L.; Wang, Z.L. Pyroelectric Nanogenerators for Harvesting Thermoelectric Energy. Nano Lett. 2012, 12, 2833–2838. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Wang, Y.; Wang, Z.L.; Yang, Y. Standard and figure-of-merit for quantifying the performance of pyroelectric nanogenerators. Nano Energy 2018, 55, 534–540. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, K.; Yang, Y. Effective polarization of ferroelectric materials by using a triboelectric nanogenerator to scavenge wind energy. Nano Energy 2018, 53, 622–629. [Google Scholar] [CrossRef]
- Chen, B.; Yang, Y.; Wang, Z.L. Scavenging Wind Energy by Triboelectric Nanogenerators. Adv. Energy Mater. 2018, 8, 1702649. [Google Scholar] [CrossRef]
- Nechache, R.; Harnagea, C.; Licoccia, S.; Traversa, E.; Ruediger, A.; Pignolet, A.; Rosei, F. Photovoltaic properties of Bi2FeCrO6 epitaxial thin films. Appl. Phys. Lett. 2011, 98, 202902. [Google Scholar] [CrossRef]
- Ma, N.; Yang, Y. Boosted photocurrent via cooling ferroelectric BaTiO3 materials for self-powered 405 nm light detection. Nano Energy 2019, 60, 95–102. [Google Scholar] [CrossRef]
- Zhao, R.; Ma, N.; Qi, J.; Mishra, Y.; Adelung, R.; Yang, Y. Optically Controlled Abnormal Photovoltaic Current Modulation with Temperature in BiFeO3. Adv. Electron. Mater. 2019, 5, 1800791. [Google Scholar] [CrossRef]
- Ma, N.; Yang, Y. Boosted photocurrent in ferroelectric BaTiO3 materials via two dimensional planar-structured contact configurations. Nano Energy 2018, 50, 417–424. [Google Scholar] [CrossRef]
- Zhu, Q.; Dong, L.; Zhang, J.; Xu, K.; Zhang, Y.; Shi, H.; Lu, H.; Wu, Y.; Zheng, H.; Wang, Z. All-in-one hybrid tribo/piezoelectric nanogenerator with the point contact and its adjustable charge transfer by ferroelectric polarization. Ceram. Int. 2020, 46, 28277–28284. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, K.; Yang, Y. A One-Structure-Based Multieffects Coupled Nanogenerator for Simultaneously Scavenging Thermal, Solar, and Mechanical Energies. Adv. Sci. 2017, 5, 1700622. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Yang, Y.; Wang, X.; Wang, Z.L. Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source. Nano Energy 2015, 13, 771–780. [Google Scholar] [CrossRef]
- Quan, T.; Wang, X.; Wang, Z.L.; Yang, Y. Hybridized Electromagnetic–Triboelectric Nanogenerator for a Self-Powered Electronic Watch. ACS Nano 2015, 9, 12301–12310. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Yang, Y. Linear-grating hybridized electromagnetic-triboelectric nanogenerator for sustainably powering portable electronics. Nano Res. 2016, 9, 974–984. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, S.; Yang, Y. A One-Structure-Based Piezo-Tribo-Pyro-Photoelectric Effects Coupled Nanogenerator for Simultaneously Scavenging Mechanical, Thermal, and Solar Energies. Adv. Energy Mater. 2016, 7, 1601852. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, K.; Wang, Z.L.; Yang, Y. Unity Convoluted Design of Solid Li-Ion Battery and Triboelectric Nanogenerator for Self-Powered Wearable Electronics. Adv. Energy Mater. 2017, 7, 1701629. [Google Scholar] [CrossRef]
- Sahu, M.; Hajra, S.; Lee, K.; Deepti, P.; Mistewicz, K.; Kim, H.J. Piezoelectric Nanogenerator Based on Lead-Free Flexible PVDF-Barium Titanate Composite Films for Driving Low Power Electronics. Crystals 2021, 11, 85. [Google Scholar] [CrossRef]
- Shin, S.-H.; Kim, Y.-H.; Lee, M.H.; Jung, J.-Y.; Nah, J. Hemispherically Aggregated BaTiO3 Nanoparticle Composite Thin Film for High-Performance Flexible Piezoelectric Nanogenerator. ACS Nano 2014, 8, 2766–2773. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Hao, X. Enhancing output performances and output retention rates of triboelectric nanogenerators via a design of composite inner-layers with coupling effect and self-assembled outer-layers with superhydrophobicity. Nano Energy 2020, 76, 105074. [Google Scholar] [CrossRef]
- Bairagi, S.; Ali, S.W. A unique piezoelectric nanogenerator composed of melt-spun PVDF/KNN nanorod-based nanocomposite fibre. Eur. Polym. J. 2019, 116, 554–561. [Google Scholar] [CrossRef]
- Liu, J.; Yu, D.; Zheng, Z.; Huangfu, G.; Guo, Y. Lead-free BiFeO3 film on glass fiber fabric: Wearable hybrid piezoelectric-triboelectric nanogenerator. Ceram. Int. 2021, 47, 3573–3579. [Google Scholar] [CrossRef]
- Gu, L.; Liu, J.; Cui, N.; Xu, Q.; Du, T.; Zhang, L.; Wang, Z.; Long, C.; Qin, Y. Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode. Nat. Commun. 2020, 11, 1030. [Google Scholar] [CrossRef] [Green Version]
- Shaikh, M.O.; Huang, Y.-B.; Wang, C.-C.; Chuang, C.-H. Wearable Woven Triboelectric Nanogenerator Utilizing Electrospun PVDF Nanofibers for Mechanical Energy Harvesting. Micromachines 2019, 10, 438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, X.; Ma, X.; Ren, W.; Gao, L.; Lu, S.; Tong, D.; Wang, F.; Chen, Y.; Huang, Y.; He, H.; et al. A Triboelectric Nanogenerator Exploiting the Bernoulli Effect for Scavenging Wind Energy. Cell Rep. Phys. Sci. 2020, 1, 100207. [Google Scholar] [CrossRef]
- Gao, L.; Hu, D.; Qi, M.; Gong, J.; Zhou, H.; Chen, X.; Chen, J.; Cai, J.; Wu, L.; Hu, N.; et al. A double-helix-structured triboelectric nanogenerator enhanced with positive charge traps for self-powered temperature sensing and smart-home control systems. Nanoscale 2018, 10, 19781–19790. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Ding, Z.; Fei, L.; Xiang, Y.; Lin, Y. Wearable piezoelectric nanogenerators based on reduced graphene oxide and in situ polarization-enhanced PVDF-TrFE films. J. Mater. Sci. 2019, 54, 6401–6409. [Google Scholar] [CrossRef]
- Horiuchi, S.; Tokura, Y. Organic ferroelectrics. Nat. Mater. 2008, 7, 357–366. [Google Scholar] [CrossRef]
- Sahu, M.; Vivekananthan, V.; Hajra, S.; Abisegapriyan, K.S.; Maria Joseph Raj, N.P.; Kim, S.J. Synergetic enhancement of energy harvesting performance in triboelectric nanogenerator using ferroelectric polarization for self-powered IR signaling and body activity monitoring. J. Mater. Chem. A 2020, 8, 22257–22268. [Google Scholar] [CrossRef]
- Ma, S.W.; Fan, Y.J.; Li, H.Y.; Su, L.; Wang, Z.L.; Zhu, G. Flexible Porous Polydimethylsiloxane/Lead Zirconate Titanate-Based Nanogenerator Enabled by the Dual Effect of Ferroelectricity and Piezoelectricity. ACS Appl. Mater. Interfaces 2018, 10, 33105–33111. [Google Scholar] [CrossRef]
- Promsawat, N.; Promsawat, M.; Janphuang, P.; Luo, Z.; Beeby, S.; Rojviriya, C.; Pakawanit, P.; Pojprapai, S. CNTs-added PMNT/PDMS flexible piezoelectric nanocomposite for energy harvesting application. Integr. Ferroelectr. 2018, 187, 70–79. [Google Scholar] [CrossRef]
- Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Jrossetti, G.A.R.; Rödel, J. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Appl. Phys. Rev. 2017, 4, 041305. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.W.; Rappe, A.M. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2016, 2, 16087. [Google Scholar] [CrossRef] [Green Version]
- Feuersanger, A.E.; Hagenlocher, A.K.; Solomon, A.L. Preparation and Properties of Thin Barium Titanate Films. J. Electrochem. Soc. 1964, 111, 1387. [Google Scholar] [CrossRef]
- Rose, T.L.; Kelliher, E.M.; Scoville, A.N.; Stone, S.E. Characterization of rf-sputtered BaTiO3 thin films using a liquid electrolyte for the top contact. J. Appl. Phys. 1998, 55, 3706. [Google Scholar] [CrossRef]
- Shintani, Y.; Tada, O. Preparation of Thin BaTiO3 Films by dc Diode Sputtering. J. Appl. Phys. 2003, 41, 2376. [Google Scholar] [CrossRef]
- Ishiwara, H.; Okuyama, M.; Arimoto, Y. Ferroelectric Random Access Memories: Fundamentals and Applications, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Slater, J.C. Theory of the Transition in KH2PO4. Ferroelectrics 1987, 71, 25–42. [Google Scholar] [CrossRef]
- Bogdanov, A.; Mysovsky, A.; Pickard, C.; Kimmel, A.V. Multiphase modelling of Pb(Zr 1-x Ti x )O3 structure. Ferroelectrics 2017, 520, 1–9. [Google Scholar] [CrossRef]
- Shen, D.; Park, J.-H.; Ajitsaria, J.; Choe, S.-Y.; Wikle, H.; Kim, D.-J. The design, fabrication and evaluation of a MEMS PZT cantilever with an integrated Si proof mass for vibration energy harvesting. J. Micromech. Microeng. 2008, 18, 055017. [Google Scholar] [CrossRef]
- Cui, X.; Ni, X.; Zhang, Y. Theoretical study of output of piezoelectric nanogenerator based on composite of PZT nanowires and polymers. J. Alloys Compd. 2016, 675, 306–310. [Google Scholar] [CrossRef]
- Liu, H.; Lin, X.; Zhang, S.; Huan, Y.; Huang, S.; Cheng, X. Enhanced performance of piezoelectric composite nanogenerator based on gradient porous PZT ceramic structure for energy harvesting. J. Mater. Chem. A 2020, 8, 19631–19640. [Google Scholar] [CrossRef]
- Liu, Y.; Ji, Y.; Yang, Y. Growth, Properties and Applications of Bi0.5Na0.5TiO3 Ferroelectric Nanomaterials. Nanomaterials 2021, 11, 1724. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Luo, X.; Han, L.; Zhang, Z.; Zhang, R.; Olin, H.; Yang, Y. Structure, Performance, and Application of BiFeO3 Nanomaterials. Nano Micro Lett. 2020, 12, 81. [Google Scholar] [CrossRef] [Green Version]
- Kirillov, V.V.; Isupov, V.A. Relaxation polarization of PbMg 1/3Nb2/3O3(PMN)-A ferroelectric with a diffused phase transition. Ferroelectrics 1973, 5, 3–9. [Google Scholar] [CrossRef]
- You, Y.F.; Xu, C.; Wang, J.Z.; Wang, J.P. Preparation of PST Ferroelectric Thin Films by Sol-Gel Process. Adv. Mater. Res. 2013, 734–737, 2328–2331. [Google Scholar] [CrossRef]
- Inbar, I.; Cohen, R.E. Origin of ferroelectricity in LiNbO3 and LiTaO3. Ferroelectrics 1997, 194, 83–95. [Google Scholar] [CrossRef]
- Kiraci, A.; Yurtseven, H. Order–disorder transition in the ferroelectric LiTaO3. Ferroelectrics 2019, 551, 235–244. [Google Scholar] [CrossRef]
- Samuelsen, E.J.; Grande, A.P. The ferroelectric phase transition in LiTaO3 studied by neutron scattering. Eur. Phys. J. B 1976, 24, 207–210. [Google Scholar] [CrossRef]
- Ji, Y.; Liu, Y.; Yang, Y. Multieffect Coupled Nanogenerators. Research 2020, 2020, 1–24. [Google Scholar] [CrossRef]
- Wang, J.L.; Meng, X.J.; Chu, J.H. New Properties and Applications of Polyvinylidene-Based Ferroelectric Polymer. In Ferroelectric Materials—Synthesis and Characterization; InTech Open: Rijeka, Croatia, 2015. [Google Scholar] [CrossRef]
- Chung, T.C.M.; Petchsuk, A. Polymers, Ferroelectric. In Encyclopedia of Physical Science and Technology; Academic Press: Cambridge, MA, USA, 2003; pp. 659–674. [Google Scholar] [CrossRef]
- Levanyuk, A.P.; Sannikov, D.G. Improper ferroelectrics. Sov. Phys. Uspekhi 1974, 17, 199–214. [Google Scholar] [CrossRef]
- Li, W.; Tang, G.; Zhang, G.; Jafri, H.M.; Zhou, J.; Liu, D.; Liu, Y.; Wang, J.; Jin, K.; Hu, Y.; et al. Improper molecular ferroelectrics with simultaneous ultrahigh pyroelectricity and figures of merit. Sci. Adv. 2021, 7, eabe3068. [Google Scholar] [CrossRef] [PubMed]
- Hao, X.; Zhai, J.; Yao, X. Improved Energy Storage Performance and Fatigue Endurance of Sr-Doped PbZrO3 Antiferroelectric Thin Films. J. Am. Ceram. Soc. 2009, 92, 1133–1135. [Google Scholar] [CrossRef]
- Park, M.H.; Kim, H.J.; Kim, Y.J.; Moon, T.; Kim, K.D.; Hwang, C.S. Thin HfxZr1-xO2Films: A New Lead-Free System for Electrostatic Supercapacitors with Large Energy Storage Density and Robust Thermal Stability. Adv. Energy Mater. 2014, 4, 1400610. [Google Scholar] [CrossRef]
- Lukasiewicz, T.; Swirkowicz, M.; Dec, J.; Hofman, W.; Szyrski, W. Strontium–barium niobate single crystals, growth and ferroelectric properties. J. Cryst. Growth 2007, 310, 1464–1469. [Google Scholar] [CrossRef]
- Jing-Ya, S.; Yang, Y.; Ke, Z.; Yu-Long, L.; Siu, G.G.; Xu, Z.K. Polarized Micro-Raman Study of the Temperature-Induced Phase Transition In 0.67 Pb (Mg1/3 Nb2/3) O3-0.33PbTiO3. Chin. Phys. Lett. 2008, 25, 290–393. [Google Scholar] [CrossRef]
- Hu, X.; Yi, K.; Liu, J.; Chu, B. High Energy Density Dielectrics Based on PVDF-Based Polymers. Energy Technol. 2018, 6, 849–864. [Google Scholar] [CrossRef]
- Zhu, H.; Pruvost, S.; Cottinet, P.J.; Guyomar, D. Energy harvesting by nonlinear capacitance variation for a relaxor ferroelectric poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer. Appl. Phys. Lett. 2011, 98, 222901. [Google Scholar] [CrossRef]
- Ali, A.; Hassen, A.; Khang, N.C.; Kim, Y.S. Ferroelectric, and piezoelectric properties of BaTi1−xAlxO3, 0 ≤ x ≤ 0.015. AIP Adv. 2015, 5, 097125. [Google Scholar] [CrossRef]
- Saradhi, B.B.; Srinivas, K.; Prasad, G.; Suryanarayana, S.; Bhimasankaram, T. Impedance spectroscopic studies in ferroelectric (Na1/2Bi1/2)TiO3. Mater. Sci. Eng. B 2003, 98, 10–16. [Google Scholar] [CrossRef]
- Ji, S.H.; Cho, J.H.; Jeong, Y.H.; Paik, J.-H.; Yun, J.D.; Yun, J.S. Flexible lead-free piezoelectric nanofiber composites based on BNT-ST and PVDF for frequency sensor applications. Sens. Actuators A Phys. 2016, 247, 316–322. [Google Scholar] [CrossRef]
- Achuthan, A.; Sun, C.T. Domain switching in ferroelectric ceramic materials under combined loads. J. Appl. Phys. 2005, 97, 114103. [Google Scholar] [CrossRef]
- Kao, K.C. Ferroelectrics, Piezoelectrics, and Pyroelectrics. In Dielectric Phenomena in Solids; Elsevier: San Diego, CA, USA, 2004; pp. 213–282. [Google Scholar] [CrossRef]
- Huibregtse, E.J.; Young, D.R. Triple Hysteresis Loops and the Free-Energy Function in the Vicinity of the 5 °C Transition in BaTiO3. Phys. Rev. 1956, 103, 1705–1711. [Google Scholar] [CrossRef]
- Merz, W.J. Double Hysteresis Loop of BaTiO3 at the Curie Point. Phys. Rev. 1953, 91, 513–517. [Google Scholar] [CrossRef]
- Borderon, C.; Brunier, A.E.; Nadaud, K.; Renoud, R.; Alexe, M.; Gundel, H.W. Domain wall motion in Pb(Zr0.20Ti0.80)O3 epitaxial thin films. Sci. Rep. 2017, 7, 3444. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Trolier-McKinstry, S.; Ren, W.; Xu, B.; Xie, Z.-L.; Hemker, K.J. Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films. J. Appl. Phys. 2001, 89, 1336–1348. [Google Scholar] [CrossRef]
- Bassiri-Gharb, N.; Fujii, I.; Hong, E.; Trolier-McKinstry, S.; Taylor, D.V.; Damjanovic, D. Domain wall contributions to the properties of piezoelectric thin films. J. Electroceramics 2007, 19, 49–67. [Google Scholar] [CrossRef]
- Fancher, C.; Brewer, S.; Chung, C.; Röhrig, S.; Rojac, T.; Esteves, G.; Deluca, M.; Bassiri-Gharb, N.; Jones, J. The contribution of 180° domain wall motion to dielectric properties quantified from in situ X-ray diffraction. Acta Mater. 2016, 126, 36–43. [Google Scholar] [CrossRef]
- Huan, Y.; Wang, X.; Fang, J.; Li, L. Grain size effect on piezoelectric and ferroelectric properties of BaTiO3 ceramics. J. Eur. Ceram. Soc. 2014, 34, 1445–1448. [Google Scholar] [CrossRef]
- Seidel, J.; Martin, L.W.; He, Q.; Zhan, Q.; Chu, Y.-H.; Rother, A.; Hawkridge, M.E.; Maksymovych, P.; Yu, P.; Gajek, M.; et al. Conduction in domain walls in oxide ferroelectrics. Nat. Mater. 2009, 8, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Ghara, S.; Geirhos, K.; Kuerten, L.; Lunkenheimer, P.; Tsurkan, V.; Fiebig, M.; Kézsmárki, I. Giant conductivity of mobile non-oxide domain walls. Nat. Commun. 2021, 12, 3975. [Google Scholar] [CrossRef]
- Werner, C.S.; Herr, S.J.; Buse, K.; Sturman, B.; Soergel, E.; Razzaghi, C.; Breunig, I. Large and accessible conductivity of charged domain walls in lithium niobate. Sci. Rep. 2017, 7, 9862. [Google Scholar] [CrossRef]
- Mason, W.P. Piezoelectricity, its history and applications. J. Acoust. Soc. Am. 1981, 70, 1561–1566. [Google Scholar] [CrossRef]
- Li, H.; Bowen, C.R.; Yang, Y. Scavenging Energy Sources Using Ferroelectric Materials. Adv. Funct. Mater. 2021, 31, 2100905. [Google Scholar] [CrossRef]
- Yang, W.; Li, P.; Li, F.; Liu, X.; Shen, B.; Zhai, J. Enhanced piezoelectric performance and thermal stability of alkali niobate-based ceramics. Ceram. Int. 2019, 45, 2275–2280. [Google Scholar] [CrossRef]
- Pandey, R.; Narayan, B.; Khatua, D.K.; Tyagi, S.; Mostaed, A.; Abebe, M.; Sathe, V.; Reaney, I.M.; Ranjan, R. High electromechanical response in the non morphotropic phase boundary piezoelectric system PbTiO3−Bi(Zr1/2Ni1/2)O3. Phys. Rev. B 2018, 97, 224109. [Google Scholar] [CrossRef]
- Ge, W.; Li, J.; Viehland, D.; Chang, Y.; Messing, G.L. Electric-field-dependent phase volume fractions and enhanced piezoelectricity near the polymorphic phase boundary of (K0.5Na0.5)1−xLixNbO3textured ceramics. Phys. Rev. B 2011, 83, 224110. [Google Scholar] [CrossRef] [Green Version]
- Pan, M.; Yuan, C.; Liang, X.; Zou, J.; Zhang, Y.; Bowen, C. Triboelectric and Piezoelectric Nanogenerators for Future Soft Robots and Machines. iScience 2020, 23, 101682. [Google Scholar] [CrossRef]
- Guo, Y.; Suzuki, K.; Nishizawa, K.; Miki, T.; Kato, K. Dielectric and piezoelectric properties of highly (100)-oriented BaTiO3 thin film grown on a Pt/TiOx/SiO2/Si substrate using LaNiO3 as a buffer layer. J. Cryst. Growth 2005, 284, 190–196. [Google Scholar] [CrossRef]
- Du, H.; Li, Z.; Tang, F.; Qu, S.; Pei, Z.; Zhou, W. Preparation and piezoelectric properties of (K0.5Na0.5)NbO3 lead-free piezoelectric ceramics with pressure-less sintering. Mater. Sci. Eng. B 2006, 131, 83–87. [Google Scholar] [CrossRef]
- Matsubara, M.; Yamaguchi, T.; Kikuta, K.; Hirano, S.-I. Sinterability and Piezoelectric Properties of (K,Na)NbO3 Ceramics with Novel Sintering Aid. Jpn. J. Appl. Phys. 2004, 43, 7159–7163. [Google Scholar] [CrossRef]
- Chen, Z.-H.; Li, Z.-W.; Ding, J.-N.; Qiu, J.-H.; Yang, Y. Piezoelectric and ferroelectric properties of Ba0.9Ca0.1Ti0.9Sn0.1O3 lead-free ceramics with La2O3 addition. J. Alloys Compd. 2017, 704, 193–196. [Google Scholar] [CrossRef]
- Rana, S.M.S.; Rahman, M.T.; Salauddin, M.; Sharma, S.; Maharjan, P.; Bhatta, T.; Cho, H.; Park, C.; Park, J.Y. Electrospun PVDF-TrFE/MXene Nanofiber Mat-Based Triboelectric Nanogenerator for Smart Home Appliances. ACS Appl. Mater. Interfaces 2021, 13, 4955–4967. [Google Scholar] [CrossRef]
- Mistewicz, K.; Jesionek, M.; Nowak, M.; Kozioł, M. SbSeI pyroelectric nanogenerator for a low temperature waste heat recovery. Nano Energy 2019, 64, 103906. [Google Scholar] [CrossRef]
- Sidney, L.B. Pyroelectricity: From Ancient Curiosity to Modern Imaging Tool. Phys. Today 2005, 58, 31. Available online: http://www.physicstoday.org (accessed on 18 November 2021).
- Bowen, C.R.; Taylor, J.; LeBoulbar, E.; Zabek, D.; Chauhan, A.; Vaish, R. Pyroelectric materials and devices for energy harvesting applications. Energy Environ. Sci. 2014, 7, 3836–3856. [Google Scholar] [CrossRef] [Green Version]
- Erhart, J. Experiments to demonstrate piezoelectric and pyroelectric effects. Phys. Educ. 2013, 48, 438–447. [Google Scholar] [CrossRef]
- Li, X.; Lu, S.-G.; Chen, X.-Z.; Gu, H.; Qian, X.-S.; Zhang, Q.M. Pyroelectric and electrocaloric materials. J. Mater. Chem. C 2012, 1, 23–37. [Google Scholar] [CrossRef]
- Ploss, B.; Ploss, B.; Shin, F.; Chan, H.; Choy, C. Pyroelectric activity of ferroelectric PT/PVDF-TRFE. IEEE Trans. Dielectr. Electr. Insul. 2000, 7, 517–522. [Google Scholar] [CrossRef]
- Meirzadeh, E.; Azuri, I.; Qi, Y.; Ehre, D.; Rappe, A.M.; Lahav, M.; Kronik, L.; Lubomirsky, I. Origin and structure of polar domains in doped molecular crystals. Nat. Commun. 2016, 7, 13351. [Google Scholar] [CrossRef] [Green Version]
- Leng, Q.; Chen, L.; Guo, H.; Liu, J.; Liu, G.; Hu, C.; Xi, Y. Harvesting heat energy from hot/cold water with a pyroelectric generator. J. Mater. Chem. A 2014, 2, 11940–11947. [Google Scholar] [CrossRef]
- Song, K.; Ma, N.; Mishra, Y.; Adelung, R.; Yang, Y. Achieving Light-Induced Ultrahigh Pyroelectric Charge Density Toward Self-Powered UV Light Detection. Adv. Electron. Mater. 2018, 5, 1800413. [Google Scholar] [CrossRef] [Green Version]
- Fan, F.-R.; Tian, Z.-Q.; Wang, Z.L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334. [Google Scholar] [CrossRef]
- Wang, Z.L. Triboelectric nanogenerators as new energy technology and self-powered sensors—Principles, problems and perspectives. Faraday Discuss. 2014, 176, 447–458. [Google Scholar] [CrossRef]
- Song, Y.; Wang, N.; Hu, C.; Wang, Z.L.; Yang, Y. Soft triboelectric nanogenerators for mechanical energy scavenging and self-powered sensors. Nano Energy 2021, 84, 105919. [Google Scholar] [CrossRef]
- Wang, Z.L.; Lin, L.; Chen, J.; Niu, S.; Zi, Y. Triboelectric Nanogenerator: Vertical Contact-Separation Mode. In Triboelectric Nanogenerators; Springer: Cham, Switzerland, 2016; pp. 23–47. [Google Scholar] [CrossRef]
- Zhu, G.; Chen, J.; Liu, Y.; Bai, P.; Zhou, Y.S.; Jing, Q.; Pan, C.; Wang, Z.L. Linear-Grating Triboelectric Generator Based on Sliding Electrification. Nano Lett. 2013, 13, 2282–2289. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, H.; Chen, J.; Jing, Q.; Zhou, Y.S.; Wen, X.; Wang, Z.L. Single-Electrode-Based Sliding Triboelectric Nanogenerator for Self-Powered Displacement Vector Sensor System. ACS Nano 2013, 7, 7342–7351. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Xie, Y.; Niu, S.; Lin, L.; Wang, Z.L. Freestanding Triboelectric-Layer-Based Nanogenerators for Harvesting Energy from a Moving Object or Human Motion in Contact and Non-contact Modes. Adv. Mater. 2014, 26, 2818–2824. [Google Scholar] [CrossRef]
- Wang, J.; Wu, C.; Dai, Y.; Zhao, Z.; Wang, A.; Zhang, T.; Wang, Z.L. Achieving ultrahigh triboelectric charge density for efficient energy harvesting. Nat. Commun. 2017, 8, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eom, K.; Shin, Y.-E.; Kim, J.-K.; Joo, S.H.; Kim, K.; Kwak, S.K.; Ko, H.; Jin, J.; Kang, S.J. Tailored Poly(vinylidene fluoride-co-trifluoroethylene) Crystal Orientation for a Triboelectric Nanogenerator through Epitaxial Growth on a Chitin Nanofiber Film. Nano Lett. 2020, 20, 6651–6659. [Google Scholar] [CrossRef]
- Huang, L.; Wei, M.; Gui, C.; Jia, L. Ferroelectric photovoltaic effect and resistive switching behavior modulated by ferroelectric/electrode interface coupling. J. Mater. Sci. Mater. Electron. 2020, 31, 20667–20687. [Google Scholar] [CrossRef]
- Fridkin, V.M. Bulk photovoltaic effect in noncentrosymmetric crystals. Crystallogr. Rep. 2001, 46, 654–658. [Google Scholar] [CrossRef]
- Ogden, T.R.; Gookin, D.M. Bulk photovoltaic effect in polyvinylidene fluoride. Appl. Phys. Lett. 1984, 45, 995. [Google Scholar] [CrossRef]
- Fridkin, V.M. Ferroelectricity and Giant Bulk Photovoltaic Effect in BaTiO3Films at the Nanoscale. Ferroelectrics 2015, 484, 1–13. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, K.Y.; Gupta, M.K.; Kim, T.Y.; Lee, D.-Y.; Oh, J.; Ryu, C.; Yoo, W.J.; Kang, C.-Y.; Yoon, S.-J.; et al. Highly Stretchable Piezoelectric-Pyroelectric Hybrid Nanogenerator. Adv. Mater. 2013, 26, 765–769. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Zhang, K.; Wang, Z.L.; Yang, Y. Piezo–pyro–photoelectric effects induced coupling enhancement of charge quantity in BaTiO3 materials for simultaneously scavenging light and vibration energies. Energy Environ. Sci. 2019, 12, 1231–1240. [Google Scholar] [CrossRef]
- Wankhade, S.H.; Tiwari, S.; Gaur, A.; Maiti, P. PVDF-PZT nanohhybrid based nanogenerator for energy harvesting applications. Energy Rep. 2020, 6, 358–364. [Google Scholar] [CrossRef]
- Zhu, J.; Qian, J.; Hou, X.; He, J.; Niu, X.; Geng, W.; Mu, J.; Zhang, W.; Chou, X. High-performance stretchable PZT particles/Cu@Ag branch nanofibers composite piezoelectric nanogenerator for self-powered body motion monitoring. Smart Mater. Struct. 2019, 28, 095014. [Google Scholar] [CrossRef]
- Vivekananthan, V.; Chandrasekhar, A.; Alluri, N.R.; Purusothaman, Y.; Kim, W.J.; Kang, C.-N.; Kim, S.-J. A flexible piezoelectric composite nanogenerator based on doping enhanced lead-free nanoparticles. Mater. Lett. 2019, 249, 73–76. [Google Scholar] [CrossRef]
- Ganesh, R.S.; Sharma, S.; Abinnas, N.; Durgadevi, E.; Raji, P.; Ponnusamy, S.; Muthamizhchelvan, C.; Hayakawa, Y.; Kim, D.Y. Fabrication of the flexible nanogenerator from BTO nanopowders on graphene coated PMMA substrates by sol-gel method. Mater. Chem. Phys. 2017, 192, 274–281. [Google Scholar] [CrossRef]
- Park, K.-I.; Xu, S.; Liu, Y.; Hwang, G.-T.; Kang, S.-J.L.; Wang, Z.L.; Lee, K.J. Piezoelectric BaTiO3 Thin Film Nanogenerator on Plastic Substrates. Nano Lett. 2010, 10, 4939–4943. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Cai, W.; Yeh, Y.-W.; Xu, S.; Yao, N. Energy scavenging based on a single-crystal PMN-PT nanobelt. Sci. Rep. 2016, 6, 22513. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhang, Y.; Zhang, L.; Ding, F.; Schmidt, O.G. Scalable single crystalline PMN-PT nanobelts sculpted from bulk for energy harvesting. Nano Energy 2016, 31, 239–246. [Google Scholar] [CrossRef]
- Li, C.; Luo, W.; Liu, X.; Xu, D.; He, K. PMN-PT/PVDF Nanocomposite for High Output Nanogenerator Applications. Nanomaterials 2016, 6, 67. [Google Scholar] [CrossRef] [Green Version]
- Moorthy, B.; Baek, C.; Wang, J.E.; Jeong, C.K.; Moon, S.; Park, K.-I.; Kim, D.K. Piezoelectric energy harvesting from a PMN–PT single nanowire. RSC Adv. 2016, 7, 260–265. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.; Zhou, X.; Zhou, K.; Wu, M.; Zhang, D. Synthesis of Na0.5Bi0.5TiO3 whiskers and their nanoscale piezoelectricity. Ceram. Int. 2017, 43, 11274–11280. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Wang, G.; Li, Y.; Zhang, S.; Wang, D.; Sun, H. Enhanced mechanical energy harvesting capability in sodium bismuth titanate based lead-free piezoelectric. J. Alloys Compd. 2020, 825, 154020. [Google Scholar] [CrossRef]
- Zhou, X.; Wu, Z.; Jiang, C.; Luo, H.; Yan, Z.; Zhang, D. Molten salt synthesis and characterization of lead-free (1-x)Na0.5Bi0.5TiO3-xSrTiO3 (x = 0, 0.10, 0.26) whiskers. Ceram. Int. 2018, 44, 9174–9180. [Google Scholar] [CrossRef]
- Zhou, D.; Zhou, Y.; Tian, Y.; Tu, Y.; Zheng, G.; Gu, H. Structure and Piezoelectric Properties of Lead-Free Na0.5Bi0.5TiO3 Nanofibers Synthesized by Electrospinning. J. Mater. Sci. Technol. 2015, 31, 1181–1185. [Google Scholar] [CrossRef]
- Liu, B.; Lu, B.; Chen, X.; Wu, X.; Shi, S.; Xu, L.; Liu, Y.; Wang, F.; Zhao, X.; Shi, W. A high-performance flexible piezoelectric energy harvester based on lead-free (Na0.5Bi0.5)TiO3–BaTiO3 piezoelectric nanofibers. J. Mater. Chem. A 2017, 5, 23634–23640. [Google Scholar] [CrossRef]
- Xia, M.; Luo, C.; Su, X.; Li, Y.; Li, P.; Hu, J.; Li, G.; Jiang, H.; Zhang, W. KNN/PDMS/C-based lead-free piezoelectric composite film for flexible nanogenerator. J. Mater. Sci. Mater. Electron. 2019, 30, 7558–7566. [Google Scholar] [CrossRef]
- Bairagi, S.; Ali, S.W. Poly (vinylidine fluoride) (PVDF)/Potassium Sodium Niobate (KNN) nanorods based flexible nanocomposite film: Influence of KNN concentration in the performance of nanogenerator. Org. Electron. 2020, 78, 105547. [Google Scholar] [CrossRef]
- Azimi, S.; Golabchi, A.; Nekookar, A.; Rabbani, S.; Amiri, M.H.; Asadi, K.; Abolhasani, M.M. Self-powered cardiac pacemaker by piezoelectric polymer nanogenerator implant. Nano Energy 2021, 83, 105781. [Google Scholar] [CrossRef]
- Hu, P.; Yan, L.; Zhao, C.; Zhang, Y.; Niu, J. Double-layer structured PVDF nanocomposite film designed for flexible nanogenerator exhibiting enhanced piezoelectric output and mechanical property. Compos. Sci. Technol. 2018, 168, 327–335. [Google Scholar] [CrossRef]
- Yan, J.; Liu, M.; Jeong, Y.G.; Kang, W.; Li, L.; Zhao, Y.; Deng, N.; Cheng, B.; Yang, G. Performance enhancements in poly(vinylidene fluoride)-based piezoelectric nanogenerators for efficient energy harvesting. Nano Energy 2018, 56, 662–692. [Google Scholar] [CrossRef]
- Li, R.; Zhou, J.; Liu, H.; Pei, J. Effect of Polymer Matrix on the Structure and Electric Properties of Piezoelectric Lead Zirconate titanate/Polymer Composites. Materials 2017, 10, 945. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.N.; Wang, X.H.; O’Brien, S.; Lombardi, J.; Li, L.T. Flexible BaTiO3/PVDF gradated multilayer nanocomposite film with enhanced dielectric strength and high energy density. J. Mater. Chem. C 2015, 3, 9740–9747. [Google Scholar] [CrossRef]
- Yaqoob, U.; Uddin, A.I.; Chung, G.-S. A novel tri-layer flexible piezoelectric nanogenerator based on surface- modified graphene and PVDF-BaTiO3 nanocomposites. Appl. Surf. Sci. 2017, 405, 420–426. [Google Scholar] [CrossRef]
- Ren, X.; Fan, H.; Zhao, Y.; Liu, Z. Flexible Lead-Free BiFeO3/PDMS-Based Nanogenerator as Piezoelectric Energy Harvester. ACS Appl. Mater. Interfaces 2016, 8, 26190–26197. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.B.; Han, J.K.; Noothongkaew, S.; Kim, S.K.; Song, W.; Myung, S.; Lee, S.S.; Lim, J.; Bu, S.D.; An, K.-S. Toward Arbitrary-Direction Energy Harvesting through Flexible Piezoelectric Nanogenerators Using Perovskite PbTiO3Nanotube Arrays. Adv. Mater. 2016, 29, 1604500. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Jeong, Y.G. High Performance Flexible Piezoelectric Nanogenerators based on BaTiO3 Nanofibers in Different Alignment Modes. ACS Appl. Mater. Interfaces 2016, 8, 15700–15709. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.H.; Lee, M.; Hong, J.-I.; Ding, Y.; Chen, C.-Y.; Chou, L.-J.; Wang, Z.L. Lead-Free NaNbO3 Nanowires for a High Output Piezoelectric Nanogenerator. ACS Nano 2011, 5, 10041–10046. [Google Scholar] [CrossRef]
- Isakov, D.; Gomes, E.D.M.; Almeida, B.; Kholkin, A.; Zelenovskiy, P.; Neradovskiy, M.; Shur, V. Energy harvesting from nanofibers of hybrid organic ferroelectric dabcoHReO4. Appl. Phys. Lett. 2014, 104, 32907. [Google Scholar] [CrossRef]
- Zelenovskii, P.S.; Romanyuk, K.; Liberato, M.S.; Brandão, P.; Ferreira, F.F.; Kopyl, S.; Mafra, L.M.; Alves, W.A.; Kholkin, A.L. 2D Layered Dipeptide Crystals for Piezoelectric Applications. Adv. Funct. Mater. 2021, 31, 2102524. [Google Scholar] [CrossRef]
- Nguyen, V.; Zhu, R.; Jenkins, K.; Yang, R. Self-assembly of diphenylalanine peptide with controlled polarization for power generation. Nat. Commun. 2016, 7, 13566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-H.; Heo, K.; Schulz-Schönhagen, K.; Desai, M.S.; Jin, H.-E.; Lee, S.-W. Diphenylalanine Peptide Nanotube Energy Harvesters. ACS Nano 2018, 12, 8138–8144. [Google Scholar] [CrossRef]
- Huan, Y.; Zhang, X.; Song, J.; Zhao, Y.; Wei, T.; Zhang, G.; Wang, X. High-performance piezoelectric composite nanogenerator based on Ag/(K,Na)NbO3 heterostructure. Nano Energy 2018, 50, 62–69. [Google Scholar] [CrossRef]
- Ding, R.; Zhang, X.; Chen, G.; Wang, H.; Kishor, R.; Xiao, J.; Gao, F.; Zeng, K.; Chen, X.; Sun, X.W.; et al. High-performance piezoelectric nanogenerators composed of formamidinium lead halide perovskite nanoparticles and poly(vinylidene fluoride). Nano Energy 2017, 37, 126–135. [Google Scholar] [CrossRef]
- Zhai, W.; Zhu, L.; Berbille, A.; Wang, Z.L. Flexible and wearable piezoelectric nanogenerators based on P(VDF-TrFE)/SnS nanocomposite micropillar array. J. Appl. Phys. 2021, 129, 095501. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Y.; Li, Y.; Wang, Z.; Wang, W.; An, Q.; Tong, W. Piezoelectric Nanogenerators based on Graphene Oxide/PVDF Electrospun Nanofiber with Enhanced Performances by In-Situ Reduction. Mater. Today Commun. 2020, 26, 101629. [Google Scholar] [CrossRef]
- Guan, X.; Xu, B.; Gong, J. Hierarchically architected polydopamine modified BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric nanogenerators and self-powered sensors. Nano Energy 2020, 70, 104516. [Google Scholar] [CrossRef]
- Zhai, W.; Lai, Q.; Chen, L.; Zhu, L.; Wang, Z.L. Flexible Piezoelectric Nanogenerators Based on P(VDF–TrFE)/GeSe Nanocomposite Films. ACS Appl. Electron. Mater. 2020, 2, 2369–2374. [Google Scholar] [CrossRef]
- Liu, J.; Yang, B.; Lu, L.; Wang, X.; Li, X.; Chen, X.; Liu, J. Flexible and lead-free piezoelectric nanogenerator as self-powered sensor based on electrospinning BZT-BCT/P(VDF-TrFE) nanofibers. Sens. Actuators A Phys. 2020, 303, 111796. [Google Scholar] [CrossRef]
- Petrovic, M.V.; Cordero, F.; Mercadelli, E.; Brunengo, E.; Ilic, N.; Galassi, C.; Despotovic, Z.; Bobic, J.; Dzunuzovic, A.; Stagnaro, P.; et al. Flexible lead-free NBT-BT/PVDF composite films by hot pressing for low-energy harvesting and storage. J. Alloy. Compd. 2021, 884, 161071. [Google Scholar] [CrossRef]
- Yu, D.; Zheng, Z.; Liu, J.; Xiao, H.; Huangfu, G.; Guo, Y. Superflexible and Lead-Free Piezoelectric Nanogenerator as a Highly Sensitive Self-Powered Sensor for Human Motion Monitoring. Nano Micro Lett. 2021, 13, 117. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.H.; Ryu, H.; Lee, J.-H.; Khan, U.; Kim, H.; Kwak, S.S.; Kim, S.-W. High-Performance Piezoelectric, Pyroelectric, and Triboelectric Nanogenerators Based on P(VDF-TrFE) with Controlled Crystallinity and Dipole Alignment. Adv. Funct. Mater. 2017, 27, 1700702. [Google Scholar] [CrossRef]
- Lee, J.-H.; Ryu, H.; Kim, T.-Y.; Kwak, S.S.; Yoon, H.-J.; Seung, W.; Kim, S.-W. Thermally Induced Strain-Coupled Highly Stretchable and Sensitive Pyroelectric Nanogenerators. Adv. Energy Mater. 2015, 5, 1500704. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Xie, M.; Bowen, C.R.; Davies, P.R.; Morgan, D.J.; Mandal, D. A hybrid strain and thermal energy harvester based on an infra-red sensitive Er3+ modified poly(vinylidene fluoride) ferroelectret structure. Sci. Rep. 2017, 7, 16703. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Jung, J.H.; Kil Yun, B.; Zhang, F.; Pradel, K.C.; Guo, W.; Wang, Z.L. Flexible Pyroelectric Nanogenerators using a Composite Structure of Lead-Free KNbO3Nanowires. Adv. Mater. 2012, 24, 5357–5362. [Google Scholar] [CrossRef]
- Gao, F.; Li, W.; Wang, X.; Fang, X.; Ma, M. A self-sustaining pyroelectric nanogenerator driven by water vapor. Nano Energy 2016, 22, 19–26. [Google Scholar] [CrossRef]
- Ko, Y.J.; Park, Y.K.; Kil Yun, B.; Lee, M.; Jung, J.H. High pyroelectric power generation of 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 single crystal. Curr. Appl. Phys. 2014, 14, 1486–1491. [Google Scholar] [CrossRef]
- Shen, M.; Hu, L.; Li, L.; Zhang, C.; Xiao, W.; Zhang, Y.; Zhang, Q.; Zhang, G.; Jiang, S.; Chen, Y. High pyroelectric response over a broad temperature range in NBT-BZT: SiO2 composites for energy harvesting. J. Eur. Ceram. Soc. 2021, 41, 3379–3386. [Google Scholar] [CrossRef]
- Shen, M.; Qin, Y.; Zhang, Y.; Marwat, M.A.; Zhang, C.; Wang, W.; Li, M.; Zhang, H.; Zhang, G.; Jiang, S. Enhanced pyroelectric properties of lead-free BNT-BA-KNN ceramics for thermal energy harvesting. J. Am. Ceram. Soc. 2018, 102, 3990–3999. [Google Scholar] [CrossRef]
- Roy, K.; Ghosh, S.K.; Sultana, A.; Garain, S.; Xie, M.; Bowen, C.R.; Henkel, K.; Schmeiβer, D.; Mandal, D. A Self-Powered Wearable Pressure Sensor and Pyroelectric Breathing Sensor Based on GO Interfaced PVDF Nanofibers. ACS Appl. Nano Mater. 2019, 2, 2013–2025. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Bowen, C.; Li, M.-Y.; Ma, J.; Qiu, S.; Liu, H.; Jiang, S. Effect of Zr/Ti ratio on microstructure and electrical properties of pyroelectric ceramics for energy harvesting applications. J. Alloy. Compd. 2017, 710, 869–874. [Google Scholar] [CrossRef] [Green Version]
- Pandya, S.; Wilbur, J.; Kim, J.; Gao, R.; Dasgupta, A.; Dames, C.; Martin, L.W. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films. Nat. Mater. 2018, 17, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.; Shin, Y.-E.; Park, J.; Lee, Y.; Kim, M.; Kim, Y.-R.; Na, S.; Ghosh, S.K.; Ko, H. Ferroelectric Multilayer Nanocomposites with Polarization and Stress Concentration Structures for Enhanced Triboelectric Performances. ACS Nano 2020, 14, 7101–7110. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Li, Q.; He, W.; Li, J.; Xue, Q.; Xu, C.; Zhang, L.; Ren, T.; Dong, G.; Chan, H.L.W.; et al. A high performance triboelectric nanogenerator for self-powered non-volatile ferroelectric transistor memory. Nanoscale 2015, 7, 17306–17311. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.L.; Lee, W.; Hwang, S.K.; Joo, S.H.; Cho, S.M.; Song, G.; Cho, S.H.; Jeong, B.; Hwang, I.; Ahn, J.-H.; et al. Epitaxial Growth of Thin Ferroelectric Polymer Films on Graphene Layer for Fully Transparent and Flexible Nonvolatile Memory. Nano Lett. 2015, 16, 334–340. [Google Scholar] [CrossRef]
- Park, Y.J.; Kang, S.J.; Park, C.; Lotz, B.; Thierry, A.; Kim, K.J.; Huh, J. Molecular and Crystalline Microstructure of Ferroelectric Poly(vinylidene fluoride-co-trifluoroethylene) Ultrathin Films on Bare and Self-Assembled Monolayer-Modified Au Substrates. Macromolecules 2007, 41, 109–119. [Google Scholar] [CrossRef]
- Kang, S.J.; Bae, I.; Shin, Y.J.; Park, Y.J.; Huh, J.; Park, S.-M.; Kim, H.-C.; Park, C. Nonvolatile Polymer Memory with Nanoconfinement of Ferroelectric Crystals. Nano Lett. 2010, 11, 138–144. [Google Scholar] [CrossRef]
- Park, Y.J.; Kang, S.J.; Lotz, B.; Brinkmann, M.; Thierry, A.; Kim, K.J.; Park, C. Ordered Ferroelectric PVDF−TrFE Thin Films by High Throughput Epitaxy for Nonvolatile Polymer Memory. Macromolecules 2008, 41, 8648–8654. [Google Scholar] [CrossRef]
- Zhang, J.-H.; Zhang, Y.; Sun, N.; Li, Y.; Du, J.; Zhu, L.; Hao, X. Enhancing output performance of triboelectric nanogenerator via large polarization difference effect. Nano Energy 2021, 84, 105892. [Google Scholar] [CrossRef]
- Singh, H.H.; Khare, N. Improved performance of ferroelectric nanocomposite flexible film based triboelectric nanogenerator by controlling surface morphology, polarizability, and hydrophobicity. Energy 2019, 178, 765–771. [Google Scholar] [CrossRef]
- Kim, M.; Park, D.; Alam, M.; Lee, S.; Park, P.; Nah, J. Remarkable Output Power Density Enhancement of Triboelectric Nanogenerators via Polarized Ferroelectric Polymers and Bulk MoS2 Composites. ACS Nano 2019, 13, 4640–4646. [Google Scholar] [CrossRef]
- Lee, J.H.; Hinchet, R.; Kim, S.K.; Kim, S.; Kim, S.-W. Shape memory polymer-based self-healing triboelectric nanogenerator. Energy Environ. Sci. 2015, 8, 3605–3613. [Google Scholar] [CrossRef]
- Yu, Y.; Li, Z.; Wang, Y.; Gong, S.; Wang, X. Sequential Infiltration Synthesis of Doped Polymer Films with Tunable Electrical Properties for Efficient Triboelectric Nanogenerator Development. Adv. Mater. 2015, 27, 4938–4944. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.-B.; Bai, G.; Wong, M.-C.; Yang, Z.; Xu, W.; Hao, J. Magnetic-Assisted Noncontact Triboelectric Nanogenerator Converting Mechanical Energy into Electricity and Light Emissions. Adv. Mater. 2016, 28, 2744–2751. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, D.Y.; Kim, J.; Kim, J.H.; Kong, D.S.; Murillo, G.; Lee, G.; Park, J.Y.; Jung, J.H. Ferroelectric-Polymer-Enabled Contactless Electric Power Generation in Triboelectric Nanogenerators. Adv. Funct. Mater. 2019, 29, 1905816. [Google Scholar] [CrossRef]
- Park, I.W.; Choi, J.; Kim, K.Y.; Jeong, J.; Gwak, D.; Lee, Y.; Ahn, Y.H.; Choi, Y.J.; Hong, Y.J.; Chung, W.-J.; et al. Vertically aligned cyclo-phenylalanine peptide nanowire-based high-performance triboelectric energy generator. Nano Energy 2019, 57, 737–745. [Google Scholar] [CrossRef]
- Singh, H.H.; Kumar, D.; Khare, N. Tuning the performance of ferroelectric polymer-based triboelectric nanogenerator. Appl. Phys. Lett. 2021, 119, 53901. [Google Scholar] [CrossRef]
- Zheng, Z.; Yu, D.; Guo, Y. Dielectric Modulated Glass Fiber Fabric-Based Single Electrode Triboelectric Nanogenerator for Efficient Biomechanical Energy Harvesting. Adv. Funct. Mater. 2021, 31, 2102431. [Google Scholar] [CrossRef]
- Liu, L.; Yang, X.; Zhao, L.; Xu, W.; Wang, J.; Yang, Q.; Tang, Q. Nanowrinkle-patterned flexible woven triboelectric nanogenerator toward self-powered wearable electronics. Nano Energy 2020, 73, 104797. [Google Scholar] [CrossRef]
- Kim, Y.; Wu, X.; Lee, C.; Oh, J.H. Characterization of PI/PVDF-TrFE Composite Nanofiber-Based Triboelectric Nanogenerators Depending on the Type of the Electrospinning System. ACS Appl. Mater. Interfaces 2021, 13, 36967–36975. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, M. Band gap tuning and optical properties of BiFeO3 nanoparticles. Mater. Today Proc. 2020, 28, 168–171. [Google Scholar] [CrossRef]
- Qi, J.; Ma, N.; Ma, X.; Adelung, R.; Yang, Y. Enhanced Photocurrent in BiFeO3 Materials by Coupling Temperature and Thermo-Phototronic Effects for Self-Powered Ultraviolet Photodetector System. ACS Appl. Mater. Interfaces 2018, 10, 13712–13719. [Google Scholar] [CrossRef]
- Dhar, A.; Mansingh, A. Optical properties of reduced lithium niobate single crystals. J. Appl. Phys. 1990, 68, 5804. [Google Scholar] [CrossRef]
- Wiesendanger, E. Dielectric, mechanical and optical properties of orthorhombic KNbO3. Ferroelectrics 1973, 6, 263–281. [Google Scholar] [CrossRef]
- Grinberg, I.; West, D.V.; Torres, M.F.; Gou, G.; Stein, D.M.; Wu, L.; Chen, G.; Gallo, E.M.; Akbashev, A.R.; Davies, P.K.; et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 2013, 503, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Fridkin, V.M. Photoferroelectrics. Acta Cryst. 1980, 36, 1091–1092. [Google Scholar] [CrossRef] [Green Version]
- Fridkin, V.M. Review of recent work on the bulk photovoltaic effect in ferro and piezoelectrics. Ferroelectrics 1984, 53, 169–187. [Google Scholar] [CrossRef]
- Fridkin, V.M. Boltzmann principle violation and bulk photovoltaic effect in a crystal without symmetry center. Ferroelectrics 2016, 503, 15–18. [Google Scholar] [CrossRef]
- Spanier, J.; Fridkin, J.E.S.V.M.; Rappe, A.M.; Akbashev, A.R.; Polemi, A.; Qi, Y.; Gu, Z.; Young, S.M.; Hawley, C.J.; Imbrenda, J.E.S.Z.G.D.; et al. Power conversion efficiency exceeding the Shockley–Queisser limit in a ferroelectric insulator. Nat. Photonics 2016, 10, 611–616. [Google Scholar] [CrossRef]
- Bai, Y.; Vats, G.; Seidel, J.; Jantunen, H.; Juuti, J. Boosting Photovoltaic Output of Ferroelectric Ceramics by Optoelectric Control of Domains. Adv. Mater. 2018, 30, 1803821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Franchini, C.; Rondinelli, J.M. Ferroelectric Oxides with Strong Visible-Light Absorption from Charge Ordering. Chem. Mater. 2016, 29, 2445–2451. [Google Scholar] [CrossRef]
- Han, F.; Zhang, Y.; Yuan, C.; Liu, X.; Zhu, B.; Liu, F.; Xu, J.; Zhou, C.; Wang, J.; Rao, G. Photocurrent and dielectric/ferroelectric properties of KNbO3–BaFeO3-δ ferroelectric semiconductors. Ceram. Int. 2020, 46, 14567–14572. [Google Scholar] [CrossRef]
- Alkathy, M.S.; Lente, M.H.; Eiras, J. Bandgap narrowing of Ba0.92Na0.04Bi0.04TiO3 ferroelectric ceramics by transition metals doping for photovoltaic applications. Mater. Chem. Phys. 2020, 257, 123791. [Google Scholar] [CrossRef]
- Jiménez, R.; Ricote, J.; Bretos, I.; Riobóo, R.J.J.; Mompean, F.; Ruiz, A.; Xie, H.; Lira-Cantú, M.; Calzada, M.L. Stress-mediated solution deposition method to stabilize ferroelectric BiFe1-xCrxO3 perovskite thin films with narrow bandgaps. J. Eur. Ceram. Soc. 2021, 41, 3404–3415. [Google Scholar] [CrossRef]
- Chakrabartty, J.; Harnagea, C.; Celikin, M.; Rosei, F.; Nechache, R. Improved photovoltaic performance from inorganic perovskite oxide thin films with mixed crystal phases. Nat. Photonics 2018, 12, 271–276. [Google Scholar] [CrossRef]
- Jiang, C.-S.; Noufi, R.; Abushama, J.A.; Ramanathan, K.; Moutinho, H.R.; Pankow, J.; Al-Jassim, M.M. Local built-in potential on grain boundary of Cu(In,Ga)Se2 thin films. Appl. Phys. Lett. 2004, 84, 3477–3479. [Google Scholar] [CrossRef] [Green Version]
- Tian, M.; Li, Y.; Wang, G.; Hao, X. Large photocurrent density in polycrystalline hexagonal YMnO3 thin film induced by ferroelectric polarization and the positive driving effect of grain boundary. Sol. Energy Mater. Sol. Cells 2021, 224, 111009. [Google Scholar] [CrossRef]
- Tu, C.-S.; Chen, P.-Y.; Jou, Y.-S.; Chen, C.-S.; Chien, R.; Schmidt, V.H.; Haw, S.-C. Polarization-modulated photovoltaic conversion in polycrystalline bismuth ferrite. Acta Mater. 2019, 176, 1–10. [Google Scholar] [CrossRef]
- Mai, H.; Lu, T.; Li, Q.; Sun, Q.; Vu, K.; Chen, H.; Wang, G.; Humphrey, M.G.; Kremer, F.; Li, L.; et al. Photovoltaic Effect of a Ferroelectric-Luminescent Heterostructure under Infrared Light Illumination. ACS Appl. Mater. Interfaces 2018, 10, 29786–29794. [Google Scholar] [CrossRef]
- Pei, W.; Chen, J.; You, D.; Zhang, Q.; Li, M.; Lu, Y.; Fu, Z.; He, Y. Enhanced photovoltaic effect in Ca and Mn co-doped BiFeO3 epitaxial thin films. Appl. Surf. Sci. 2020, 530, 147194. [Google Scholar] [CrossRef]
- Hassan, A.K.; Ali, G.M. Thin film NiO/BaTiO3/ZnO heterojunction diode-based UVC photodetectors. Superlattices Microstruct. 2020, 147, 106690. [Google Scholar] [CrossRef]
- Yan, J.-M.; Wang, K.; Xu, Z.-X.; Ying, J.-S.; Chen, T.-W.; Yuan, G.-L.; Zhang, T.; Zheng, H.-W.; Chai, Y.; Zheng, R.-K. Large ferroelectric-polarization-modulated photovoltaic effects in bismuth layered multiferroic/semiconductor heterostructure devices. J. Mater. Chem. C 2021, 9, 3287–3294. [Google Scholar] [CrossRef]
- Guo, K.; Zhang, R.; Fu, Z.; Zhang, L.; Wang, X.; Deng, C. Regulation of Photovoltaic Response in ZSO-Based Multiferroic BFCO/BFCNT Heterojunction Photoelectrodes via Magnetization and Polarization. ACS Appl. Mater. Interfaces 2021, 13, 35657–35663. [Google Scholar] [CrossRef]
- Renuka, H.; Joshna, P.; Venkataraman, B.H.; Ramaswamy, K.; Kundu, S. Understanding the efficacy of electron and hole transport layers in realizing efficient chromium doped BiFeO3 ferroelectric photovoltaic devices. Sol. Energy 2020, 207, 767–776. [Google Scholar] [CrossRef]
- Zhang, J.; Xue, W.; Chen, X.-Y.; Hou, Z.-L. Sm doped BiFeO3 nanofibers for improved photovoltaic devices. Chin. J. Phys. 2020, 66, 301–306. [Google Scholar] [CrossRef]
- Zhao, K.; Ouyang, B.; Bowen, C.R.; Yang, Y. Enhanced photocurrent via ferro-pyro-phototronic effect in ferroelectric BaTiO3 materials for a self-powered flexible photodetector system. Nano Energy 2020, 77, 105152. [Google Scholar] [CrossRef]
- Zhao, K.; Ouyang, B.; Yang, Y. Enhancing Photocurrent of Radially Polarized Ferroelectric BaTiO3 Materials by Ferro-Pyro-Phototronic Effect. iScience 2018, 3, 208–216. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Su, H.; Li, H.; Xie, Z.; Zhang, Y.; Zhou, Y.; Yang, L.; Lu, H.; Yuan, G.; Zheng, H. Enhanced photovoltaic-pyroelectric coupled effect of BiFeO3/Au/ZnO heterostructures. Nano Energy 2021, 85, 105968. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Z.L.; Yang, Y. A One-Structure-Based Hybridized Nanogenerator for Scavenging Mechanical and Thermal Energies by Triboelectric-Piezoelectric-Pyroelectric Effects. Adv. Mater. 2016, 28, 2881–2887. [Google Scholar] [CrossRef]
- Song, K.; Zhao, R.; Wang, Z.L.; Yang, Y. Conjuncted Pyro-Piezoelectric Effect for Self-Powered Simultaneous Temperature and Pressure Sensing. Adv. Mater. 2019, 31, 1902831. [Google Scholar] [CrossRef]
- Singh, H.H.; Khare, N. Flexible ZnO-PVDF/PTFE based piezo-tribo hybrid nanogenerator. Nano Energy 2018, 51, 216–222. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, Y.; Yang, Y. Photovoltaic–Pyroelectric–Piezoelectric Coupled Effect Induced Electricity for Self-Powered Coupled Sensing. Adv. Electron. Mater. 2019, 5, 1900195. [Google Scholar] [CrossRef]
- Zhao, K.; Ouyang, B.; Bowen, C.R.; Wang, Z.L.; Yang, Y. One-structure-based multi-effects coupled nanogenerators for flexible and self-powered multi-functional coupled sensor systems. Nano Energy 2020, 71, 104632. [Google Scholar] [CrossRef]
- Shi, K.; Huang, X.; Sun, B.; Wu, Z.; He, J.; Jiang, P. Cellulose/BaTiO3 aerogel paper based flexible piezoelectric nanogenerators and the electric coupling with triboelectricity. Nano Energy 2018, 57, 450–458. [Google Scholar] [CrossRef]
- Ma, N.; Zhang, K.; Yang, Y. Photovoltaic–Pyroelectric Coupled Effect Induced Electricity for Self-Powered Photodetector System. Adv. Mater. 2017, 29, 1703694. [Google Scholar] [CrossRef]
- Qi, J.; Ma, N.; Yang, Y. Photovoltaic-Pyroelectric Coupled Effect Based Nanogenerators for Self-Powered Photodetector System. Adv. Mater. Interfaces 2017, 5, 1701189. [Google Scholar] [CrossRef]
- Zeng, W.; Tao, X.-M.; Chen, S.; Shang, S.; Chan, H.L.W.; Choy, S.H. Highly durable all-fiber nanogenerator for mechanical energy harvesting. Energy Environ. Sci. 2013, 6, 2631–2638. [Google Scholar] [CrossRef]
- Wang, B.; Liu, C.; Xiao, Y.; Zhong, J.; Li, W.; Cheng, Y.; Hu, B.; Huang, L.; Zhou, J. Ultrasensitive cellular fluorocarbon piezoelectret pressure sensor for self-powered human physiological monitoring. Nano Energy 2016, 32, 42–49. [Google Scholar] [CrossRef]
- Sahu, M.; Vivekananthan, V.; Hajra, S.; Khatua, D.K.; Kim, S.-J. Porosity modulated piezo-triboelectric hybridized nanogenerator for sensing small energy impacts. Appl. Mater. Today 2020, 22, 100900. [Google Scholar] [CrossRef]
- You, M.-H.; Wang, X.-X.; Yan, X.; Zhang, J.; Song, W.-Z.; Yu, M.; Fan, Z.-Y.; Ramakrishna, S.; Long, Y.-Z. A self-powered flexible hybrid piezoelectric–pyroelectric nanogenerator based on non-woven nanofiber membranes. J. Mater. Chem. A 2018, 6, 3500–3509. [Google Scholar] [CrossRef]
Material Name | Open-Circuit Voltage Voc | Short-Circuit Current Isc | Short-Circuit Current Density Jsc | Maximum Area Power Density | Maximum Power | Work Conditions | Reference |
---|---|---|---|---|---|---|---|
PVDF/SM-KNN (3%) | 21 V | 22 μA | 5.5 μA/cm2 | 115.5 μW/cm2 | - | 1.1 kPa pressure | [34] |
Ag/(K, Na)NbO3 | 240 V | 23 μA | - | - | 1.13 mW | 0.1 MPa mechanical stress | [176] |
FAPbBr3@PVDF | 30 V | - | 6.2 μA/cm2 | 27.4 μW/cm2 | - | 0.5 MPa mechanical stress | [177] |
BaTiO3/PDMS | 5.5 V | 350 nA | 350 nA/cm2 | - | - | 1 MPa mechanical stress | [23] |
PVDF-TrFE/SnS nanosheets | 17.28 V | - | 0.94 μA/cm2 | 10.69 μW/cm2 | - | 0.5 MPa pressure | [178] |
rGO/PVDF nanofiber mat | 16 V | 700 μA | - | - | 7.4 μW | Finger press | [179] |
BaTiO3@PVDF | 6 V | 1.5 μA | - | 8.7 mW/cm2 | - | Impact force of 700 N with frequency 1–3 Hz | [180] |
Pb0.67Zr0.33TiO3/ PDMS | 152 V | 17.5 μA | - | - | 1.1 mW | 100 N stress force | [75] |
P(VDF-TrFE)/GeSe nanosheets | 17.58 V | - | 1.14 μA/cm2 | 9.76 μW/cm2 | - | 0.5 MPa pressure | [181] |
0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3/ PVDF-TrFE | 13.01 V | - | - | - | 1.46 μW | Cyclic tapping of 6 N and 10 Hz | [182] |
0.94(Bi0.5Na0.5)TiO3-0.06BaTiO3 (NBT-BT)/PVDF | 9 V | 8–9 μA | - | - | 80 μW | 250 N impact force | [183] |
Ba(Ti0.88Sn0.12)O3-GFF/PVDF | 26.9 V | 597 nA | - | - | - | 5 N impact force | [184] |
Material Name | Output Characteristics | Pyroelectric Coefficient p | Operating Conditions ΔT, dT/dt | Maximum Power/Power Density | Energy Density | Reference |
---|---|---|---|---|---|---|
0.7Pb(Mg1/2Nb2/3)O3-PbTiO3 | Voc: 1.1 V Isc: 10 nA | 104 nC/cm2K; 300 K 235 nC/cm2K; 370 K | (300 to 370 K) 0.5 K/s | - | - | [190] |
0.94Na0.5Bi0.5TiO3-0.06BaZr0.2Ti0.8O3 (NBT-BZT): xSiO2 | Voc: 3.5 V Isc: 90 nA | 20 × 10−4 C/m2K | 25 °C to 50 °C | - | 110 μJ/cm3 | [191] |
(1-x)(0.98Bi0.5Na0.5TiO3-0.02BiAlO3)-x(Na0.5K0.5)NbO3 | Voc: 3.3 V Isc: 81.5 nA | 8.04 × 10−4 C/m2K | 25 °C to 50 °C and 3 °C/s | - | 23.32 μJ/cm3 | [192] |
PVDF | Voc:192 V Isc: 12 μA | 2.7 nC/cm2K | 60 °C to 80 °C | 14 μW | - | [129] |
PVDF/GO | Voc: 60 mV Isc: 45 pA | 27 nC/m2K | ΔT = 20 °C and 2.12 K/s | 1.2 nW/m2 | - | [193] |
PMnN-PMS-PZT (Zr/Ti:95/5) | Voc: 25.3 V | 5957 μC/m2K | 18 °C to 65 °C and 3.15 °C/s | 25.7 μW | - | [194] |
0.68PMN-0.32PTO | Isc: 90 nA | −550 μC/m2K | Temperature oscillations of 10 K | 526 W/cm3 | 1.06 μJ/cm3 | [195] |
Material Pair | TENG Mode | Short-Circuit Current Isc/Current Density Jsc | Open-Circuit Voltage Voc | Maximum Power/Power Density | Work Function | Work Conditions | Reference |
---|---|---|---|---|---|---|---|
BTO/FEP | CS-mode | 100 μA | 1000 V | 67 mW | - | 14 m/s wind energy | [40] |
ZnO-PVDF@PTFE | FL | 1.6 μA | 119 V | 10.6 μW/cm2 | 4.57 eV | [203] | |
Al-NR@PVDF-PI/(NBT-15ST(60))-Al | CS | 32.5 μA/cm2 | 1020 V | - | - | Instantaneous force of 50 N | [55] |
PVDF-NaNbO3 | CS | 3.98 μA | 181 V | 0.17 mW | 4.0 eV | [210] | |
PZT/GFF | SL | 59.05 mA/m2 | 1640 V | 10.8 W/m2 | - | 10 N, 4 Hz | [211] |
PDMS/PVDF | CS | 22 μA | 255 V | 832.05 mW/m2 | - | 0.5 Hz | [212] |
BFO-GFF/PDMS | CS | 3.67 μA/cm2 | 115.22 V | 151.42 μW/cm2 | - | 1 Hz | [57] |
BTO-PTFE | CS | 10.4 μA/cm2 | 45 V | - | - | 50 N, 2 Hz | [46] |
PVDF-TrFE/Mxene | CS | 140 mA/m2 | 270 V | 4.02 W/m2 | - | 7 N, 6 Hz | [121] |
PI/PVDF-TrFE | CS | 17.2 μA | 364 V | 2.56 W/m2 | - | 2 Hz | [213] |
Material | Short-Circuit Current Isc, Current Density Jsc | Open-Circuit Voltage Voc | Work Condition | Responsivity (R)/ Detectivity (D)/ Gain (G) | Output Power | PCE (%) | Eg (eV) | Reference |
---|---|---|---|---|---|---|---|---|
Bi0.98Ca0.02Fe0.95Mn0.05O3 (BCMFO) | 0.26 mA | −0.92 V | white light (280 mW/cm2) | - | - | 0.0075 | Eg = 2.41 eV 4.82 eV | [233] |
NiO/BaTiO3/ZnO | 2.2 × 10−2 A | 254 nm UVC, 5.57 mW 100 °C | R = 3.98 A/W D = 3 × 109 nHz1/2/W G = 19.4 | - | 1 | - | [234] | |
BaTiO3 nanoparticles | 393.1 nA | - | 405 nm, 131.0 mW/cm280–240 K | R = 1.46 × 10−6 A/W D = 1.59 × 107 jones G = 4.46 × 10−6 | 8.02 nW | - | = 5.3 eV | [43] |
CsPbBr3 nanowires | - | 3 V | 405 nm, 0.2 mW/cm2 | R = 4.4 × 103 A/WG = 1.3 × 104 | - | - | - | [39] |
K0.49Na0.49Ba0.02 (Nb0.99Ni0.01)O2.995 | 0.03 μA/cm2 | 0.11 V | 405 nm laser, 50 mW | - | 60 μW | 0.12 | - | [223] |
SbSeI nanowires | 0.36 pA 0.0074 μA/cm2 | 97 mV | 488 nm Ar laser, 127 mW/cm2 | - | 0.119 nW | - | Eg = 1.862 eV | [29] |
ZnO/Bi5FeTi3O15 | 2.2 mA/cm2 | 0.15 V | 405 nm, 200 mW/cm2 | - | 0.09 mW/cm2 | - | Eg = 3.08 eV = 4.86 eV | [235] |
Bi6Fe1.6Co0.2Ni0.2 Ti3O15/Bi2FeCrO6 | 10.3 mA/cm2 | 0.66 V | AM 1.5G illumination | - | - | 3.40 | Eg = 1.62 eV/1.74 eV | [236] |
NiO/BFCrO/WS2 | 1.80 mA/cm2 | 0.78 V | 1 sun illumination | - | - | 7.07 | - | [237] |
Sm:BiFeO3 | 0.58 nA/cm2 | 0.90 V | Xenon lamp (100 mW/cm2) | - | - | 1.65 | - | [238] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Minhas, J.Z.; Hasan, M.A.M.; Yang, Y. Ferroelectric Materials Based Coupled Nanogenerators. Nanoenergy Adv. 2021, 1, 131-180. https://doi.org/10.3390/nanoenergyadv1020007
Minhas JZ, Hasan MAM, Yang Y. Ferroelectric Materials Based Coupled Nanogenerators. Nanoenergy Advances. 2021; 1(2):131-180. https://doi.org/10.3390/nanoenergyadv1020007
Chicago/Turabian StyleMinhas, Jabir Zamir, Md Al Mahadi Hasan, and Ya Yang. 2021. "Ferroelectric Materials Based Coupled Nanogenerators" Nanoenergy Advances 1, no. 2: 131-180. https://doi.org/10.3390/nanoenergyadv1020007
APA StyleMinhas, J. Z., Hasan, M. A. M., & Yang, Y. (2021). Ferroelectric Materials Based Coupled Nanogenerators. Nanoenergy Advances, 1(2), 131-180. https://doi.org/10.3390/nanoenergyadv1020007