Efficient Recovery of Biologically Active Substances from Currant Pomace—Pre-Drying Effects on Supercritical CO2 Extracts
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Process Equipment
2.2.1. Supercritical CO2 Extraction Unit (Pilot Scale)
2.2.2. Freeze-Drying Line (Lyophilisation)
2.2.3. Conventional Forced-Air Drying
2.2.4. Post-Drying Comminution and Handling
2.3. Pre-Processing and Extraction Procedures
2.4. Analytical Methods
2.4.1. Total Polyphenols (Folin–Ciocâlteu, UV-Vis)
2.4.2. Antioxidant Capacity (DPPH, UV-Vis)
2.4.3. Tocopherols (HPLC-FLD)
2.4.4. Fatty Acids (GC-FID)
2.5. Method Validation and Quality Control
2.6. Data Processing and Statistical Analysis
3. Results
3.1. Total Polyphenols
3.2. Antioxidant Capacity
3.3. Tocopherols
3.4. Fatty Acids
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AAE | Ascorbic Acid Equivalent |
| ALA | α-Linoleic acid |
| d.w. | Dry Weight |
| DPPH | 2,2-diphenyl-1-picrylhydrazyl |
| FAME | Fatty Acids Methyl Esters |
| GAE | Gallic Acid Equivalent |
| GLA | γ-Linoleic acid |
| LA | Linoleic acid |
| LOD | Limit of Detection |
| LOQ | Limit of Quantitation |
| OA | Oleic acid |
| PA | Palmitic acid |
| QC | Quality Control |
| SA | Stearic acid |
| SC-CO2 | Supercritical-Carbon Dioxide |
| SFE | Supercritical Fluid Extraction |
References
- Darko, H.S.O.; Ismaiel, L.; Fanesi, B.; Pacetti, D.; Lucci, P. Current Trends in Food Processing By-Products as Sources of High Value-Added Compounds in Food Fortification. Foods 2024, 13, 2658. [Google Scholar] [CrossRef] [PubMed]
- Aguiar Pascoalino, L.; Barros, L.; Barreira, J.C.M.; Oliveira, M.B.P.P.; Reis, F.S. Closing the Loop: Exploring Apple Pomace as a Source of Bioactive Compounds in the Framework of Circular Economy. Sustain. Food Technol. 2025, 3, 81–95. [Google Scholar] [CrossRef]
- Peña-Portillo, G.-C.; Acuña-Nelson, S.-M.; Bastías-Montes, J.-M. From Waste to Wealth: Exploring the Bioactive Potential of Wine By-Products—A Review. Antioxidants 2024, 13, 992. [Google Scholar] [CrossRef] [PubMed]
- Zaky, A.A.; Akram, M.U.; Rybak, K.; Witrowa-Rajchert, D.; Nowacka, M. Bioactive Compounds from Plants and By-Products: Novel Extraction Methods, Applications, and Limitations. AIMS Mol. Sci. 2024, 11, 150–188. [Google Scholar] [CrossRef]
- Untea, A.E.; Oancea, A.-G.; Vlaicu, P.A.; Varzaru, I.; Saracila, M. Blackcurrant (Fruits, Pomace, and Leaves) Phenolic Characterization before and after In Vitro Digestion, Free Radical Scavenger Capacity, and Antioxidant Effects on Iron-Mediated Lipid Peroxidation. Foods 2024, 13, 1514. [Google Scholar] [CrossRef]
- Saracila, M.; Untea, A.E.; Oancea, A.G.; Varzaru, I.; Vlaicu, P.A. Comparative Analysis of Black Chokeberry (Aronia melanocarpa L.) Fruit, Leaves, and Pomace for Their Phytochemical Composition, Antioxidant Potential, and Polyphenol Bioaccessibility. Foods 2024, 13, 1856. [Google Scholar] [CrossRef]
- Cegiełka, A. An Attempt to Use Black Chokeberry Pomace in the Production of Hamburgers. Food Biotechnol. Agric. Sci. 2024, 78, 68–73. [Google Scholar] [CrossRef]
- Vicente-Zurdo, D.; Gómez-Mejía, E.; Morante-Zarcero, S.; Rosales-Conrado, N.; Sierra, I. Analytical Strategies for Green Extraction, Characterization, and Bioactive Evaluation of Polyphenols, Tocopherols, Carotenoids, and Fatty Acids in Agri-Food Bio-Residues. Molecules 2025, 30, 1326. [Google Scholar] [CrossRef]
- Nawirska–Olszańska, A.; Oziembłowski, M. Fruit and Vegetable Processing Waste as Potential Raw Material for Food Enrichment with Dietary Fiber. Food Sci. Nutr. 2025, 13, e70766. [Google Scholar] [CrossRef]
- Pagano, I.; Campone, L.; Celano, R.; Piccinelli, A.L.; Rastrelli, L. Green Non-Conventional Techniques for the Extraction of Polyphenols from Agricultural Food By-Products: A Review. J. Chromatogr. A 2021, 1651, 462295. [Google Scholar] [CrossRef]
- Cao, S.; Liang, J.; Chen, M.; Xu, C.; Wang, X.; Qiu, L.; Zhao, X.; Hu, W. Comparative Analysis of Extraction Technologies for Plant Extracts and Absolutes. Front. Chem. 2025, 13, 1536590. [Google Scholar] [CrossRef]
- Martins, R.; Barbosa, A.; Advinha, B.; Sales, H.; Pontes, R.; Nunes, J. Green Extraction Techniques of Bioactive Compounds: A State-of-the-Art Review. Processes 2023, 11, 2255. [Google Scholar] [CrossRef]
- Peron, G. Green Extraction and Valorisation of Bioactive Compounds from Food and Food Waste. Appl. Sci. 2024, 14, 11619. [Google Scholar] [CrossRef]
- da Silva Bastos, K.V.L.; de Souza, A.B.; Tomé, A.C.; Souza, F. de M. New Strategies for the Extraction of Antioxidants from Fruits and Their By-Products: A Systematic Review. Plants 2025, 14, 755. [Google Scholar] [CrossRef]
- Zhou, J.; Gullón, B.; Wang, M.; Gullón, P.; Lorenzo, J.M.; Barba, F.J. The Application of Supercritical Fluids Technology to Recover Healthy Valuable Compounds from Marine and Agricultural Food Processing By-Products: A Review. Process 2021, 9, 357. [Google Scholar] [CrossRef]
- Li, J.; Pettinato, M.; Campardelli, R.; De Marco, I.; Perego, P. High-Pressure Technologies for the Recovery of Bioactive Molecules from Agro-Industrial Waste. Appl. Sci. 2022, 12, 3642. [Google Scholar] [CrossRef]
- Oro, C.E.D.; Wancura, J.H.C.; dos Santos, M.S.N.; Venquiaruto, L.D.; Dallago, R.M.; Tres, M.V. High-Pressure Extraction Techniques for Efficient Recovery of Flavonoids and Coumarins from Flower Seeds. Processes 2025, 13, 300. [Google Scholar] [CrossRef]
- Fahrudin, F.I.; Phongthai, S.; Wirjantoro, T.I.; Intipunya, P. Synergistic Effects of Pressure, Temperature, CO2 Flow Rate and Co-Solvent on Bioactive Contents of Thai Fingerroot (Boesenbergia rotunda (L.) Mansf.) Extracts. Foods 2025, 14, 2189. [Google Scholar] [CrossRef]
- Nastić, N.; Mazumder, J.A.; Banat, F. Supercritical CO2 Extraction of Oil from Fruit Seed By-Product: Advances, Challenges, and Pathways to Commercial Viability. Crit. Rev. Food Sci. Nutr. 2025, 146, 122–135. [Google Scholar] [CrossRef]
- Piasecka, I.; Wiktor, A.; Górska, A. Alternative Methods of Bioactive Compounds and Oils Extraction from Berry Fruit By-Products—A Review. Appl. Sci. 2022, 12, 1734. [Google Scholar] [CrossRef]
- Ballistreri, G.; Amenta, M.; Fabroni, S.; Timpanaro, N.; Platania, G.M. Sustainable Extraction Protocols for the Recovery of Bioactive Compounds from By-Products of Pomegranate Fruit Processing. Foods 2024, 13, 1793. [Google Scholar] [CrossRef]
- Capaldi, G.; Binello, A.; Aimone, C.; Mantegna, S.; Grillo, G.; Cravotto, G. New Trends in Extraction-Process Intensification: Hybrid and Sequential Green Technologies. Ind. Crops Prod. 2024, 209, 117906. [Google Scholar] [CrossRef]
- Junior, T.K.; de Moura, C.; Cruz, T.M.; Marques, M.B.; do Carmo, M.A.V.; Deolindo, C.T.P.; Daguer, H.; Azevedo, L.; Granato, D. Optimization of the Green Chemistry-like Extraction of Phenolic Compounds from Grape (Vitis labrusca L.) and Blackberry (Rubus fruticosus L.) Seeds with Concomitant Biological and Antioxidant Activity Assessments. Plants 2023, 12, 2618. [Google Scholar] [CrossRef]
- Tourabi, M.; Faiz, K.; Ezzouggari, R.; Louasté, B.; Merzouki, M.; Dauelbait, M.; Bourhia, M.; Almaary, K.S.; Siddique, F.; Lyoussi, B.; et al. Optimization of Extraction Process and Solvent Polarities to Enhance the Recovery of Phytochemical Compounds, Nutritional Content, and Biofunctional Properties of Mentha longifolia L. Extracts. Bioresour. Bioprocess. 2025, 12, 24. [Google Scholar] [CrossRef]
- Lemes, A.C.; Egea, M.B.; de Oliveira Filho, J.G.; Gautério, G.V.; Ribeiro, B.D.; Coelho, M.A.Z. Biological Approaches for Extraction of Bioactive Compounds From Agro-Industrial By-Products: A Review. Front. Bioeng. Biotechnol. 2022, 9, 802543. [Google Scholar] [CrossRef]
- Raj, B.; Seetharam, D.S.; Patil, S.J. Green Extraction of Bioactive Compounds from Marine Constituents. Scr. Medica 2025, 56, 329–341. [Google Scholar] [CrossRef]
- Morton, L.C.; Paton, C.D.; Aberkane, R.; Braakhuis, A.J. No Effect of Acute or Chronic New Zealand Blackcurrant Extract on Cycling Performance or Physiological Responses in Trained Cyclists. Eur. J. Sport Sci. 2025, 25, e12267. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 14, 152–178. [Google Scholar] [CrossRef]
- Laczkó-Zöld, E.; Komlósi, A.; Ülkei, T.; Fogarasi, E.; Croitoru, M.; Fülöp, I.; Domokos, E.; Ştefănescu, R.; Varga, E. Extractability of Polyphenols from Black Currant, Red Currant and Gooseberry and Their Antioxidant Activity. Acta Biologica Hungarica 2018, 69, 156–169. [Google Scholar] [CrossRef] [PubMed]
- ISO 12966:2-2017; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters (Part 2: Preparation of Methyl Esters of Fatty Acids). British Standards Institution: London, UK, 2017. Available online: https://www.iso.org/standard/72142.html (accessed on 25 September 2025).
- Blejan, A.M.; Nour, V.; Păcularu-Burada, B.; Popescu, S.M. Wild Bilberry, Blackcurrant, and Blackberry By-Products as a Source of Nutritional and Bioactive Compounds. Int. J. Food Prop. 2023, 26, 1579–1595. [Google Scholar] [CrossRef]
- Gustinelli, G.; Eliasson, L.; Svelander, C.; Andlid, T.; Lundin, L.; Ahrné, L.; Alminger, M. Supercritical Fluid Extraction of Berry Seeds: Chemical Composition and Antioxidant Activity. J. Food Qual. 2018, 2018, 6046074. [Google Scholar] [CrossRef]
- Goffman, F.D.; Galletti, S. Gamma-Linolenic Acid and Tocopherol Contents in the Seed Oil of 47 Accessions from Several Ribes Species. J. Agric. Food Chem. 2000, 49, 349–354. [Google Scholar] [CrossRef]
- Wójciak, M.; Mazurek, B.; Tyśkiewicz, K.; Kondracka, M.; Wójcicka, G.; Blicharski, T.; Sowa, I. Blackcurrant (Ribes nigrum L.) Seeds—A Valuable Byproduct for Further Processing. Molecules 2022, 27, 8679. [Google Scholar] [CrossRef]
- Costa, D.; Rupasinghe, H.P.V. Development of a Scalable Extraction Process for Anthocyanins of Haskap Berry (Lonicera caerulea). Molecules 2025, 30, 1071. [Google Scholar] [CrossRef]
- Bada, J.C.; León-Camacho, M.; Copovi, P.; Alonso, L. Characterization of Berry and Currant Seed Oils from Asturias, Spain. Int. J. Food Prop. 2013, 17, 77–85. [Google Scholar] [CrossRef]
- Muhammad, D.R.A.; Ayouaz, S.; Rachmawati, A.N.; Madani, K.; Fibri, D.L.N.; Rafi, M.; Julianti, E.; Fahmy, K. Advanced and Potential Methods for Extraction of Bioactive Compounds from Avocado Peel—A Review. Appl. Sci. 2024, 14, 6018. [Google Scholar] [CrossRef]
- Sabzal, I.; Shehzadi, F.; Sabzal, N.; Hassan, S.A.; Arif, M.A.; Aslam, N.; Mousavi Khaneghah, A.; Aadil, R.M. Transforming Fruit Waste into Meat Preserving Agents: Harnessing Natural Extracts to Enhance Meat Quality and Extend Shelf Life. J. Agric. Food Res. 2025, 21, 101973. [Google Scholar] [CrossRef]
- Qiu, X.; Su, J.; Nie, J.; Zhang, Z.; Ren, J.; Wang, S.; Pei, Y.; Li, X. Effects of Thermosonication on the Antioxidant Capacity and Physicochemical, Bioactive, Microbiological, and Sensory Qualities of Blackcurrant Juice. Foods 2024, 13, 809. [Google Scholar] [CrossRef] [PubMed]
- Chammam, A.; Smirnova, I.; Fillaudeau, L.; Romdhane, M.; Zetzl, C.; Bouajila, J. Supercritical CO2 Extraction of Bioactives from P. Halepensis Petals: Process Modeling, Mass Transfer, and Bioactivity Characterization. J. Supercrit. Fluids 2025, 225, 106701. [Google Scholar] [CrossRef]

| Sample ID | Species | Pre-Drying | TPCs (mg GAE·g−1 d.w.), Mean ± SD | n | Homogeneous Group |
|---|---|---|---|---|---|
| B-5 | Blackcurrant (Ribes nigrum) | Convective | 8.99 ± 0.16 | 3 | a |
| B-6 | Blackcurrant (Ribes nigrum) | Freeze-drying | 9.03 ± 0.79 | 3 | a |
| R-5 | Redcurrant (Ribes rubrum) | Convective | 2.69 ± 0.44 | 3 | b |
| R-6 | Redcurrant (Ribes rubrum) | Freeze-drying | 2.96 ± 0.19 | 3 | b |
| Sample ID | Species | Pre-Drying | DPPH (µmol AAE·g−1 d.w.), Mean ± SD | IC50 | n | Homogeneous Group |
|---|---|---|---|---|---|---|
| B-5 | Blackcurrant (Ribes nigrum) | Convective | 9.383 ± 0.23 | 3.86 | 3 | b |
| B-6 | Blackcurrant (Ribes nigrum) | Freeze-drying | 9.475 ± 0.15 | 3.78 | 3 | ab |
| R-5 | Redcurrant (Ribes rubrum) | Convective | 9.118 ± 0.36 | 4.11 | 3 | b |
| R-6 | Redcurrant (Ribes rubrum) | Freeze-drying | 9.571 ± 0.20 | 3.70 | 3 | a |
| Sample ID | Species | Pre-Drying | α-Tocopherol [mg g−1 d.w.] | γ-Tocopherol [mg g−1 d.w.] | δ-Tocopherol [mg g−1 d.w.] | α-Tocopherol [%] | γ-Tocopherol [%] | δ-Tocopherol [%] |
|---|---|---|---|---|---|---|---|---|
| B-3 | Blackcurrant (Ribes nigrum) | Convective | 0.204 a | 0.099 b | 0.016 b | 63.94 ± 0.21 | 31.02 ± 0.36 | 5.04 ± 0.22 |
| B-4 | Blackcurrant (Ribes nigrum) | Freeze-drying | 0.185 b | 0.112 a | 0.021 a | 58.17 ± 0.83 | 35.12 ± 0.26 | 6.72 ± 0.21 |
| R-3 | Redcurrant (Ribes rubrum) | Convective | 0.036 a | 0.182 b | 0.100 a | 11.43 ± 0.13 | 57.14 ± 0.67 | 31.43 ± 0.47 |
| R-4 | Redcurrant (Ribes rubrum) | Freeze-drying | 0.018 b | 0.211 a | 0.090 b | 5.74 ± 0.10 | 66.12 ± 0.33 | 28.14 ± 0.27 |
| Sample ID | Species | Pre-Drying | PUFAs [% d. w ± SD] | MUFAs [% d. w ± SD] | SFAs [% d. w ± SD] |
|---|---|---|---|---|---|
| B-5 | Blackcurrant (Ribes nigrum) | Convective | 57.84 ± 1.24 c | 8.48 ± 0.88 a | 33.48 ± 0.73 a |
| B-6 | Blackcurrant (Ribes nigrum) | Freeze-drying | 66.71 ± 1.07 a | 8.51 ± 0.56 a | 25.08 ± 1.17 c |
| R-5 | Redcurrant (Ribes rubrum) | Convective | 58.65 ± 0.75 c | 6.23 ± 0.31 b | 34.99 ± 0.93 a |
| R-6 | Redcurrant (Ribes rubrum) | Freeze-drying | 62.10 ± 0.90 b | 6.30 ± 0.46 b | 32.10 ± 0.89 b |
| (a) | ||||
|---|---|---|---|---|
| Fatty Acid Group | F (3,8) Value | p Value | R2 Value | ω2 Value |
| PUFAs | 48.35 | <0.0001 | 0.9477 | 0.9221 |
| MUFAs | 14.43 | 0.0014 | 0.8440 | 0.7705 |
| SFAs | 64.72 | <0.0001 | 0.9604 | 0.9409 |
| (b) | ||||
| Fatty Acid Group | F (1,4) Value | p Value | R2 Value | ω2 Value |
| B-5 vs. B-6 | 88.07 | 0.0007 | 0.9566 | 0.9355 |
| R-5 vs. R-6 | 26.11 | 0.0069 | 0.8671 | 0.8071 |
| Sample ID | Species | Pre-Drying | ALA α-Linoleic Acid [%; Mean ± SD] | GLA γ-Linoleic Acid [%; Mean ± SD] | LA Linoleic Acid [%; Mean ± SD] | OA Oleic Acid [%; Mean ± SD] | PA Palmitic Acid [%; Mean ± SD] | SA Stearic Acid [%; Mean ± SD] |
|---|---|---|---|---|---|---|---|---|
| B-5 | Blackcurrant (Ribes nigrum) | Convective | 10.60 ± 1.63 a | 5.68 ± 2.05 a | 24.90 ± 0.23 a | 7.49 ± 1.14 a | 15.91 ± 0.16 a | 1.51 ± 1.18 a |
| B-6 | Blackcurrant (Ribes nigrum) | Freeze-drying | 6.52 ± 1.12 b | 4.51 ± 1.46 a | 16.30 ± 0.19 b | 7.76 ± 1.73 a | 13.20 ± 0.78 b | 1.21 ± 0.82 a |
| R-5 | Redcurrant (Ribes rubrum) | Convective | <0.10 ± 0.04 c | 7.75 ± 2.35 a | 1.64 ± 1.17 d | 2.18 ± 1.59 b | 2.08 ± 1.08 c | 1.08 ± 1.00 a |
| R-6 | Redcurrant (Ribes rubrum) | Freeze-drying | 0.99 ± 0.84 c | 5.41 ± 1.69 a | 5.07 ± 1.05 c | 1.93 ± 1.21 b | 0.20 ± 0.12 d | 2.47 ± 1.06 a |
| p-value | - | - | <0.001 | 0.278 | <0.001 | 0.001 | <0.001 | 0.392 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herzyk, F.; Korzeniowska, M.; Krusiński, T. Efficient Recovery of Biologically Active Substances from Currant Pomace—Pre-Drying Effects on Supercritical CO2 Extracts. Compounds 2025, 5, 48. https://doi.org/10.3390/compounds5040048
Herzyk F, Korzeniowska M, Krusiński T. Efficient Recovery of Biologically Active Substances from Currant Pomace—Pre-Drying Effects on Supercritical CO2 Extracts. Compounds. 2025; 5(4):48. https://doi.org/10.3390/compounds5040048
Chicago/Turabian StyleHerzyk, Filip, Małgorzata Korzeniowska, and Tomasz Krusiński. 2025. "Efficient Recovery of Biologically Active Substances from Currant Pomace—Pre-Drying Effects on Supercritical CO2 Extracts" Compounds 5, no. 4: 48. https://doi.org/10.3390/compounds5040048
APA StyleHerzyk, F., Korzeniowska, M., & Krusiński, T. (2025). Efficient Recovery of Biologically Active Substances from Currant Pomace—Pre-Drying Effects on Supercritical CO2 Extracts. Compounds, 5(4), 48. https://doi.org/10.3390/compounds5040048

