Recent Progress and Challenges in the Field of Metal–Organic Framework-Based Membranes for Gas Separation
Abstract
:1. Introduction
2. Characteristics of MOFs
2.1. Structural Flexibility
2.2. Structural Stability
3. Hydrocarbon Adsorption on MOFs
3.1. Olefins and Paraffins
3.2. Other Hydrocarbons
4. CO2 Capture and H2 Purification
5. MOF-Based Membranes
5.1. Types of Membranes
5.2. MOF Membrane-Preparation Method and Points to Consider
5.3. Olefin/Paraffin Separation
5.4. Other Hydrocarbon Separations
5.5. CO2 Separation
6. Outlook and Challenges
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Li, J.R.; Kuppler, R.J.; Zhou, H.C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 974–986. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Martinez, M.; Avci-Camur, C.; Thornton, A.W.; Imaz, I.; Maspoch, D.; Hill, M.R. New synthetic routes towards MOF production at scale. Chem. Soc. Rev. 2017, 46, 3453–3480. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Tissot, A.; Serre, C. Metal-organic frameworks: From ambient green synthesis to applications. Bull. Chem. Soc. Jpn. 2021, 94, 2623–2636. [Google Scholar] [CrossRef]
- Zulkifli, Z.I.; Lim, K.L.; Teh, L.P. Metal-organic frameworks (MOFs) and their applications in CO2 adsorption and conversion. ChemistrySelect 2022, 7, e202200572. [Google Scholar] [CrossRef]
- Petit, C. Present and future of MOF research in the field of adsorption and molecular separation. Curr. Opin. Chem. Eng. 2018, 20, 132–142. [Google Scholar] [CrossRef]
- Editorial article. Frameworks for commercial success. Nat. Chem. 2016, 8, 987. [CrossRef]
- Chung, Y.G.; Haldoupis, E.; Bucior, B.J.; Haranczyk, M.; Lee, S.; Zhang, H.D.; Vogiatzis, K.D.; Milisavljevic, M.; Ling, S.L.; Camp, J.S.; et al. Advances, updates, and analytics for the computation-ready, experimental metal-organic framework database: CoRE MOF 2019. J. Chem. Eng. Data 2019, 64, 5985–5998. [Google Scholar] [CrossRef]
- Anderson, R.; Gómez-Gualdrón, D.A. Increasing topological diversity during computational “synthesis” of porous crystals: How and why. CrystEngComm 2019, 21, 1653–1665. [Google Scholar] [CrossRef]
- Bobbitt, N.S.; Shi, K.H.; Bucior, B.J.; Chen, H.Y.; Tracy-Amoroso, N.; Li, Z.; Sun, Y.Z.S.; Merlin, J.H.; Siepmann, J.I.; Siderius, D.W.; et al. MOFX-DB: An online database of computational adsorption data for nanoporous materials. J. Chem. Eng. Data 2023, 68, 483–498. [Google Scholar] [CrossRef]
- NIST/ARPA-E Database of Novel and Emerging Adsorbent Materials. Available online: https://adsorption.nist.gov/isodb/index.php#home (accessed on 25 January 2024).
- Iacomi, P.; Llewellyn, P.L. Data mining for binary separation materials in published adsorption isotherms. Chem. Mater. 2020, 32, 982–991. [Google Scholar] [CrossRef]
- Demir, H.; Aksu, G.O.; Gulbalkan, H.C.; Keskin, S. MOF membranes for CO2 capture: Past, present and future. Carbon Capture Sci. Technol. 2022, 2, 100026. [Google Scholar] [CrossRef]
- Ban, Y.J.; Cao, N.; Yang, W.S. Metal-organic framework membranes and membrane reactors: Versatile separations and intensified processes. Research 2020, 2020, 1583451. [Google Scholar] [CrossRef] [PubMed]
- Qian, Q.H.; Asinger, P.A.; Lee, M.J.; Han, G.; Rodriguez, K.M.; Lin, S.; Benedetti, F.M.; Wu, A.X.; Chi, W.S.; Smith, Z.P. MOF-based membranes for gas separations. Chem. Rev. 2020, 120, 8161–8266. [Google Scholar] [CrossRef]
- Xu, X.; Hartanto, Y.; Zheng, J.; Luis, P. Recent advances in continuous MOF membranes for gas separation and pervaporation. Membranes 2022, 12, 1205. [Google Scholar] [CrossRef] [PubMed]
- Schneemann, A.; Bon, V.; Schwedler, I.; Senkovska, I.; Kaskel, S.; Fischer, R.A. Flexible metal–organic frameworks. Chem. Soc. Rev. 2014, 43, 6062–6096. [Google Scholar] [CrossRef]
- Sakata, Y.; Furukawa, S.; Kondo, M.; Hirai, K.; Horike, N.; Takashima, Y.; Uehara, H.; Louvain, N.; Meilikhov, M.; Tsuruoka, T.; et al. Shape-memory nanopores induced in coordination frameworks by crystal downsizing. Science 2013, 339, 193–196. [Google Scholar] [CrossRef]
- Tanaka, S.; Fujita, K.; Miyake, Y.; Miyamoto, M.; Hasegawa, Y.; Makino, T.; Van der Perre, S.; Remi, J.C.S.; Van Assche, T.; Baron, G.V.; et al. Adsorption and diffusion phenomena in crystal size engineered ZIF-8 MOF. J. Phys. Chem. C 2015, 119, 28430–28439. [Google Scholar] [CrossRef]
- Devic, T.; Serre, C. High valence 3p and transition metal based MOFs. Chem. Soc. Rev. 2014, 43, 6097–6115. [Google Scholar] [CrossRef]
- Park, K.S.; Ni, Z.; Côté, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O’Keeffe, M.; Yaghi, O.M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191. [Google Scholar] [CrossRef]
- Wang, Q.M.; Shen, D.M.; Bulow, M.; Lau, M.L.; Deng, S.G.; Fitch, F.R.; Lemcoff, N.O.; Semanscin, J. Metallo-organic molecular sieve for gas separation and purification. Microporous Mesoporous Mater. 2002, 55, 217–230. [Google Scholar] [CrossRef]
- Lin, K.S.; Adhikari, A.K.; Ku, C.N.; Chiang, C.L.; Kuo, H. Synthesis and characterization of porous HKUST-1 metal organic frameworks for hydrogen storage. Int. J. Hydrogen Energy 2012, 37, 13865–13871. [Google Scholar] [CrossRef]
- Lamia, N.; Jorge, M.; Granato, M.A.; Almeida, P.F.A.; Chevreau, H.; Rodrigues, A.E. Adsorption of propane, propylene and isobutane on a metal–organic framework: Molecular simulation and experiment. Chem. Eng. Sci. 2009, 64, 3246–3259. [Google Scholar] [CrossRef]
- Abednatanzi, S.; Gohari, D.P.; Depauw, H.; Coudert, F.X.; Vrielinck, H.; Van Der Voort, P.; Leus, K. Mixed-metal metal–organic frameworks. Chem. Soc. Rev. 2019, 48, 2535–2565. [Google Scholar] [CrossRef]
- Hong, D.Y.; Hwang, Y.K.; Serre, C.; Férey, G.; Chang, J.S. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: Surface functionalization, encapsulation, sorption and catalysis. Adv. Funct. Mater. 2009, 19, 1537–1552. [Google Scholar] [CrossRef]
- Jiang, D.; Keenan, L.L.; Burrows, A.D.; Edler, K.J. Synthesis and post-synthetic modification of MIL-101(Cr)-NH2 via a tandem diazotisation process. Chem. Commun. 2012, 48, 12053–12055. [Google Scholar] [CrossRef]
- Ren, J.; Musyoka, N.M.; Langmi, H.W.; Segakweng, T.; North, B.C.; Mathe, M.; Kang, X. Modulated synthesis of chromium-based metal-organic framework (MIL-101) with enhanced hydrogen uptake. Int. J. Hydrogen Energy 2014, 39, 12018–12023. [Google Scholar] [CrossRef]
- Yuan, S.; Feng, L.; Wang, K.; Pang, J.; Bosch, M.; Lollar, C.; Sun, Y.; Qin, J.; Yang, X.; Zhang, P. Stable metal–organic frameworks: Design, synthesis, and applications. Adv. Mater. 2018, 30, 1704303. [Google Scholar] [CrossRef]
- Latroche, M.; Surblé, S.; Serre, C.; Mellot-Draznieks, C.; Llewellyn, P.L.; Lee, J.H.; Chang, J.S.; Jhung, S.H.; Férey, G. Hydrogen storage in the giant-pore metal–organic frameworks MIL-100 and MIL-101. Angew. Chem. Int. Ed. 2006, 45, 8227–8231. [Google Scholar] [CrossRef]
- Horcajada, P.; Surblé, S.; Serre, C.; Hong, D.Y.; Seo, Y.K.; Chang, J.S.; Grenèche, J.M.; Margiolaki, I.; Férey, G. Synthesis and catalytic properties of MIL-100(Fe), an iron(iii) carboxylate with large pores. Chem. Commun. 2007, 2820–2822. [Google Scholar] [CrossRef]
- Llewellyn, P.L.; Bourrelly, S.; Serre, C.; Vimont, A.; Daturi, M.; Hamon, L.; De Weireld, G.; Chang, J.S.; Hong, D.Y.; Hwang, Y.K. High uptakes of CO2 and CH4 in mesoporous metal—Organic frameworks MIL-100 and MIL-101. Langmuir 2008, 24, 7245–7250. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.W.; Seo, Y.K.; Hwang, Y.K.; Chang, J.S.; Leclerc, H.; Wuttke, S.; Bazin, P.; Vimont, A.; Daturi, M.; Bloch, E. Controlled reducibility of a metal–organic framework with coordinatively unsaturated sites for preferential gas sorption. Angew. Chem. Int. Ed. 2010, 49, 5949–5952. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Yoon, J.W.; Seo, Y.K.; Kim, M.B.; Lee, S.K.; Lee, U.H.; Hwang, Y.K.; Bae, Y.S.; Chang, J.S. Effect of purification conditions on gas storage and separations in a chromium-based metal-organic framework MIL-101. Microporous Mesoporous Mater. 2014, 193, 160–165. [Google Scholar] [CrossRef]
- Chang, G.; Bao, Z.; Ren, Q.; Deng, S.; Zhang, Z.; Su, B.; Xing, H.; Yang, Y. Fabrication of cuprous nanoparticles in MIL-101: An efficient adsorbent for the separation of olefin–paraffin mixtures. RSC Adv. 2014, 4, 20230–20233. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Krishna, R.; Wu, Z.; Ma, D.; Shi, Z.; Pham, T.; Forrest, K.; Space, B.; Ma, S. Highly selective adsorption of ethylene over ethane in a MOF featuring the combination of open metal site and π-complexation. Chem. Commun. 2015, 51, 2714–2717. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.R.; Yoon, T.U.; Kim, E.J.; Yoon, J.W.; Kim, S.Y.; Yoon, J.W.; Hwang, Y.K.; Chang, J.S.; Bae, Y.S. Facile loading of Cu (I) in MIL-100 (Fe) through redox-active Fe (II) sites and remarkable propylene/propane separation performance. Chem. Eng. J. 2018, 331, 777–784. [Google Scholar] [CrossRef]
- Bao, Z.; Alnemrat, S.; Yu, L.; Vasiliev, I.; Ren, Q.; Lu, X.; Deng, S. Adsorption of ethane, ethylene, propane, and propylene on a magnesium-based metal–organic framework. Langmuir 2011, 27, 13554–13562. [Google Scholar] [CrossRef]
- Bae, Y.S.; Lee, C.Y.; Kim, K.C.; Farha, O.K.; Nickias, P.; Hupp, J.T.; Nguyen, S.T.; Snurr, R.Q. High propene/propane selectivity in isostructural metal–organic frameworks with high densities of open metal sites. Angew. Chem. Int. Ed. 2012, 51, 1857–1860. [Google Scholar] [CrossRef]
- Bachman, J.E.; Kapelewski, M.T.; Reed, D.A.; Gonzalez, M.I.; Long, J.R. M2(m-dobdc) (M = Mn, Fe, Co, Ni) metal–organic frameworks as highly selective, high-capacity adsorbents for olefin/paraffin separations. J. Am. Chem. Soc. 2017, 139, 15363–15370. [Google Scholar] [CrossRef]
- Yang, S.; Ramirez-Cuesta, A.J.; Newby, R.; Garcia-Sakai, V.; Manuel, P.; Callear, S.K.; Campbell, S.I.; Tang, C.C.; Schroder, M. Supramolecular binding and separation of hydrocarbons within a functionalized porous metal–organic framework. Nat. Chem. 2014, 7, 121–129. [Google Scholar] [CrossRef]
- Gücüyener, C.; van den Bergh, J.; Gascon, J.; Kapteijn, F. Ethane/ethene separation turned on its head: Selective ethane adsorption on the metal−organic framework ZIF-7 through a gate-opening mechanism. J. Am. Chem. Soc. 2010, 132, 17704–17706. [Google Scholar] [CrossRef]
- Van den Bergh, J.; Gucuyener, C.; Pidko, E.A.; Hensen, E.J.M.; Gascon, J.; Kapteijn, F. Understanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixtures. Chem. Eur. J. 2011, 17, 8832–8840. [Google Scholar] [CrossRef]
- Liao, P.Q.; Zhang, W.X.; Zhang, J.P.; Chen, X.M. Efficient purification of ethene by an ethane-trapping metal-organic framework. Nat. Commun. 2015, 6, 8697. [Google Scholar] [CrossRef]
- Kishida, K.; Okumura, Y.; Watanabe, Y.; Mukoyoshi, M.; Bracco, S.; Comotti, A.; Sozzani, P.; Horike, S.; Kitagawa, S. Recognition of 1,3-butadiene by a porous coordination polymer. Angew. Chem. Int. Ed. 2016, 55, 13784–13788. [Google Scholar] [CrossRef]
- Zhu, W.; Kapteijn, F.; Moulijn, J.A.; Jansen, J.C. Selective adsorption of unsaturated linear C4 molecules on the all-silica DD3R. Phys. Chem. Chem. Phys. 2000, 2, 1773–1779. [Google Scholar] [CrossRef]
- Hartmann, M.; Kunz, S.; Himsl, D.; Tangermann, O.; Ernst, S.; Wagener, A. Adsorptive separation of isobutene and isobutane on Cu3(BTC)2. Langmuir 2008, 24, 8634–8642. [Google Scholar] [CrossRef]
- Lange, M.; Kobalz, M.; Bergmann, J.; Lässig, D.; Lincke, J.; Möllmer, J.; Möller, A.; Hofmann, J.; Krautscheid, H.; Staudt, R.; et al. Structural flexibility of a copper-based metal–organic framework: Sorption of C4-hydrocarbons and in situ XRD. J. Mater. Chem. A 2014, 2, 8075–8085. [Google Scholar] [CrossRef]
- Ye, Z.M.; He, C.T.; Xu, Y.T.; Krishna, R.; Xie, Y.; Zhou, D.D.; Zhou, H.L.; Zhang, J.P.; Chen, X.M. A new isomeric porous coordination framework showing single-crystal to single-crystal structural transformation and preferential adsorption of 1,3-butadiene from C4 hydrocarbons. Cryst. Growth Des. 2017, 17, 2166–2171. [Google Scholar] [CrossRef]
- Pan, L.; Olson, D.H.; Ciemnolonski, L.R.; Heddy, R.; Li, J. Separation of hydrocarbons with a microporous metal–organic framework. Angew. Chem. Int. Ed. 2006, 45, 616–619. [Google Scholar] [CrossRef] [PubMed]
- Peralta, D.; Chaplais, G.; Simon-Masseron, A.; Barthelet, K.; Pirngruber, G.D. Separation of C6 paraffins using zeolitic imidazolate frameworks: Comparison with zeolite 5A. Ind. Eng. Chem. Res. 2012, 51, 4692–4702. [Google Scholar] [CrossRef]
- Alaerts, L.; Kirschhock, C.E.; Maes, M.; van der Veen, M.A.; Finsy, V.; Depla, A.; Martens, J.A.; Baron, G.V.; Jacobs, P.A.; Denayer, J.F.M.; et al. Selective Adsorption and separation of xylene isomers and ethylbenzene with the microporous vanadium(IV) terephthalate MIL-47. Angew. Chem. Int. Ed. 2007, 46, 4293–4297. [Google Scholar] [CrossRef]
- Alaerts, L.; Maes, M.; Jacobs, P.A.; Denayer, J.F.M.; De Vos, D.E. Activation of the metal-organic framework MIL-47 for selective adsorption of xylenes and other difunctionalized aromatics. Phys. Chem. Chem. Phys. 2008, 10, 2979–2985. [Google Scholar] [CrossRef] [PubMed]
- Alaerts, L.; Maes, M.; Giebeler, L.; Jacobs, P.A.; Martens, J.A.; Denayer, J.F.M.; Kirschhock, C.E.A.; De Vos, D.E. Selective adsorption and separation of ortho-substituted alkylaromatics with the microporous aluminum terephthalate MIL-53. J. Am. Chem. Soc. 2008, 130, 14170–14178. [Google Scholar] [CrossRef] [PubMed]
- Finsy, V.; Verelst, H.; Alaerts, L.; De Vos, D.; Jacobs, P.A.; Baron, G.V.; Denayer, J.F.M. Pore-filling-dependent selectivity effects in the vapor-phase separation of xylene isomers on the metal−organic framework MIL-47. J. Am. Chem. Soc. 2008, 130, 7110–7118. [Google Scholar] [CrossRef] [PubMed]
- Finsy, V.; Christine, E.A.; Kirschhock, C.E.; Vedts, G.; Maes, M.; Alaerts, L.; De Vos, D.E.; Baron, G.V.; Denayer, J.F.M. Framework breathing in the vapour-phase adsorption and separation of xylene isomers with the metal–organic framework MIL-53. Chem. Eur. J. 2009, 15, 7724–7731. [Google Scholar] [CrossRef] [PubMed]
- Bárcia, P.S.; Guimarães, D.; Mendes, P.A.P.; Silva, J.A.C.; Guillerm, V.; Chevreau, H.; Serre, C.; Rodrigues, A.E. Reverse shape selectivity in the adsorption of hexane and xylene isomers in MOF UiO-66. Microporous Mesoporous Mater. 2011, 139, 67–73. [Google Scholar] [CrossRef]
- Matsuda, R.; Kitaura, R.; Kitagawa, S.; Kubota, Y.; Belosludov, R.V.; Kobayashi, T.C.; Sakamoto, H.; Chiba, T.; Takata, M.; Kawazoe, Y.; et al. Highly controlled acetylene accommodation in a metal-organic microporous material. Nature 2005, 435, 238–241. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Shao, K.; Wang, J.X.; Wen, H.M.; Yang, Y.; Cui, Y.; Krishna, R.; Li, B.; Qian, G. A chemically stable Hofmann-type metal−organic framework with sandwich-like binding sites for benchmark acetylene capture. Adv. Mater. 2020, 32, 1908275. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, K.; Yang, L.; Li, L.; Hu, E.; Yang, L.; Shao, K.; Xing, H.; Cui, Y.; Yang, Y.; et al. Benchmark C2H2/CO2 separation in an ultra-microporous metal–organic framework via copper(I)-alkynyl chemistry. Angew. Chem. Int. Ed. 2021, 60, 15995. [Google Scholar] [CrossRef]
- Ye, Y.X.; Xian, S.K.; Cui, H.; Tan, K.; Gong, L.S.; Liang, B.; Pham, T.; Pandey, H.; Krishna, R.; Lan, P.C.; et al. Metal-organic framework based hydrogen-bonding nanotrap for efficient acetylene storage and separation. J. Am. Chem. Soc. 2022, 144, 1681–1689. [Google Scholar] [CrossRef]
- Ma, D.Y.; Li, Z.; Zhu, J.X.; Zhou, Y.P.; Chen, L.L.; Mai, X.F.; Liufu, M.L.; Wu, Y.B.; Li, Y.W. Inverse and highly selective separation of CO2/C2H2 on a thulium-organic framework. J. Mater. Chem. A 2020, 8, 11933–11937. [Google Scholar] [CrossRef]
- Xie, L.H.; Liu, X.M.; He, T.; Li, J.R. Metal-organic frameworks for the capture of trace aromatic volatile organic compounds. Chem 2018, 4, 1911–1927. [Google Scholar] [CrossRef]
- He, T.; Kong, X.J.; Bian, Z.X.; Zhang, Y.Z.; Si, G.R.; Xie, L.H.; Wu, X.Q.; Huang, H.L.; Chang, Z.; Bu, X.H.; et al. Trace removal of benzene vapour using double-walled metal-dipyrazolate frameworks. Nat. Mater. 2022, 21, 689–695. [Google Scholar] [CrossRef]
- Dong, C.; Yang, J.J.; Xie, L.H.; Cui, G.L.; Fang, W.H.; Li, J.R. Catalytic ozone decomposition and adsorptive VOCs removal in bimetallic metal-organic frameworks. Nat. Commun. 2022, 13, 4991. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change. World Meteorological Organization Technical Document: Geneva, Switzerland, 2018. Available online: http://www.ipcc.ch/report/sr15/ (accessed on 25 January 2024).
- Siegelman, R.L.; Kim, E.J.; Long, J.R. Porous materials for carbon dioxide separations. Nat. Mater. 2021, 20, 1060–1072. [Google Scholar] [CrossRef]
- Schlissel, D.W.D.; Wamsted, D. Holy Grail of Carbon Capture Continues to Elude Coal Industry. Inst. Energy Econ. Financ. Anal. 2018. Available online: https://ieefa.org/resources/holy-grail-carbon-capture-continues-elude-coal-industry (accessed on 25 January 2024).
- Refinitiv Carbon Market Survey 2021. Available online: https://www.refinitiv.com/ (accessed on 24 June 2021).
- Kamio, E.; Yoshioka, T. Membrane separation technology for CO2 separation and recovery in Japan. Membrane 2017, 42, 2–10. [Google Scholar] [CrossRef]
- Wilcox, J. Carbon Capture; Springer: New York, NY, USA, 2012. [Google Scholar] [CrossRef]
- Wilcox, J.; Haghpanah, R.; Rupp, E.C.; He, J.J.; Lee, K. Advancing adsorption and membrane separation processes for the gigaton carbon capture challenge. Annu. Rev. Chem. Biomol. Eng. 2014, 5, 479–505. [Google Scholar] [CrossRef]
- Panda, P.K.; Sahoo, B.; Ramakrishna, S. Hydrogen production, purification, storage, transportation, and their applications: A review. Energy Technol. 2023, 11, 2201434. [Google Scholar] [CrossRef]
- Yan, Y.; Lin, X.; Yang, S.H.; Blake, A.J.; Dailly, A.; Champness, N.R.; Hubberstey, P.; Schröder, M. Exceptionally high H2 storage by a metal–organic polyhedral framework. Chem. Commun. 2009, 1025–1027. [Google Scholar] [CrossRef]
- Feldblyum, J.I.; Wong-Foy, A.G.; Matzger, A.J. Non-interpenetrated IRMOF-8: Synthesis, activation, and gas sorption. Chem. Commun. 2012, 48, 9828–9830. [Google Scholar] [CrossRef]
- Sumida, K.; Brown, C.M.; Herm, Z.R.; Chavan, S.; Bordiga, S.; Long, J.R. Hydrogen storage properties and neutron scattering studies of Mg2(dobdc)-a metal-organic framework with open Mg2+ adsorption sites. Chem. Commun. 2011, 47, 1157–1159. [Google Scholar] [CrossRef]
- Lin, X.; Jia, J.H.; Zhao, X.B.; Thomas, K.M.; Blake, A.J.; Walker, G.S.; Champness, N.R.; Hubberstey, P.; Schröder, M. High H2 adsorption by coordination-framework materials. Angew. Chem. Int. Ed. 2006, 45, 7358–7364. [Google Scholar] [CrossRef]
- Chen, B.L.; Ockwig, N.W.; Millward, A.R.; Contreras, D.S.; Yaghi, O.M. High H2 adsorption in a microporous metal-organic framework with open metal sites. Angew. Chem. Int. Ed. 2005, 44, 4745–4749. [Google Scholar] [CrossRef]
- Wang, X.S.; Ma, S.Q.; Rauch, K.; Simmons, J.M.; Yuan, D.Q.; Wang, X.P.; Yildirim, T.; Cole, W.C.; Lopez, J.J.; de Meijere, A.; et al. Metal-organic frameworks based on double-bond-coupled di-isophthalate linkers with high hydrogen and methane uptakes. Chem. Mater. 2008, 20, 3145–3152. [Google Scholar] [CrossRef]
- Rowsell, J.L.C.; Yaghi, O.M. Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal−organic frameworks. J. Am. Chem. Soc. 2006, 128, 1304–1315. [Google Scholar] [CrossRef]
- Park, H.J.; Lim, D.W.; Yang, W.S.; Oh, T.R.; Suh, M.P. A highly porous metal–organic framework: Structural transformations of a guest-free MOF depending on activation method and temperature. Chem. Eur. J. 2011, 17, 7251–7260. [Google Scholar] [CrossRef]
- Liu, J.Q.; Liu, G.L.; Gu, C.Y.; Liu, W.C.; Xu, J.W.; Li, B.H.; Wang, W.J. Rational synthesis of a novel 3,3,5-c polyhedral metal-organic framework with high thermal stability and hydrogen storage capability. J. Mater. Chem. A 2016, 4, 11630–11634. [Google Scholar] [CrossRef]
- Rowsell, J.L.C.; Millward, A.R.; Park, K.S.; Yaghi, O.M. Hydrogen sorption in functionalized metal−organic frameworks. J. Am. Chem. Soc. 2004, 126, 5666–5667. [Google Scholar] [CrossRef]
- Yuan, D.Q.; Zhao, D.; Sun, D.F.; Zhou, H.C. An isoreticular series of metal-organic frameworks with dendritic hexacarboxylate ligands and exceptionally high gas-uptake capacity. Angew. Chem. Int. Ed. 2010, 49, 5357–5361. [Google Scholar] [CrossRef]
- Hermes, S.; Schroder, F.; Chelmowski, R.; Wöll, C.; Fischer, R.A. Selective nucleation and growth of metal−organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). J. Am. Chem. Soc. 2005, 127, 13744–13745. [Google Scholar] [CrossRef]
- Arnold, M.; Kortunov, P.; Jones, D.J.; Nedellec, Y.; Kärger, J.; Caro, J. Oriented crystallisation on supports and anisotropic mass transport of the metal-organic framework manganese formate. Eur. J. Inorg. Chem. 2007, 2007, 60–64. [Google Scholar] [CrossRef]
- Scherb, C.; Schodel, A.; Bein, T. Directing the structure of metal–organic frameworks by oriented surface growth on an organic monolayer. Angew. Chem. Int. Ed. 2008, 47, 5777–5779. [Google Scholar] [CrossRef]
- Gascon, J.; Aguado, S.; Kapteijn, F. Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on α-alumina. Microporous Mesoporous Mater. 2008, 113, 132–138. [Google Scholar] [CrossRef]
- Lin, R.J.; Hernandez, B.V.; Ge, L.; Zhu, Z.H. Metal organic framework based mixed matrix membranes: An overview on filler/polymer interfaces. J. Mater. Chem. A 2018, 6, 293–312. [Google Scholar] [CrossRef]
- Liu, Y.; Zeng, G.; Pan, Y.; Lai, Z. Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties. J. Membr. Sci. 2011, 379, 46–51. [Google Scholar] [CrossRef]
- Zheng, B.; Pan, Y.; Lai, Z.; Huang, K.W. Molecular dynamics simulations on gate opening in ZIF-8: Identification of factors for ethane and propane separation. Langmuir 2013, 29, 8865–8872. [Google Scholar] [CrossRef]
- Venna, S.R.; Carreon, M.A. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. J. Am. Chem. Soc. 2010, 132, 76–78. [Google Scholar] [CrossRef]
- Lee, J.H.; Kim, D.; Shin, H.; Yoo, S.J.; Kwon, H.T.; Kim, J. Zeolitic imidazolate framework ZIF-8 films by ZnO to ZIF-8 conversion and their usage as seed layers for propylene-selective ZIF-8 membranes. J. Ind. Eng. Chem. 2019, 72, 374–379. [Google Scholar] [CrossRef]
- Huang, A.; Bux, H.; Steinbach, F.; Caro, J. Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-aminopropyltriethoxysilane as covalent linker. Angew. Chem. Int. Ed. 2010, 49, 4958–4961. [Google Scholar] [CrossRef]
- McCarthy, M.C.; Guerrero, V.V.; Barnett, G.V.; Jeong, H.K. Synthesis of zeolitic imidazolate framework films and membranes with controlled microstructures. Langmuir 2010, 26, 14636–14641. [Google Scholar] [CrossRef]
- Tanaka, S.; Shimada, T.; Fujita, K.; Miyake, Y.; Kida, K.; Yogo, K.; Denayer, J.F.M.; Sugita, M.; Takewaki, T. Seeding-free aqueous synthesis of zeolitic imidazolate framework-8 membranes: How to trigger preferential heterogeneous nucleation and membrane growth in aqueous rapid reaction solution. J. Membr. Sci. 2014, 472, 29–38. [Google Scholar] [CrossRef]
- Tanaka, S.; Okubo, K.; Kida, K.; Sugita, M.; Takewaki, T. Grain size control of ZIF-8 membranes by seeding-free aqueous synthesis and their performances in propylene/propane separation. J. Membr. Sci. 2017, 544, 306–311. [Google Scholar] [CrossRef]
- Li, W.; Yang, Z.; Zhang, G.; Fan, Z.; Meng, Q.; Shen, C.; Gao, C. Stiff metal–organic framework–polyacrylonitrile hollow fiber composite membranes with high gas permeability. J. Mater. Chem. A 2014, 2, 2110–2118. [Google Scholar] [CrossRef]
- Li, W.; Meng, Q.; Zhang, C.; Zhang, G. Metal–organic framework/PVDF composite membranes with high H2 permselectivity synthesized by ammoniation. Chem. Eur. J. 2015, 21, 7224–7230. [Google Scholar] [CrossRef]
- Wei, R.C.; Liu, X.W.; Zhou, Z.Y.; Chen, C.L.; Yuan, Y.Y.; Li, Z.; Li, X.; Dong, X.L.; Lu, D.W.; Han, Y.; et al. Carbon nanotube supported oriented metal organic framework membrane for effective ethylene/ethane separation. Sci. Adv. 2022, 8, eabm6741. [Google Scholar] [CrossRef]
- Yao, J.; Dong, D.; Li, D.; He, L.; Xu, G.; Wang, H. Contra-diffusion synthesis of ZIF-8 films on a polymer substrate. Chem. Commun. 2011, 47, 2559–2561. [Google Scholar] [CrossRef]
- Know, H.T.; Jeong, H.K. In situ synthesis of thin zeolitic–imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. J. Am. Chem. Soc. 2013, 135, 10763–10768. [Google Scholar]
- Hara, N.; Yoshimune, M.; Negishi, H.; Haraya, K.; Hara, S.; Yamaguchi, T. Diffusive separation of propylene/propane with ZIF-8 membranes. J. Membr. Sci. 2014, 450, 215–223. [Google Scholar] [CrossRef]
- Dong, X.; Huang, K.; Liu, S.; Ren, R.; Jin, W.; Lin, Y.S. Synthesis of zeolitic imidazolate framework-78 molecular-sieve membrane: Defect formation and elimination. J. Mater. Chem. 2012, 22, 19222–19227. [Google Scholar] [CrossRef]
- Guerrero, V.V.; Yoo, Y.; McCarthy, M.C.; Jeong, H.K. HKUST-1membranes on porous supports using secondary growth. J. Mater. Chem. 2010, 20, 3938–3943. [Google Scholar] [CrossRef]
- Bux, H.; Chmelik, C.; Krishna, R.; Caro, J. Ethene/ethane separation by the MOF membrane ZIF-8: Molecular correlation of permeation, adsorption, diffusion. J. Membr. Sci. 2011, 369, 284–289. [Google Scholar] [CrossRef]
- Sánchez, E.P.V.; Gliemann, H.; Haas-Santo, K.; Ding, W.J.; Hansjosten, E.; Wohlgemuth, J.; Woll, C.; Dittmeyer, R. α-Al2O3-supported ZIF-8 SURMOF membranes: Diffusion mechanism of ethene/ethane mixtures and gas separation performance. J. Membr. Sci. 2019, 594, 117421. [Google Scholar] [CrossRef]
- Sun, Y.W.; Ji, T.T.; Gao, Y.L.; Yan, J.H.; He, Y.F.; Xu, G.L.; Yan, F.Y.; Bian, Q.; Liu, Y. Freezing contra-diffusion: A new protocol for synthesizing Co-gallate MOF membranes toward superior ethylene/ethane separation performance. ACS Mater. Lett. 2023, 5, 558–564. [Google Scholar] [CrossRef]
- Yang, K.; Ban, Y.J.; Yang, W.S. Layered MOF membranes modified with ionic liquid/AgBF4 composite for olefin/paraffin separation. J. Membr. Sci. 2021, 639, 119771. [Google Scholar] [CrossRef]
- Wang, J.Y.; Wang, Y.; Liu, Y.T.; Wu, H.; Zhao, M.G.; Ren, Y.X.; Pu, Y.C.A.; Li, W.P.; Wang, S.Y.; Song, S.Q.; et al. Ultrathin ZIF-8 membrane through inhibited Ostwald ripening for high-flux C3H6/C3H8 separation. Adv. Funct. Mater. 2022, 32, 2208064. [Google Scholar] [CrossRef]
- Zhang, K.; Lively, R.P.; Zhang, C.; Chance, R.R.; Koros, W.J.; Sholl, D.S.; Nair, S. Exploring the framework hydrophobicity and flexibility of ZIF-8: From biofuel recovery to hydrocarbon separations. J. Phys. Chem. Lett. 2013, 4, 3618–3622. [Google Scholar] [CrossRef]
- Bux, H.; Chmelik, C.; van Baten, J.M.; Krishna, R.; Caro, J. Novel MOF-membrane for molecular sieving predicted by IR-diffusion studies and molecular modeling. Adv. Mater. 2010, 22, 4741–4743. [Google Scholar] [CrossRef]
- Li, K.; Olson, D.H.; Seidel, J.; Emge, T.J.; Gong, H.; Zeng, H.; Li, J. Zeolitic imidazolate frameworks for kinetic separation of propane and propene. J. Am. Chem. Soc. 2009, 131, 10368–10369. [Google Scholar] [CrossRef]
- Pan, Y.; Lai, Z. Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chem. Commun. 2011, 47, 10275–10277. [Google Scholar] [CrossRef]
- Zhang, C.; Lively, R.P.; Zhang, K.; Johnson, J.R.; Karvan, O.; Koros, W.J. Unexpected molecular sieving properties of zeolitic imidazolate framework-8. J. Phys. Chem. Lett. 2012, 3, 2130–2134. [Google Scholar] [CrossRef]
- Song, E.Y.; Wei, K.F.; Lian, H.Q.; Hua, J.X.; Tao, H.X.; Wu, T.T.; Pan, Y.C.; Xing, W.H. Improved propylene/propane separation performance under high temperature and pressures on in-situ ligand-doped ZIF-8 membranes. J. Membr. Sci. 2021, 617, 118655. [Google Scholar] [CrossRef]
- Brown, A.J.; Brunelli, N.A.; Eum, K.; Rashidi, F.; Johnson, J.R.; Koros, W.J.; Jones, C.W.; Nair, S. Interfacial microfluidic processing of metal-organic framework hollow fiber membranes. Science 2014, 345, 72–75. [Google Scholar] [CrossRef]
- Eum, K.; Ma, C.; Rownaghi, A.; Jones, C.W.; Nair, S. ZIF-8 membranes via interfacial microfluidic processing in polymeric hollow fibers: Efficient propylene separation at elevated pressures. ACS Appl. Mater. Interfaces 2016, 8, 25337–25342. [Google Scholar] [CrossRef]
- Kwon, H.T.; Jeong, H.K.; Lee, A.S.; An, H.S.; Lee, J.S. Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. J. Am. Chem. Soc. 2015, 137, 12304–12311. [Google Scholar] [CrossRef]
- Zhou, S.; Wei, Y.; Li, L.; Duan, Y.; Hou, Q.; Zhang, L.; Ding, L.X.; Xue, J.; Wang, H.; Caro, J. Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation. Sci. Adv. 2018, 4, eaau1393. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.Q.; Zhou, S.; Wei, Y.Y.; Caro, J.; Wang, H.H. Balancing the grain boundary structure and the framework flexibility through bimetallic metal-organic framework (MOF) membranes for gas separation. J. Am. Chem. Soc. 2020, 142, 9582–9586. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.L.; Wei, Y.Y.; Lyu, L.X.; Hou, Q.Q.; Caro, J.; Wang, H.H. Flexible polypropylene-supported ZIF-8 membranes for highly efficient propene/propane separation. J. Am. Chem. Soc. 2020, 142, 20915–20919. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Su, P.; Li, Z.; Xu, Z.; Wang, F.; Ou, H.; Zhang, J.; Zhang, G.; Zeng, E. Ultrathin metal–organic framework membrane production by gel–vapour deposition. Nat. Commun. 2017, 8, 406. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Kumar, P.; Mittal, N.; Khlyustova, A.; Daoutidis, P.; Mkhoyan, K.A.; Tsapatsis, M. Zeolitic imidazolate framework membranes made by ligand-induced permselectivation. Science 2018, 361, 1008–1011. [Google Scholar] [CrossRef] [PubMed]
- Eum, K.; Yang, S.W.; Min, B.; Ma, C.; Drese, J.H.; Tamhankar, Y.; Nair, S. All-nanoporous hybrid membranes: Incorporating zeolite nanoparticles and nanosheets with zeolitic imidazolate framework matrices. ACS Appl. Mater. Interfaces 2020, 12, 27368–27377. [Google Scholar] [CrossRef]
- Liu, D.H.; Xiang, L.; Chang, H.; Chen, K.; Wang, C.Q.; Pan, Y.C.; Li, Y.S.; Jiang, Z.Y. Rational matching between MOFs and polymers in mixed matrix membranes for propylene/propane separation. Chem. Eng. Sci. 2019, 204, 151–160. [Google Scholar] [CrossRef]
- Sun, Y.X.; Tian, L.; Qiao, Z.H.; Geng, C.X.; Guo, X.Y.; Zhong, C.L. Surface modification of bilayer structure on metal-organic frameworks towards mixed matrix membranes for efficient propylene/propane separation. J. Membr. Sci. 2022, 648, 120350. [Google Scholar] [CrossRef]
- Lee, T.H.; Jung, J.G.; Kim, Y.J.; Roh, J.S.; Yoon, H.W.; Ghanem, B.S.; Kim, H.W.; Cho, Y.H.; Pinnau, I.; Park, H.B. Defect engineering in metal-organic frameworks towards advanced mixed matrix membranes for efficient propylene/propane separation. Angew. Chem. Int. Ed. 2021, 60, 13081–13088. [Google Scholar] [CrossRef]
- Song, S.Q.; Jiang, H.F.; Wu, H.; Zhao, M.G.; Guo, Z.Y.; Li, B.Y.; Ren, Y.X.; Wang, Y.H.; Ye, C.M.; Guiver, M.D.; et al. Weakly pressure-dependent molecular sieving of propylene/propane mixtures through mixed matrix membrane with ZIF-8 direct-through channels. J. Membr. Sci. 2022, 648, 120366. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Z.J.; Liu, G.P.; Belmabkhout, Y.; Adil, K.; Eddaoudi, M.; Koros, W. Conformation-controlled molecular sieving effects for membrane-based propylene/propane separation. Adv. Mater. 2019, 31, 1807513. [Google Scholar] [CrossRef]
- Chen, X.; Chen, G.N.; Liu, G.Z.; Liu, G.P.; Jin, W.Q. UTSA-280 metal-organic framework incorporated 6FDA-polyimide mixed-matrix membranes for ethylene/ethane separation. AIChE J. 2022, 68, e17688. [Google Scholar] [CrossRef]
- Chuah, C.Y.; Samarasinghe, S.A.S.C.; Li, W.; Goh, K.; Bae, T.H. Leveraging nanocrystal HKUST-1 in mixed-matrix membranes for ethylene/ethane separation. Membranes 2020, 10, 74. [Google Scholar] [CrossRef] [PubMed]
- He, R.R.; Cong, S.Z.; Peng, D.L.; Zhang, Y.T.; Shan, M.X.; Zhu, J.Y.; Wang, J.; Gascon, J. Enhanced compatibility and selectivity in mixed matrix membranes for propylene/propane separation. AIChE J. 2023, 69, e17948. [Google Scholar] [CrossRef]
- Feng, Y.; Yu, L.T.; Zhang, K.; Fan, W.D.; Fan, L.L.; Kang, Z.X.; Sun, D.F. Fabrication of mixed matrix membranes with regulated MOF fillers via incorporating guest molecules for optimizing light hydrocarbon separation performance. CrystEngComm 2022, 24, 7658–7668. [Google Scholar] [CrossRef]
- Shen, Q.; Cong, S.Z.; He, R.R.; Wang, Z.; Jin, Y.H.; Li, H.; Cao, X.Z.; Wang, J.; Van der Bruggen, B.; Zhang, Y.T. SIFSIX-3-Zn/PIM-1 mixed matrix membranes with enhanced permeability for propylene/propane separation. J. Membr. Sci. 2019, 588, 117201. [Google Scholar] [CrossRef]
- Eum, K.; Ma, C.; Koh, D.Y.; Rashidi, F.; Li, Z.; Jones, C.W.; Lively, R.P.; Nair, S. Zeolitic imidazolate framework membranes supported on macroporous carbon hollow fibers by fluidic processing techniques. Adv. Mater. Interfaces 2017, 4, 1700080. [Google Scholar] [CrossRef]
- Wu, X.; Wei, W.; Jiang, J.; Caro, J.; Huang, A. High-flux high-selectivity metal–organic framework MIL-160 membrane for xylene isomer separation by pervaporation. Angew. Chem. Int. Ed. 2018, 57, 15354–15358. [Google Scholar] [CrossRef]
- Rahman, M.M.; Abetz, C.; Shishatskiy, S.; Martin, J.; Müller, A.J.; Abetz, V. CO2 selective PolyActive membrane: Thermal transitions and gas permeance as a function of thickness. ACS Appl. Mater. Interfaces 2018, 10, 26733–26744. [Google Scholar] [CrossRef]
- Embaye, A.S.; Martínez-Izquierdo, L.; Malankowska, M.; Téllez, C.; Coronas, J. Poly(ether-block-amide) copolymer membranes in CO2 separation applications. Energy Fuels 2021, 35, 17085–17102. [Google Scholar] [CrossRef]
- Merkel, T.C.; Lin, H.Q.; Wei, X.T.; Baker, R. Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Membr. Sci. 2010, 359, 126–139. [Google Scholar] [CrossRef]
- Venna, S.R.; Carreon, M.A. Metal organic framework membranes for carbon dioxide separation. Chem. Eng. Sci. 2015, 124, 3–19. [Google Scholar] [CrossRef]
- Dunne, J.; Myers, A.L. Adsorption of gas mixtures in micropores: Effect of difference in size of adsorbate molecules. Chem. Eng. Sci. 1994, 49, 2941–2951. [Google Scholar] [CrossRef]
- Pakseresht, S.; Kazemeini, M.; Akbarnejad, M.M. Equilibrium isotherms for CO, CO2, CH4 and C2H4 on the 5A molecular sieve by a simple volumetric apparatus. Sep. Purif. Technol. 2002, 28, 53–60. [Google Scholar] [CrossRef]
- Maghsoudi, H.; Soltanieh, M.; Bozorgzadeh, H.; Mohamadalizadeh, A. Adsorption isotherms and ideal selectivities of hydrogen sulfide and carbon dioxide over methane for the Si-CHA zeolite: Comparison of carbon dioxide and methane adsorption with the all-silica DD3R zeolite. Adsorption 2013, 19, 1045–1053. [Google Scholar] [CrossRef]
- Calleja, G.; Pau, J.; Calles, J.A. Pure and multicomponent adsorption equilibrium of carbon dioxide, ethylene, and propane on ZSM-5 zeolites with different Si/Al ratios. J. Chem. Eng. Data 1998, 43, 994–1003. [Google Scholar] [CrossRef]
- Venna, S.R.; Carreon, M.A. Synthesis of SAPO-34 crystals in the presence of crystal growth inhibitors. J. Phys. Chem. B 2008, 112, 16261–16265. [Google Scholar] [CrossRef]
- Lin, J.B.; Nguyen, T.T.T.; Vaidhyanathan, R.; Burner, J.; Taylor, J.M.; Durekova, H.; Akhtar, F.; Mah, R.K.; Ghaffari-Nik, O.; Marx, S.; et al. A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science 2021, 374, 1464–1469. [Google Scholar] [CrossRef]
- Millward, A.R.; Yaghi, O.M. Metal−organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. J. Am. Chem. Soc. 2005, 127, 17998–17999. [Google Scholar] [CrossRef]
- Bourrelly, S.; Llewellyn, P.L.; Serre, C.; Millange, F.; Loiseau, T.; Férey, G. Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47. J. Am. Chem. Soc. 2005, 127, 13519–13521. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Benin, A.I.; Jakubczak, P.; Willis, R.R.; LeVan, M.D. CO2/H2O adsorption equilibrium and rates on metal−organic frameworks: HKUST-1 and Ni/DOBDC. Langmuir 2010, 26, 14301–14307. [Google Scholar] [CrossRef]
- Mason, J.A.; Sumida, K.; Herm, Z.R.; Krishna, R.; Long, J.R. Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ. Sci. 2011, 4, 3030–3040. [Google Scholar] [CrossRef]
- Shekhah, O.; Belmabkhout, Y.; Chen, Z.; Guillerm, V.; Cairns, A.; Adil, K.; Eddaoudi, M. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture. Nat. Commun. 2014, 5, 4228. [Google Scholar] [CrossRef]
- Venna, S.R.; Zhu, M.Q.; Li, S.G.; Carreon, M.A. Knudsen diffusion through ZIF-8 membranes synthesized by secondary seeded growth. J. Porous Mater. 2014, 21, 235–240. [Google Scholar] [CrossRef]
- Zhou, S.; Zou, X.; Sun, F.; Ren, H.; Liu, J.; Zhang, F.; Zhao, N.; Zhu, G. Development of hydrogen-selective CAU-1 MOF membranes for hydrogen purification by ‘dual-metal-source’ approach. Int. J. Hydrogen Energy 2013, 38, 5338–5347. [Google Scholar] [CrossRef]
- Nian, P.; Liu, H.; Zhang, X. Bottom-up fabrication of two-dimensional Co-based zeolitic imidazolate framework tubular membranes consisting of nanosheets by vapor phase transformation of Co-based gel for H2/CO2 separation. J. Membr. Sci. 2019, 573, 200–209. [Google Scholar] [CrossRef]
- Ben, T.; Lu, C.; Pei, C.; Xu, S.; Qiu, S. Polymer-supported and free-standing metal–organic framework membrane. Chem. Eur. J. 2012, 18, 10250–10253. [Google Scholar] [CrossRef]
- Kang, Z.; Xue, M.; Fan, L.; Huang, L.; Guo, L.; Wei, G.; Chen, B.; Qiu, S. Highly selective sieving of small gas molecules by using an ultra-microporous metal–organic framework membrane. Energy Environ. Sci. 2014, 7, 4053–4060. [Google Scholar] [CrossRef]
- Wang, X.; Chi, C.; Zhang, K.; Qian, Y.; Gupta, K.M.; Kang, Z.; Jiang, J.; Zhao, D. Reversed thermo-switchable molecular sieving membranes composed of two-dimensional metal-organic nanosheets for gas separation. Nat. Commun. 2017, 8, 14460. [Google Scholar] [CrossRef]
- Li, W.; Su, P.; Zhang, G.; Shen, C.; Meng, Q. Preparation of continuous NH2–MIL-53 membrane on ammoniated polyvinylidene fluoride hollow fiber for efficient H2 purification. J. Membr. Sci. 2015, 495, 384–391. [Google Scholar] [CrossRef]
- Zhang, F.; Zou, X.; Gao, X.; Fan, S.; Sun, F.; Ren, H.; Zhu, G. Hydrogen selective NH2-MIL-53(Al) MOF membranes with high permeability. Adv. Funct. Mater. 2012, 22, 3583–3590. [Google Scholar] [CrossRef]
- Wang, N.; Mundstock, A.; Liu, Y.; Huang, A.; Caro, J. Amine-modified Mg-MOF-74/CPO-27-Mg membrane with enhanced H2/CO2 separation. Chem. Eng. Sci. 2015, 124, 27–36. [Google Scholar] [CrossRef]
- Fan, S.; Sun, F.; Xie, J.; Guo, J.; Zhang, L.; Wang, C.; Pan, Q.; Zhu, G. Facile synthesis of a continuous thin Cu(bipy)2(SiF6) membrane with selectivity towards hydrogen. J. Mater. Chem. A 2013, 1, 11438–11442. [Google Scholar] [CrossRef]
- Knebel, A.; Sundermann, L.; Mohmeyer, A.; Strauß, I.; Friebe, S.; Behrens, P.; Caro, J. Azobenzene guest molecules as light-switchable CO2 valves in an ultrathin UiO-67 membrane. Chem. Mater. 2017, 29, 3111–3117. [Google Scholar] [CrossRef]
- Li, W.; Meng, Q.; Li, X.; Zhang, C.; Fan, Z.; Zhang, G. Non-activation ZnO array as a buffering layer to fabricate strongly adhesive metal–organic framework/PVDF hollow fiber membranes. Chem. Commun. 2014, 50, 9711–9713. [Google Scholar] [CrossRef]
- Xie, Z.; Yang, J.; Wang, J.; Bai, J.; Yin, H.; Yuan, B.; Lu, J.; Zhang, Y.; Zhou, L.; Duan, C. Deposition of chemically modified α-Al2O3 particles for high performance ZIF-8 membrane on a macroporous tube. Chem. Commun. 2012, 48, 5977–5979. [Google Scholar] [CrossRef]
- Huang, A.; Liu, Q.; Wang, N.; Caro, J. Highly hydrogen permselective ZIF-8 membranes supported on polydopamine functionalized macroporous stainless-steel-nets. J. Mater. Chem. A 2014, 2, 8246–8251. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, D.; Liu, Z.; Zhong, C. Synthesis of zeolitic imidazolate framework membrane using temperature-switching synthesis strategy for gas separation. Ind. Eng. Chem. Res. 2016, 55, 7164–7170. [Google Scholar] [CrossRef]
- Huang, A.; Wang, N.; Kong, C.; Caro, J. Organosilica-functionalized zeolitic imidazolate framework ZIF-90 membrane with high gas-separation performance. Angew. Chem. Int. Ed. 2012, 51, 10551–10555. [Google Scholar] [CrossRef]
- Huang, A.; Chen, Y.; Wang, N.; Hu, Z.; Jiang, J.; Caro, J. A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation. Chem. Commun. 2012, 48, 10981–10983. [Google Scholar] [CrossRef]
- Peng, Y.; Li, Y.; Ban, Y.; Yang, W. Two-dimensional metal–organic framework nanosheets for membrane-based gas separation. Angew. Chem. Int. Ed. 2017, 56, 9757–9761. [Google Scholar] [CrossRef]
- Yin, H.; Wang, J.; Xie, Z.; Yang, J.; Bai, J.; Lu, J.; Zhang, Y.; Yin, D.; Lin, J.Y.S. A highly permeable and selective amino-functionalized MOF CAU-1 membrane for CO2–N2 separation. Chem. Commun. 2014, 50, 3699–3701. [Google Scholar] [CrossRef]
- Hara, N.; Yoshimune, M.; Negishi, H.; Haraya, K.; Hara, S.; Yamaguchi, T. Metal–organic framework membranes with layered structure prepared within the porous support. RSC Adv. 2013, 3, 14233–14236. [Google Scholar] [CrossRef]
- Rui, Z.; James, J.B.; Kasik, A.; Lin, Y.S. Metal-organic framework membrane process for high purity CO2 production. AIChE J. 2016, 62, 3836–3841. [Google Scholar] [CrossRef]
- Dou, Z.; Cai, J.; Cui, Y.; Yu, J.; Xia, T.; Yang, Y.; Qian, G. Preparation and gas separation properties of metal-organic framework membranes. Z. Anorg. Allg. Chem. 2015, 641, 792–796. [Google Scholar] [CrossRef]
- Wu, W.; Li, Z.; Chen, Y.; Li, W. Polydopamine-modified metal–organic framework membrane with enhanced selectivity for carbon capture. Environ. Sci. Technol. 2019, 53, 3764–3772. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, H.; Liu, J.; Hou, J.; Zhang, Y. Enzyme-embedded metal–organic framework membranes on polymeric substrates for efficient CO2 capture. J. Mater. Chem. A 2017, 5, 19954–19962. [Google Scholar] [CrossRef]
- Jomekian, A.; Behbahani, R.M.; Mohammadi, T.; Kargari, A. Innovative layer by layer and continuous growth methods for synthesis of ZIF-8 membrane on porous polymeric support using poly(ether-block-amide) as structure directing agent for gas separation. Microporous Mesoporous Mater. 2016, 234, 43–54. [Google Scholar] [CrossRef]
- Liu, M.; Xie, K.; Nothling, M.D.; Gurr, P.A.; Tan, S.S.L.; Fu, Q.; Webley, P.A.; Qiao, G.G. Ultrathin Metal–Organic Framework Nanosheets as a Gutter Layer for Flexible Composite Gas Separation Membranes. ACS Nano 2018, 12, 11591–11599. [Google Scholar] [CrossRef]
- Kong, C.; Du, H.; Chen, L.; Chen, B. Nanoscale MOF/organosilica membranes on tubular ceramic substrates for highly selective gas separation. Energy Environ. Sci. 2017, 10, 1812–1819. [Google Scholar] [CrossRef]
- Nan, J.; Dong, X.; Wang, W.; Jin, W. Formation mechanism of metal–organic framework membranes derived from reactive seeding approach. Microporous Mesoporous Mater. 2012, 155, 90–98. [Google Scholar] [CrossRef]
- Yeo, Z.Y.; Chai, S.P.; Zhu, P.W.; Mohamed, A.R. Development of a hybrid membrane through coupling of high selectivity zeolite T on ZIF-8 intermediate layer and its performance in carbon dioxide and methane gas separation. Microporous Mesoporous Mater. 2014, 196, 79–88. [Google Scholar] [CrossRef]
- Li, J.; Cao, W.; Mao, Y.; Ying, Y.; Sun, L.; Peng, X. Zinc hydroxide nanostrands: Unique precursors for synthesis of ZIF-8 thin membranes exhibiting high size-sieving ability for gas separation. CrystEngComm 2014, 16, 9788–9791. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, Y.; Wang, N.; Li, Y.; Pan, J.H.; Yang, W.; Caro, J. Significantly enhanced separation using ZIF-8 membranes by partial conversion of calcined layered double hydroxide precursors. ChemSusChem 2015, 8, 3582–3586. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, H.; Ma, Q.; Mo, K.; Mao, H.; Feldhoff, A.; Cao, X.; Li, Y.; Pan, F.; Jiang, Z. A MOF glass membrane for gas separation. Angew. Chem. 2020, 132, 4395–4399. [Google Scholar] [CrossRef]
- Cacho-Bailo, F.; Etxeberría-Benavides, M.; Karvan, O.; Téllez, C.; Coronas, J. Sequential amine functionalization inducing structural transition in an aldehyde-containing zeolitic imidazolate framework: Application to gas separation membranes. CrystEngComm 2017, 19, 1545–1554. [Google Scholar] [CrossRef]
- Fan, W.D.; Ying, Y.P.; Peh, S.B.; Yuan, H.Y.; Yang, Z.Q.; Yuan, Y.D.; Shi, D.C.; Yu, X.; Kang, C.J.; Zhao, D. Multivariate polycrystalline metal–organic framework membranes for CO2/CH4 separation. J. Am. Chem. Soc. 2021, 143, 17716–17723. [Google Scholar] [CrossRef]
- Mubashir, M.; Fong, Y.Y.; Leng, C.T.; Keong, L.K. Optimization of spinning parameters on the fabrication of NH2-MIL-53(Al)/cellulose acetate (CA) hollow fiber mixed matrix membrane for CO2 separation. Sep. Purif. Technol. 2019, 215, 32–43. [Google Scholar] [CrossRef]
- Meshkat, S.; Kaliaguine, S.; Rodrigue, D. Mixed matrix membranes based on amine and non-amine MIL-53(Al) in Pebax® MH-1657 for CO2 separation. Sep. Purif. Technol. 2018, 200, 177–190. [Google Scholar] [CrossRef]
- Sabetghadam, A.; Liu, X.L.; Orsi, A.F.; Lozinska, M.M.; Johnson, T.; Jansen, K.M.B.; Wright, P.A.; Carta, M.; McKeown, N.B.; Kapteijn, F.; et al. Towards high performance metal–organic framework–microporous polymer mixed matrix membranes: Addressing compatibility and limiting aging by polymer doping. Chem. Eur. J. 2018, 24, 12796–12800. [Google Scholar] [CrossRef]
- Fan, Y.F.; Yu, H.Y.; Xu, S.; Shen, Q.C.; Ye, H.M.; Li, N.W. Zn(II)-modified imidazole containing polyimide/ZIF-8 mixed matrix membranes for gas separations. J. Membr. Sci. 2020, 597, 117775. [Google Scholar] [CrossRef]
- Meshkat, S.; Kaliaguine, S.; Rodrigue, D. Comparison between ZIF-67 and ZIF-8 in Pebax® MH-1657 mixed matrix membranes for CO2 separation. Sep. Purif. Technol. 2020, 235, 116150. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, D.; Zhang, S.; Hu, L.; Jin, J. Interfacial design of mixed matrix membranes for improved gas separation performance. Adv. Mater. 2016, 28, 3399–3405. [Google Scholar] [CrossRef]
- Nafisi, V.; Hagg, M.B. Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. J. Membr. Sci. 2014, 459, 244–255. [Google Scholar] [CrossRef]
- Dong, L.; Chen, M.; Li, J.; Shi, D.; Dong, W.; Li, X.; Bai, Y. Metal-organic framework-graphene oxide composites: A facile method to highly improve the CO2 separation performance of mixed matrix membranes. J. Membr. Sci. 2016, 520, 801–811. [Google Scholar] [CrossRef]
- Li, H.; Tuo, L.; Yang, K.; Jeong, H.K.; Dai, Y.; He, G.; Zhao, W. Simultaneous enhancement of mechanical properties and CO2 selectivity of ZIF-8 mixed matrix membranes: Interfacial toughening effect of ionic liquid. J. Membr. Sci. 2016, 511, 130–142. [Google Scholar] [CrossRef]
- Jeazet, H.B.T.; Sorribas, S.; Román-Marín, J.M.; Zornoza, B.; Téllez, C.; Coronas, J. Increased selectivity in CO2/CH4 separation with mixed-matrix membranes of polysulfone and mixed-MOFs MIL-101(Cr) and ZIF-8. Eur. J. Inorg. Chem. 2016, 2016, 4363–4367. [Google Scholar] [CrossRef]
- Xin, Q.P.; Ouyang, J.Y.; Liu, T.Y.; Li, Z.; Li, Z.; Liu, Y.C.; Wang, S.F.; Wu, H.; Jiang, Z.Y.; Gao, X.Z. Enhanced interfacial interaction and CO2 separation performance of mixed matrix membrane by incorporating polyethylenimine-decorated metal–organic frameworks. ACS Appl. Mater. Interfaces 2015, 7, 1065–1077. [Google Scholar] [CrossRef]
- Japip, S.; Xiao, Y.; Chung, T.S. Particle-size effects on gas transport properties of 6FDA-Durene/ZIF-71 mixed matrix membranes. Ind. Eng. Chem. Res. 2016, 55, 9507–9517. [Google Scholar] [CrossRef]
- Hao, L.; Liao, K.S.; Chung, T.S. Photo-oxidative PIM-1 based mixed matrix membranes with superior gas separation performance. J. Mater. Chem. A 2015, 3, 17273–17281. [Google Scholar] [CrossRef]
- Ghalei, B.; Sakurai, K.; Kinoshita, Y.; Wakimoto, K.; Isfahani, A.P.; Song, Q.; Doitomi, K.; Furukawa, S.; Hirao, H.; Kusuda, H.; et al. Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nat. Energy 2017, 2, 17086. [Google Scholar] [CrossRef]
- Yu, G.L.; Zou, X.Q.; Sun, L.; Liu, B.S.; Wang, Z.Y.; Zhang, P.P.; Zhu, G.S. Constructing connected paths between UiO-66 and PIM-1 to improve membrane CO2 separation with crystal-like gas selectivity. Adv. Mater. 2019, 31, 1806853. [Google Scholar] [CrossRef]
- Venna, S.R.; Lartey, M.; Li, T.; Spore, A.; Kumar, S.; Nulwala, H.B.; Luebke, D.R.; Rosi, N.L.; Albenze, E. Fabrication of MMMs with improved gas separation properties using externally-functionalized MOF particles. J. Mater. Chem. A 2015, 3, 5014–5022. [Google Scholar] [CrossRef]
- Jiang, X.; Li, S.; He, S.; Bai, Y.; Shao, L. Interface manipulation of CO2–philic composite membranes containing designed UiO-66 derivatives towards highly efficient CO2 capture. J. Mater. Chem. A 2018, 6, 15064–15073. [Google Scholar] [CrossRef]
- Tien-Binh, N.; Vinh-Thang, H.; Chen, X.Y.; Rodrigue, D.; Kaliaguine, S. Crosslinked MOF-polymer to enhance gas separation of mixed matrix membranes. J. Membr. Sci. 2016, 520, 941–950. [Google Scholar] [CrossRef]
- Perea-Cachero, A.; Etxeberría-Benavides, M.; David, O.; Deacon, A.; Johnson, T.; Malankowska, M.; Téllez, C.; Coronas, J. Pre-combustion gas separation by ZIF-8-polybenzimidazole mixed matrix membranes in the form of hollow fibres-long-term experimental study. R. Soc. Open Sci. 2021, 8, 210660. [Google Scholar] [CrossRef]
- Haldoupis, E.; Nair, S.; Sholl, D.S. Efficient calculation of diffusion limitations in metal organic framework materials: A tool for identifying materials for kinetic separations. J. Am. Chem. Soc. 2010, 132, 7528–7539. [Google Scholar] [CrossRef]
- Daglar, H.; Keskin, S. Computational screening of metal-organic frameworks for membrane-based CO2/N2/H2O separations: Best materials for flue gas separation. J. Phys. Chem. C 2018, 122, 17347–17357. [Google Scholar] [CrossRef]
- Krishna, R. Methodologies for screening and selection of crystalline microporous materials in mixture separations. Sep. Purif. Technol. 2018, 194, 281–300. [Google Scholar] [CrossRef]
- Keskin, S.; Altinkaya, S.A. A review on computational modeling tools for MOF-based mixed matrix membranes. Computation 2019, 7, 36. [Google Scholar] [CrossRef]
- Daglar, H.; Keskin, S. Recent advances, opportunities, and challenges in high-throughput computational screening of MOFs for gas separations. Coord. Chem. Rev. 2020, 422, 213470. [Google Scholar] [CrossRef]
- Li, W.; Liang, T.G.; Lin, Y.C.; Wu, W.X.; Li, S. Machine learning accelerated high-throughput computational screening of metal-organic frameworks. Prog. Chem. 2022, 34, 2619–2637. [Google Scholar]
- Gulbalkan, H.C.; Aksu, G.O.; Ercakir, G.; Keskin, S. Accelerated discovery of metal-organic frameworks for CO2 capture by artificial intelligence. Ind. Eng. Chem. Res. 2023, 63, 37–48. [Google Scholar] [CrossRef]
- Demir, H.; Keskin, S. A new era of modeling MOF-based membranes: Cooperation of theory and data science. Macromolec. Mater. Eng. 2024, 309, 2300225. [Google Scholar] [CrossRef]
MOF | Metal | Ligand | BET Area (m2 g−1) | Pore Volume (cm3 g−1) | Thermal Stability (Activation Temp.) |
---|---|---|---|---|---|
HKUST-1 | Cu | benzene-1,3,5-tricarboxylic acid | <ca. 1600 | <ca. 0.58 | <ca. 300 °C (150 °C) |
MIL-53 | Al | benzene-1,4-dicarboxylic acid | <ca. 1500 | <ca. 0.60 | <ca. 450 °C (200 °C) |
MIL-100 | Fe | benzene-1,3,5-tricarboxylic acid | <ca. 1900 | <ca. 1.08 | <ca. 400 °C (150 °C) |
MIL-101-NH2 | Al | 2-amino-1,4-benzenedicarboxylic acid | <ca. 3000 | <ca. 1.32 | <ca. 350 °C (200 °C) |
MIL-125-NH2 | Ti | 2-amino-1,4-benzenedicarboxylic acid | <ca. 1500 | <ca. 0.74 | <ca. 300 °C (200 °C) |
MOF-74 | Mg | 2,5-Dihydroxyterephthalic acid | <ca. 1100 | <ca. 0.65 | <ca. 300 °C (200 °C) |
UiO-66 | Zr | benzene-1,4-dicarboxylic acid | <ca. 1600 | <ca. 0.50 | <ca. 400 °C (300 °C) |
UiO-66-NH2 | Zr | 2-aminobenzene-1,4-dicarboxylic acid | <ca. 1000 | <ca. 0.41 | <ca. 300 °C (150 °C) |
UiO-67 | Zr | 4,4′-biphenyldicarboxylic acid | <ca. 2200 | <ca. 1.00 | <ca. 300 °C (150 °C) |
CAU-10 | Al | benzene-1,3-dicarboxylate | <ca. 640 | <ca. 0.27 | <ca. 400 °C (150 °C) |
ZIF-7 | Zn | benzimidazole | – | <ca. 0.18 | <ca. 400 °C (120 °C) |
ZIF-8 | Zn | 2-methylimidazole | <ca. 1800 | <ca. 0.65 | <ca. 400 °C (200 °C) |
ZIF-67 | Co | 2-methylimidazole | <ca. 1500 | <ca. 0.60 | <ca. 400 °C (150 °C) |
ZIF-90 | Zn | Imidazole-2-carboxaldehyde | <ca. 1200 | <ca. 0.40 | <ca. 300 °C (120 °C) |
H2 Source | Overall Reaction | Gas Mixture |
---|---|---|
Steam reforming | ex.) CH4 + 2H2O ⇄ CO2 + 4H2 | H2/CO, CO2, CH4, H2O |
Gasification of coal or biomass | ex.) C + 2H2O ⇄ CO2 + 2H2 | H2/CO, CO2, CH4, H2O |
Cracking of hydrocarbons | ex.) CH4 ⇄ C + 2H2 | H2/C1–C6, BTX |
Cracking of NH3 | 2NH3 ⇄ N2 + 3H2 | H2/N2, NH3, H2O |
Electrolysis of water | 2H2O ⇄ O2 + 2H2 | H2/O2, N2, CO2, H2O |
MOF | BET Area (m2 g−1) | Pore Volume (cm3 g−1) | H2 Uptake (wt%) | Ref. |
---|---|---|---|---|
NOTT-112 | 3800 | 1.62 | 2.3 | [74] |
IRMOF-8 | 4461 | – | 1.23 | [75] |
MOF-74 | 1510 | – | 2.2 | [76] |
PCN-12 | 1943 | 0.94 | 3.05 | [77] |
MOF-505 | 1670 | 0.68 | 2.59 | [78] |
PCN-11 | 1931 | 0.91 | 2.55 | [79] |
HKUST-1 | 1507 | 0.75 | 2.54 | [80] |
SNU-77H | 3670 | 1.52 | 1.79 | [81] |
GDMU-2 | 2758 | 1.17 | 2.16 | [82] |
MOF-5 | 3362 | – | 1.32 | [83] |
ZIF-8 | 1630 | 0.66 | 1.27 | [21] |
PCN-61 | 3000 | 1.36 | 2.25 | [84] |
MOF | Method | Support | Membrane Thickness | QC2H4 (mol m−2 s−1 Pa−1) | αC2H4/C2H6 | Ref. |
---|---|---|---|---|---|---|
ZIF-8 | Microwave-assisted | Titania disc | ~30 μm | 1.8 × 10−8 | 2.8 | [106] |
ZIF-8 SURMOF | Layer-by-layer | Au-coated α-Al2O3 | – | 0.4 × 10−7 | 2.6 | [107] |
{100}-oriented ZIF-8 | In situ | CNT-supported AAO | ~540 nm | 8.1 × 10−8 | 9.6 | [100] |
Randomly oriented ZIF-8 | In situ | CNT-supported AAO | ~540 nm | 1.9 × 10−7 | 3.4 | [100] |
Co-gallate | Counter-diffusion | α-Al2O3 | 3.1 μm | 2.3 × 10−8 | 7.8 | [108] |
IL/Ag+-modified Zn2(bim)4 | In situ | α-Al2O3 | ca. 200 nm | 1.5 × 10−8 | 12.0 | [109] |
IOR-ZIF-8 | IOR | AAO | ~200 nm | 1.3 × 10−7 | 120 | [110] |
MOF | Method | Support | Membrane Thickness | QC3H6 (mol m−2 s−1 Pa−1) | αC3H6/C3H8 | Ref. |
---|---|---|---|---|---|---|
ZIF-8 | Secondary growth | α-Al2O3 | ~1 μm | 8.1 × 10−9 | 90.2 | [93] |
ZIF-8 | In situ | α-Al2O3 | 1 μm | 8.5 × 10−9 | 36 | [97] |
ZIF-8 | Counter-diffusion | α-Al2O3 | ~1.5 μm | 2.1 × 10−8 | 50 | [102] |
ZIF-8 | Counter-diffusion | α-Al2O3 | ~80 μm | 2.3 × 10−8 | 57 | [103] |
ZIF-8 | IMMP | Torlon® | 8.8 μm | 1.3 × 10−8 | 12 | [117] |
ZIF-8 | IMMP | Torlon® | 8.1 μm | 1.5 × 10−8 | 180 | [118] |
ZIF-8 | Heteroepitaxial | α-Al2O3 | 1.0 μm | 3.7 × 10−8 | 209.1 | [119] |
ZIF-8 | FCDS | Pt coated AAO | ~200 nm | 1.7 × 10−8 | 304.8 | [120] |
Zn82Co18-ZIF | FCDS | Pt coated AAO | ~700 nm | 1.9 × 10−8 | 202 | [121] |
ZIF-8 | FCDS | Pt coated polypropylene | ~1 μm | 5.5 × 10−9 | 122 | [122] |
ZIF-8 | GVD | PVDF | 114 nm | 2.1 × 10−7 | 67.8 | [123] |
ZIF-8 | ALD | γ-Al2O3 | ~500 nm | 8.8 × 10−8 | 71 | [124] |
{100}-oriented ZIF-8 | In situ | CNT-supported AAO | ~540 nm | 6.1 × 10−9 | 40 | [100] |
Randomly oriented ZIF-8 | In situ | CNT-supported AAO | ~540 nm | 1.8 × 10−8 | 153 | [100] |
ambz/ZIF-8 | Secondary growth | α-Al2O3 | ~900 nm | 1.3 × 10−8 | 67 | [116] |
ZIF-8/MFI | ANHM | α-Al2O3 | ~2 μm | 2.2 × 10−8 | 72 | [125] |
IL/Ag+-modified Zn2(bim)4 | In situ | α-Al2O3 | ca. 200 nm | 4.3 × 10−8 | 28.8 | [109] |
Polymer | MOF Filler | Loading | Pressure, Temp. | C2H4 Permeability (Barrer) | αC2H4/C2H6 | C3H6 Permeability (Barrer) | αC3H6/C3H8 | Ref. |
---|---|---|---|---|---|---|---|---|
XLPEO | ZIF-8 | 42 vol% | 2 bar, 308 K | – | – | 28 | 15 | [126] |
XLPEO/OLC | ZIF-67 | 40.2 wt% | 3 bar, 303 K | – | – | 266.3 | 40.5 | [127] |
6FDA-DAM | UiO-66 | 40 wt% | 2 bar, 308 K | – | – | 237 | 9.8 | [128] |
6FDA-DAM | ZIF-8 | 40 wt% | 1 bar, 303 K | – | – | 582 | 42.8 | [129] |
6FDA-DAM | Zr-fum-fcu | 29.4 vol% | 2 bar, 308 K | – | – | 21.5 | 16.5 | [130] |
6FDA-DAM | UTSA-280 | 10.6 wt% | 2.5 bar, 308 K | 86.07 | 2.78 | – | – | [131] |
6FDA-DAM:DABA | UTSA-280 | 21.8 wt% | 2.5 bar, 308 K | 6.49 | 4.94 | – | – | [131] |
6FDA-TMPDA | HKUST-1 | 20 wt% | 1 bar, 308 K | 183 | 2.4 | – | – | [132] |
6FDA-DAM/PDA | Ni-MOF | 20 wt% | 2 bar, 303 K | – | – | 90 | 75 | [133] |
PMA | PMA@MIL-101 | 7.5 wt% | 2 bar, 298 K | 1632 | 2.88 | 1480 | 5.96 | [134] |
PIM-1 | MIL-101-SO3Ag | 10 wt% | 2 bar, 298 K | 1456 | 3.47 | 1663 | 3.89 | [134] |
PIM-1 | UiO-66-SO3Ag | 10 wt% | 2 bar, 298 K | 869 | 2.49 | 1233 | 4.39 | [134] |
PIM-1 | SIFSIX-3-Zn | 10 wt% | 1 bar, 308 K | – | – | 4012.1 | 7.9 | [135] |
Material | Conditions | CO2 Adsorption (mmol/g) | Ref. | |
---|---|---|---|---|
Zeolite | 13X | 298 K, 21 bar | 5.2 | [142] |
5A | 303 K, 10 bar | 3.55 | [143] | |
DDR | 198 K, 1.85 bar | 2.8 | [144] | |
H-ZSM-5 | 281 K, 0.81 bar | 2.15 | [145] | |
SAPO-34 | 293 K, 1 bar | 3 | [146] | |
MOF | CALF-20 | 293 K, 1.2 bar | 4.07 | [147] |
HKUST-1 | 298 K, 35 bar | 10.7 | [148] | |
MIL-53 | 304 K, 25 bar | 10 | [149] | |
MIL-100 | 304 K, 50 bar | 18 | [32] | |
MIL-101 | 304 K, 50 bar | 40 | [32] | |
MOF-5 | 298 K, 35 bar | 21.7 | [148] | |
Ni-MOF-74 | 298 K, 1 bar | 6.68 | [150] | |
Mg-MOF-74 | 303 K, 1 bar | 8.04 | [151] | |
SIFSIX-3-Cu | 298 K, 0.15 bar | 2.46 | [152] | |
ZIF-8 | 293 K, 1 bar | 2.6 | [153] |
MOF | Remark | Pore Size (Å) | Method | Support | QH2 (GPU) | αH2/CO2 | Ref. |
---|---|---|---|---|---|---|---|
CAU-1 | Al4(OH)2(OCH3)4(NH2-bdc)3 | 3.0~4.0 | Secondary growth | Al2O3 | 322 | 12.34 | [154] |
Co2(bim)4 | nanosheet | 3.4 | Vapor phase | GO on Al2O3 | 564 | 42.7 | [155] |
HKUST-1 | Cu3(btc)2 (Cu-BTC) | 9.0 | In situ | PAN | 210,447 | 7.14 | [98] |
HKUST-1 | In situ | PMMA | 3373 | 9.24 | [156] | ||
JUC-150 | Ni2(L-asp)2(pz) | 3.8 × 4.7, 2.5 × 4.5 | Secondary growth | Ni mesh | 546 | 38.7 | [157] |
MAMS-1 | Ni8(5-bbdc)6(μ-OH)4, nanosheet | – | Drop cast | AAO | 553 | 235 | [158] |
NH2-MIL-53 | Ammoniated support | 8.0 | In situ | PVDF | 12,576 | 32.35 | [159] |
NH2-MIL-53 | Al(OH)(NH2-bdc) | 8.0 | Secondary growth | glass flit | 5925 | 30.9 | [160] |
Mg-MOF-74 | Amine-modified | 11 | In situ | MgO on Al2O3 | 227 | 28 | [161] |
SIXSIX-3-Cu | Cu(bipy)2(SiF6) | 3.54 | In situ | glass flit | 806 | 8.0 | [162] |
UiO-67 | Azobenzene-loaded, light-responsive | 10 | In situ | Al2O3 | 1316 | 14.7 | [163] |
ZIF-7 | Zn(bim)2 | 3.0 | In situ | ZnO on PVDF | 7027 * | 18.43 * | [164] |
ZIF-7 | Ammoniated support | – | In situ | Al2O3 | 3051 | 15.52 | [99] |
ZIF-8 | APTES-modified Al2O3 | 3.4 | In situ | Al2O3 | 171,044 * | 17.0 * | [165] |
ZIF-8 | PDA-modified support | In situ | Al2O3 | 71,044 | 8.1 | [166] | |
ZIF-9 | Co(bim)2 | 4.3 | In situ | Al2O3 | 22,179 | 14.74 * | [167] |
ZIF-90 | APTES-modified support, post-synthetic modification | 3.5 | In situ | Al2O3 | 884 | 21.6 | [168] |
ZIF-95 | Zn(cbim)2 | 3.7 | In situ | Al2O3 | 5820 | 25.7 | [169] |
Zn2(bim)3 | Nanosheet | 2.9 | Drop cast | Al2O3 | 1943 | 128.4 | [170] |
MOF | Remark | Pore Size (Å) | Method | Support | QCO2 (GPU) | ACO2/N2 | Ref. |
---|---|---|---|---|---|---|---|
CAU-1 | Al4(OH)2(OCH3)4(NH2-bdc)3 | 3.0~4.0 | Secondary growth | Alumina | 3880 | 22.82 | [171] |
HKUST-1 | Cu3(btc)2 (Cu-BTC) | 9.0 | Counter-diffusion | Alumina | 7.3 * | 33.3 * | [172] |
IRMOF-1 | isoreticular MOF-1 (MOF-5) | 11.2 | Secondary growth | Al2O3 | 615 | 410 | [173] |
MIL-100(In) | In3O(H2O)2OH(btc)2 | 4.6, 8.2 | In situ | Alumina | 5283 | 3.61 * | [174] |
SIFSIX-3-Cu | Cu(bipy)2(SiF6) | 3.54 | In situ | Glass flit | 115 | 0.88 | [162] |
UiO-66 | PDA-modification | 6.0 | Secondary growth | AAO | 1116 | 51.6 | [175] |
ZIF-8 | Enzyme-embedded | 3.4 | In situ | PAN | 24.16 * | 165.5 * | [176] |
ZIF-8 | PPSU = polyphenylsulfone, PDMS coating | Layer-by-layer | PPSU | 925.4 * | 15.8 * | [177] | |
ZnTCPP | Nanosheet | – | Filtration, spincoat | PAN | 2070 * | 33 * | [178] |
MOF | Remark | Pore Size (Å) | Method | Support | QCO2 (GPU) | αCO2/CH4 | Ref. |
---|---|---|---|---|---|---|---|
CAU-1 | Al4(OH)2(OCH3)4(NH2-bdc)3 | 3.0~4.0 | Secondary growth | Alumina | 3940 * | 14.8 * | [171] |
HKUST-1 | Cu3(btc)2 (Cu-BTC) | 9.0 | Counter-diffusion | Alumina | 7.3 * | 41.5 * | [172] |
IRMOF-1 | Isoreticular MOF-1 (MOF-5) | 11.2 | Secondary growth | Al2O3 | 761 | 328 | [173] |
NH2-MIL-53 | MOF/organosilica composite | 8.0 | Hot dipcoat | Ceramic fiber | 430 | 18.2 | [179] |
MIL-96 | Reactive seeding | 3.6 × 4.5 | In situ | Al2O3 | 630 * | 0.6 * | [180] |
UiO-66 | PDA-modification | 6.0 | Secondary growth | AAO | 1179 | 28.9 | [175] |
ZIF-8 | Zeolite/ZIF-8 hybrid | 3.4 | Secondary growth | Alumina | 163 | 182 | [181] |
ZIF-8 | PPSU = polyphenylsulfone, PDMS coating | Layer-by-layer | PPSU | 925.4 * | 17.3 * | [177] | |
ZIF-8 | Zn(OH)2 nanostrand Precursor | Crystal conversion | AAO | 3931 | 2.7 | [182] | |
ZIF-8 | ZnAl-NO3 LDH precursor | Crystal conversion | Alumina | 5.7 | 16.7 | [183] | |
ZIF-62 | Zn(Im)1.75(Bim)0.25, MOF glass membrane | 1.4 | Melt-quenching | Alumina | 36 | 36.6 | [184] |
ZIF-94 | SIM-1, carboxaldehyde group | 2.6 | Microfluidic | P84® | 3.5 | 37.7 | [185] |
MIL-160 | Al(OH)(furandicarboxylate) | 4.35 | Solvothermal | Al2O3 | 531 | 71 | [186] |
MIL-160/ CAU-10-F | Al(OH)(furandicarboxylate)/Al(OH)(F-isophthalate) | 4.35/2.25 | Solvothermal | Al2O3 | 716 | 78 | [186] |
Polymer | MOF Filler | Loading | Pressure, Temp. | Permeability (Barrer) | αCO2/N2 | αCO2/CH4 | Ref. |
---|---|---|---|---|---|---|---|
CA | NH2-MIL-53(Al) | 15 wt% | 3 bar, 298 K | – | 12 | 16 | [187] |
Pebax-1657 | NH2-MIL-53(Al) | 10 wt% | 10 bar, 308 K | 149 | 55.5 | 20.5 | [188] |
PIM-1/Matrimid | NH2-MIL-53(Al) | 25 wt% | 2 bar, 298 K | 4390 | 25.0 | [189] | |
6FDA-BI | ZIF-8 | 20 wt% | 4 bar, 298 K | 20.3 | 25.9 | 57.9 | [190] |
Pebax-1657 | ZIF-8 | 2 wt% | 11 bar, 308 K | 118 | 59 | 21.4 | [191] |
PI | ZIF-8 | 30 wt% | 308 K | 1437 | 12 | 16 | [192] |
Pebax-2533 | ZIF-8 | 35 wt% | 2 bar, RT | 1287 | 32.3 | 9 | [193] |
Pebax-2533 | ZIF-8 + GO | 6 wt% | 1 bar, 298 K | 220 | 41 | – | [194] |
Pebax-1657 | ZIF-8 + IL | 15 wt% | 1 bar, 298 K | 104.9 | 83.9 | 34.8 | [195] |
PSF | ZIF-8 + MIL-101(Cr) | 16 wt% | 2 bar, 308 K | 14 | 40 | – | [196] |
SPEEK | PEI + MIL-101(Cr) | 40 wt% | 1 bar, 298 K | 2490 | 80 | 71.8 | [197] |
Pebax-1657 | ZIF-67 | 4 wt% | 11 bar, 308 K | 16 | 72.7 | 27.6 | [191] |
6FDA-Durene | ZIF-71 | 20 wt% | 3.5 bar, 308 K | 2560 | 13.8 | 14.2 | [198] |
PIM-1 | ZIF-71 | 30 wt% | 3.5 bar, 308 K | 8377.1 | 18.3 | 11.2 | [199] |
PIM-1/Matrimid | ZIF-94 | 25 wt% | 2 bar, 298 K | 3730 | 27.1 | – | [189] |
PIM-1 | UiO-66 | 5 wt% | 4 bar, 298 K | 2952 | 26.9 | 27.3 | [200] |
PIM-1 | UiO-66-CN | 20 wt% | 1 bar, 298 K | 12063.3 | 53.5 | – | [201] |
Matrimid® | UiO-66-NH2 | 23 wt% | 1.4 bar, RT | 23.5 | 36.5 | – | [202] |
PEO | UiO-66-MA | 2 wt% | 3.5 bar, 308 K | 1450 | 45.8 | – | [203] |
PIM-1 | MOF-74 | 20 wt% | 2 bar, 298 K | 21269 | 28.7 | 19.1 | [204] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, S.; Fuku, K.; Ikenaga, N.; Sharaf, M.; Nakagawa, K. Recent Progress and Challenges in the Field of Metal–Organic Framework-Based Membranes for Gas Separation. Compounds 2024, 4, 141-171. https://doi.org/10.3390/compounds4010007
Tanaka S, Fuku K, Ikenaga N, Sharaf M, Nakagawa K. Recent Progress and Challenges in the Field of Metal–Organic Framework-Based Membranes for Gas Separation. Compounds. 2024; 4(1):141-171. https://doi.org/10.3390/compounds4010007
Chicago/Turabian StyleTanaka, Shunsuke, Kojiro Fuku, Naoki Ikenaga, Maha Sharaf, and Keizo Nakagawa. 2024. "Recent Progress and Challenges in the Field of Metal–Organic Framework-Based Membranes for Gas Separation" Compounds 4, no. 1: 141-171. https://doi.org/10.3390/compounds4010007
APA StyleTanaka, S., Fuku, K., Ikenaga, N., Sharaf, M., & Nakagawa, K. (2024). Recent Progress and Challenges in the Field of Metal–Organic Framework-Based Membranes for Gas Separation. Compounds, 4(1), 141-171. https://doi.org/10.3390/compounds4010007