Synthesis and Biological Activities of Some Metal Complexes of 2-Thiouracil and Its Derivatives: A Review
Abstract
:1. Introduction
1.1. Synthesis of Metal Complexes with Uracil and Its Derivatives
1.2. Synthesis of Metal Complexes with 2-Thiouracil and Its Derivatives
- Fe(III) complex—octahedral;
- Co(II) complex—A tetrahedral structure has been observed, where each cobalt atom within the dimer forms bonds with three nitrogen atoms and one water molecule. Four ligands exhibit monodentate bonding in the dimer, connecting through deprotonated nitrogen. The fifth ligand has both nitrogen atoms protonated, with each nitrogen atom bonding to one cobalt atom [35];
- Cu(II) complex—octahedral possibly having Cu–Cu bond [35].
- Summary data on the structure of the complexes and the donor atoms involved in the coordination is given in Table 1.
1.3. Biological Activities
Antibacterial Activity
1.4. Antifungal Activity
1.5. Antitumor and Cytotoxic Activities
1.6. Possible Mechanism of Biological Activities
2. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Garrett, R.H.; Grisham, C.M. Principles of Biochemistry with a Human Focus; Brooks/Cole Thomson Learning: Pacific Grove, CA, USA, 2001; p. 939. ISBN 0-03-097369-4. [Google Scholar]
- Astwood, E.B. The chemical nature of compounds which inhibit the function of the thyroid gland. J. Pharmacol. Exp. Ther. 1943, 78, 79–89. [Google Scholar]
- Mao, X.-M.; Li, H.-Q.; Li, Q.; Li, D.-M.; Xie, X.-J.; Yin, G.-P.; Zhang, P.; Xu, X.-H.; Wu, J.-D.; Chen, S.-W.; et al. Prevention of Relapse of Graves’ Disease by Treatment with an Intrathyroid Injection of Dexamethasone. J. Clin. Endocrinol. Metab. 2009, 94, 4984–4991. [Google Scholar] [CrossRef]
- Rosenfeld, H.; Ornoy, A.; Shechtman, S.; Diav-Citrin, O. Pregnancy outcome, thyroid dysfunction, and fetal goiter after in utero exposure to propylthiouracil: A controlled cohort study. Br. J. Clin. Pharmacol. 2009, 68, 609–617. [Google Scholar] [CrossRef]
- Cooper, D.S. Antithyroid Drugs. N. Eng. J. Med. 2005, 352, 905–917. [Google Scholar] [CrossRef]
- Volpé, R. The Immunomodulatory Effects of Anti-thyroid Drugs are Mediated via Actions on Thyroid Cells, Affecting Thyrocyte-immunocyte Signalling: A Review. Curr. Pharm. Des. 2001, 7, 451–460. [Google Scholar] [CrossRef]
- Burch, H.B.; Cooper, D.S. Antithyroid drug therapy: 70 years later. Eur. J. Endocrinol. 2018, 179, R261–R274. [Google Scholar] [CrossRef]
- Fernandez, M.G. Hyperthyroidism and pregnancy. Endocrinol. Nutr. 2013, 60, 535–543. [Google Scholar] [CrossRef]
- Patil, S.B. Recent medicinal approaches of novel pyrimidine analogs: A review. Heliyon 2023, 9, e16773. [Google Scholar] [CrossRef] [PubMed]
- Verbitskiy, E.V.; Rusinov, G.L.; Charushin, V.N.; Chupakhin, O.N. Development of new antituberculosis drugs among of 1,3- and 1,4-diazines. Highlights and perspectives. Russ. Chem. Bull. Int. Ed. 2019, 68, 2172–2189. [Google Scholar] [CrossRef]
- Mahapatra, A.; Prasad, T.; Sharma, T. Pyrimidine: A review on anticancer activity with key emphasis on SAR. Futur. J. Pharm. Sci. 2021, 7, 123. [Google Scholar] [CrossRef]
- Wu, W.; Lan, W.; Wu, C.; Fei, Q. Synthesis and Antifungal Activity of Pyrimidine Derivatives Containing an Amide Moiety. Front. Chem. 2021, 9, 695628. [Google Scholar] [CrossRef]
- Tyli´nska, B.; Wiatrak, B.; Czyznikowska, Z.; Cie´sla-Niechwiadowicz, A.; Gebarowska, E.; Janicka-Kłos, A. Novel Pyrimidine Derivatives as Potential Anticancer Agents: Synthesis, Biological Evaluation and Molecular Docking Study. Int. J. Mol. Sci. 2021, 22, 3825. [Google Scholar] [CrossRef] [PubMed]
- Oladipo, M.A.; Isola, K.T. Coordination Possibility of Uracil and Applications of Some of Its Complexes: A Review. Res. J. Pharm. Biol. Chem. Sci. 2013, 4, 386–394. [Google Scholar] [CrossRef]
- Masoud, M.S.; Ramadana, M.S.; Ramadana, A.M.; Al-Saify, M.H. Complexing Properties and Applications of Some Biologically Active Nucleic Acid Constituents. Int. J. Innov. Res. Technol. Sci. Eng. 2020, 6, 23–39. [Google Scholar]
- Narang, K.K.; Singh, V.P.; Bhattacharya, D. Synthesis, characterization and antitumor activity of uracil and uracil–histidine complexes with metal(III) ions. Trans. Metal. Chem. 1997, 22, 333–337. [Google Scholar] [CrossRef]
- Cartwright, B.A.; Goodgame, M.; Johns, K.W.; Skapski, A.C. Strong Metal-Oxygen Interaction in Uracils. X-ray crystal structure of bis-(1,3-dimethyluracil)dichlorocopper(II). Biochem. J. 1978, 175, 337–339. [Google Scholar] [CrossRef] [PubMed]
- Masoud, M.S.; Ibrahim, A.A.; Khalil, E.A.; El-Marghany, A. Spectral properties of some metal complexes derived from uracil–thiouracil and citrazinic acid compounds. Spectrochim. Acta Part A 2007, 67, 662–668. [Google Scholar] [CrossRef]
- Ghosh, P.; Mukhopadhyay, T.K.; Sarkar, A.R. Interaction of Divalent Metal Ions with Uracil III. Complexes of MnII, FeII, CoII, NiII and Cull with Uracil Acting as Bidentate Ligand. Trans. Metal Chem. 1984, 9, 46–48. [Google Scholar] [CrossRef]
- Koz, G.; Kaya, H.; Astley, D.; Yaşa, İ.; Astley, S.T. Synthesis, Characterization and Antimicrobial Screening of Ni(II), Cu(II) and Co(II) Complexes of Some Schiff Base Ligands Derived from 5-Aminouracil. Gazi Univ. J. Sci. 2011, 24, 407–413. [Google Scholar]
- Kufelnicki, A.; Jaszczak, J.; Kalinowska-Lis, U.; Wardak, C.; Ochocki, J. Complexes of Uracil (2,4-Dihydroxypyrimidine) Derivatives Part III. pH-Metric, ISE, and Spectrophotometric Studies on Co(II), Ni(II), and Zn(II) Complexes. J. Solution Chem. 2006, 35, 739–751. [Google Scholar] [CrossRef]
- Tyagi, S.; Singh, S.M.; Gencaslan, S.; Sheldrick, W.S.; Singh, U.P. Metal-5-fluorouracil-histamine complexes: Solution, structural, and antitumor studies. Metal Based Drugs 2002, 8, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, A.A. Synthesis, structural studies of some nucleic acids metal complexes. Basrah J. Sci. 2006, 24, 115–128. [Google Scholar]
- Verma, S.; Shrivastva, S.; Rani, P. Synthesis and spectroscopic studies of mixed ligand complexes of transition and inner transition metals with a substituted benzimidazole derivative and RNA bases. J. Chem. Pharm. Res. 2012, 4, 693–699. [Google Scholar]
- Shobana, S.; Dharmaraja, J.; Kamatchi, P.; Selvaraj, S. Mixed ligand complexes of Cu (II)/Ni (II)/Zn (II) ions with 5-Fluorouracil (5-FU) in the presence of some amino acid moieties: Structural and antimicrobial studies. J. Chem. Pharm. Res. 2012, 4, 4995–5004. [Google Scholar]
- Gupta, M.; Srivastava, M.N. Synthesis and characterization of complexes of copper(II), nickel(II), cobalt(II) and zinc(II) with alanine and uracil or 2-thiouracil. Synth. React. Inorg. Met.-Org. Chem. 1996, 26, 305–320. [Google Scholar] [CrossRef]
- Gupta, M.; Srivastava, M.N. Synthesis and characterization of mixed ligand complexes of copper(II), nickel(II), cobalt(II and zinc(II) with glycine and uracil or 2-thiouracil. Polyhedron 1985, 4, 475–479. [Google Scholar] [CrossRef]
- Gupta, M.; Srivastava, M.N. Synthesis and characterization of complexes of copper (II), nickel (II), cobalt (II) and zinc (II) with histidine and uracil, thymine or 2-thiouracil. Bull Chem. Soc. Fr. 1991, 128, 859. [Google Scholar]
- Gupta, M.; Srivastava, M.N. Synthesis and Characterization of Mixed-Ligand Complexes of Copper (II), Nickel (II), Cobalt (II) and Zinc (II) With Glycine and Thymine or Adenine. Bull. Pol. Acad. Sci. 1992, 40, 277–285. [Google Scholar]
- Saxena, V.K.; Srivastava, M.N. PMR Spectral Studies of ktixed-Ligand Amino Acid Chelates of Cobalt(II), Nickel(II), Copper(II) and Zinc(II) with Nitrilotriacetic Acid and glycine, α-alanine, Valine, or Leucine. J. Inorg. Bio-Chem. 1990, 38, 37. [Google Scholar] [CrossRef]
- Marinova, P.; Tsoneva, S.; Frenkeva, M.; Blazheva, D.; Slavchev, A.; Penchev, P. New Cu(II), Pd(II) and Au(III) complexes with 2-thiouracil: Synthesis, Characteration and Antibacterial Studies. Russ. J. Gen. Chem. 2022, 92, 1578–1584. [Google Scholar] [CrossRef]
- Marinova, P.; Hristov, M.; Tsoneva, S.; Burdzhiev, N.; Blazheva, D.; Slavchev, A.; Varbanova, E.; Penchev, P. Synthesis, Characterization and Antibacterial Studies of new Cu(II) and Pd(II) complexes with 6-methyl-2-thiouracil and 6-propyl-2-thiouracil. Appl. Sci. 2023, 13, 13150. [Google Scholar] [CrossRef]
- Moreno-Carretero, M.N.; Romero-Molina, M.A.; Salas-Peregrin, J.M.; Sanchez-Sanchez, M.P. Thermal analysis applied to the study of metal complexes: Thermal behaviour of 6-amino-2-thiouracil and its complexes with several transition metal ions. Thermochim. Acta 1992, 200, 271–280. [Google Scholar] [CrossRef]
- Romero, M.A.; Sanchez, M.P.; Quiros, M.; Sanchez, F.; Salas, J.M.; Moreno, M.; Faure, R. Transition metal complexes of 6-amino 2-thiouracil; crystal structure of bis(6-amino-2-thiouracilato)aquazinc(II) dihydrate. Can. J. Chem. 1993, 71, 29–33. [Google Scholar] [CrossRef]
- Khullar, I.P.; Agarwala, U. 2-Mercaptopyrimidin-4-ol (2-Thiouracil) Complexes of Copper(II), Nickel(II), Cobalt(II) and Iron(III). Aust. J. Chem. 1974, 27, 1877–1883. [Google Scholar] [CrossRef]
- Garrett, E.R.; Weber, D.J. Metal Complexes of Thiouracils II: Solubility Analyses and Spectrophotometric Investigations. J. Pharm. Sci. 1971, 60, 845–853. [Google Scholar] [CrossRef]
- Kamalakannan, P.; Venkappayya, D.; Balasubramanian, T. A new antimetabolite, 5-morpholinomethyl-2-thiouracil—Spectral properties, thermal profiles, antibacterial, antifungal and antitumour studies of some of its metal chelates. J. Chem. Soc. Dalton Trans. 2002, 17, 3381–3391. [Google Scholar] [CrossRef]
- Darensbourg, D.J.; Frost, B.J.; Derecskei-Kovacs, A.; Reibenspies, J.H. Coordination Chemistry, Structure, and Reactivity of Thiouracil Derivatives of Tungsten(0) Hexacarbonyl: A Theoretical and Experimental Investigation into the Chelation/Dechelation of Thiouracil via CO Loss and Addition. Inorg. Chem. 1999, 38, 4715–4723. [Google Scholar] [CrossRef]
- Masoud, M.S.; Soayed, A.A.; El-Husseiny, A.F. Coordination modes, spectral, thermal and biological evaluation of hetero-metal copper containing 2-thiouracil complexes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2012, 99, 365–372. [Google Scholar] [CrossRef]
- Papazoglou, I.; Cox, P.J.; Hatzidimitriou, A.G.; Kokotidou, C.; Choli-Papadopoulou, T.; Aslanidis, P. Copper(I) halide complexes of 5-carbethoxy-2-thiouracil: Synthesis, structure and in vitro cytotoxicity. Eur. J. Med. Chem. 2014, 78, 383–391. [Google Scholar] [CrossRef]
- Kumar, B.; Suman, A. Synthesis, spectroscopic characterization and biological application of copper complex of 5-carbethoxy-2-thiouracil. J. Drug Deliv. Ther. 2020, 10, 145–148. [Google Scholar] [CrossRef]
- Kostova, I. General and inorganic chemistry; Softtrade: Sofia, Bulgaria, 2016; ISBN 978-954-334-185-6. [Google Scholar]
- Illán-Cabeza, N.A.; García-García, A.R.; Moreno-Carretero, M.N.; Martínez-Martos, J.M.; Ramírez-Expósito, M.J. Synthesis, characterization and antiproliferative behavior of tricarbonyl complexes of rhenium(I) with some 6-amino-5-nitrosouracil derivatives: Crystal structure of fac-[ReCl(CO)3(DANU-N5,O4)] (DANU = 6-amino-1,3-dimethyl-5-nitrosouracil). J. Inorg. Biochem. 2005, 99, 1637–1645. [Google Scholar] [CrossRef]
- Abou-Melha, K.S. A Series of Nano-sized Metal ion-thiouracil Complexes, tem, Spectral, γ- irradiation, Molecular Modeling and Biological Studies. Orient. J. Chem. 2015, 31, 1897–1913. [Google Scholar] [CrossRef]
- Golubyatnikova, L.G.; Khisamutdinov, R.A.; Grabovskii, S.A.; Kabal’nova, N.N.; Murinov, Y.I. Complexes of Palladium(II) and Platinum(II) with 6-tert-Butyl-2-thiouracil. Russ. J. Gen.Chem. 2017, 87, 117–121. [Google Scholar] [CrossRef]
- Jayabharathi, J.; Thanikachalam, V.; Jayamoorthy, K.; Perumal, M.V. Computational studies of 1,2-disubstituted benzimidazole derivatives. Spectrochim. Acta A 2012, 97, 6. [Google Scholar] [CrossRef] [PubMed]
- Masoud, M.S.; Amira, M.F.; Ramadan, A.M.; El-Ashry, G.M. Synthesis and characterization of some pyrimidine, purine, amino acid and mixed ligand complexes. Spectrochim. Acta Part A 2008, 69, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Masoud, M.S.; El-Hamid, O.H.A.; Zaki, Z.M. 2-thiouracil-based cobalt(II), nickel(II) and copper(II) complexes. Trans. Met. Chem. 1994, 19, 21–24. [Google Scholar] [CrossRef]
- El-Morsy, F.A.; Jean-Claude, B.J.; Butler, I.S.; El-Sayed, S.A.; Mostafa, S.I. Synthesis, characterization and anticancer activity of new zinc(II), molybdate(II), palladium(II), silver(I), rhodium(III), ruthenium(II) and platinum(II) complexes of 5,6-diamino-4-hydroxy2-mercaptopyrimidine. Inorg. Chim. Acta 2014, 423, 144–155. [Google Scholar] [CrossRef]
- Abás, E.; Pena-Martínez, R.; Aguirre-Ramírez, D.; Rodríguez-Diéguez, A.; Laguna, M.; Grasa, L. New selective thiolate gold(I) complexes inhibit the proliferation of different human cancer cells and induce apoptosis in primary cultures of mouse colon tumors. Dalton Trans. 2020, 49, 1915–1927. [Google Scholar] [CrossRef]
- Holowczak, M.S.; Stancl, M.D.; Wong, G.B. Trichloro( 1-metbylcytosinato)gold(III). Model for DNA interactions. J. Am. Chem. Soc. 1985, 107, 5789–5790. [Google Scholar] [CrossRef]
- Rodriguez, E.C.; Sánchez, J.R.; López-González, J.D.; Salas-Peregrin, J.M.; Olivier, M.J.; Quirós, M.; Beauchamp, A.L. Thermal Behavior and Crystal Structure of Dichloro[ 6-amino-l,3-dimethyl-5-(2-chlorophenylazo)uracilato]gold(III). Inorg. Chim. Acta 1990, 171, 151–156. [Google Scholar] [CrossRef]
- Singh, U.P.; Singh, S.; Singh, S.M. Synthesis, characterization and antitumour activity of metal complexes of 5-carboxy-2-thiouracil. Metal-Based Drugs 1998, 5, 35–39. [Google Scholar] [CrossRef]
- Worachartcheewan, A.; Pingaew, R.; Lekcharoen, D.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Synthesis, Antioxidant and Antimicrobial Activities of Metal Complexes of 2-thiouracil-hydroxyquinoline Derivatives. Lett. Drug Des. Discov. 2018, 15, 602–611. [Google Scholar] [CrossRef]
- Fathalla, O.A.; Awad, S.M.; Mohamed, M.S. Synthesis of new 2-thiouracil-5-sulphonamide derivatives with antibacterial and antifungal activity. Arch. Pharm. Res. 2005, 28, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, M.S.; Awad, S.M.; Ahmed, N.M. Synthesis and antimicrobial evaluation of some 6-aryl-5-cyano-2-thiouracil derivatives. Acta Pharm. 2011, 61, 171–185. [Google Scholar] [CrossRef]
- Mohamed, M.S.; Youns, M.M.; Ahmed, N.M. Synthesis, antimicrobial, antioxidant activities of novel 6-aryl-5-cyano thiouracil derivatives. Eur. J. Med. Chem. 2013, 69, 591–600. [Google Scholar] [CrossRef] [PubMed]
- Rizk, S.A.; El-Naggar, A.M.; El-Badawy, A.A. Synthesis, spectroscopic characterization and computational chemical study of 5-cyano-2-thiouracil derivatives as potential antimicrobial agents. J. Mol. Struct. 2018, 1155, 720–733. [Google Scholar] [CrossRef]
- da Silva Dantas, F.G.; de Almeida-Apolonio, A.A.; de Araújo, R.P.; Favarin, L.R.V.; de Castilho, P.F.; de Oliveira Galvão, F.; Svidzinski, T.I.E.; Casagrande, G.A.; de Oliveira, K.M.P. A Promising Copper(II) Complex as Antifungal and Antibiofilm Drug against Yeast Infection. Molecules 2018, 23, 1856. [Google Scholar] [CrossRef]
- Lorenzana-Vázquez, G.; Pavel, I.; Meléndez, E. Gold Nanoparticles Functionalized with 2-Thiouracil for Antiproliferative and Photothermal Therapies in Breast Cancer Cells. Molecules 2023, 28, 4453. [Google Scholar] [CrossRef]
Technique | Donor Atom | Metal | Structure | References |
---|---|---|---|---|
X-ray | O | Cu(II) | square planar | [17] |
X-ray | N1 and S2 | Zn(II) | trigonal bipyramid | [34] |
X-ray | S; N1 and S2 | W(0); W(0) | octahedron; chelate | [38] |
X-ray | S for dimer; S, P, and Cl; S, P, and Br | Cu(I) | pseudotetrahedral environment | [40] |
X-ray | N5 and O4 | Re(I) | distorted octahedron | [43] |
X-ray | S and P | Au(I) | linear | [50] |
X-ray | N3 | Au(III) | square-planar coordination geometry | [51] |
X-ray | N6 and N8 | Au(III) | distorted square planar | [52] |
elemental analysis, DTA, UV-Vis, IR, and Mössbauer spectroscopy | O4 and N3 | Fe(III), Co(II) and Ni(II); Cu(II) | octahedral; square planar | [18] |
UV-Vis and IR spectroscopy | O2 and N3 | Mn(II), Fe(II), Co(II), Ni(II), Cu(II) | octahedral (chelate) | [19] |
elemental analysis, UV-Vis, and IR spectroscopy | O and N O, N, and O | Ni(II), Co(II); Cu(II) | octahedral (chelate); trigonal bipyramid | [20] |
Potentiometric Studies, UV-Vis, ion-selective electrode titrations | N3 | Ni(II), Co(II); Zn(II) | [21] | |
elemental analysis, UV-Vis, IR spectroscopy, powder X-ray diffraction studies | N3 | Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) | polymer structure with an octahedral geometry | [23] |
elemental analysis, UV-Vis, IR-, Mass- and 1H NMR spectroscopy | N3 and O2 | Th(II), Ce(II), Gd(II) | [24] | |
elemental analysis, spectral (vibrational, electronic, 1H NMR, ESR) | N3 and O4 | Ni(II), Cu(II), Zn(II) | distorted tetrahedral geometry for Cu(II); octahedral for Ni(II); distorted octahedral for Zn(II) | [25] |
elemental analyses, IR, UV-Vis, magnetochemical measurements | O and N (uracil); O, N, and S (2-thiouracil) | Cu(II), Ni(II), Co(II), Zn(II) | square planar for Cu(II) and Co(II) with 2-thiouracil; Cu(II), Co(II), and Zn(II) with uracil, Ni(II), and Zn(II) complexes with thiouracil–octahedral geometry, Ni(II) with uracil-distorted tetrahedral | [26] |
thermogravimetric analysis, differential scanning calorimetry (DSC), IR spectroscopy | N S | Cu(I), Ni(II), Co(II), Zn(II), Ag(I), Cd(II); Hg(II) and Ni(II) | Zn(II) and Cd(II)–polymeric structure | [33] |
IR, UV-Vis differential thermal analysis | N and S O and S N and O | Cu(II), Ni(II), Co(II), Fe(III) | octahedral tetrahedral octahedral | [35] |
elemental analysis, magnetochemical studies, and IR, UV-Vis, EPR, TG, DTG, and DTA | N and S for mononuclear N1, O, S, N3 for hetero-metallic | Cu(II), Ni(II), Co(II) | All octahedron, except one planar-square structure of Co(II), Ni(II) and Cu(II) | [39] |
IR and NMR spectroscopy | S | Pd(II), Pt(II) | square planar or tetrahedral | [45] |
elemental analysis, IR, UV-Vis, powder X-ray diffraction | O and S | Mn(II), Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) | octahedral | [53] |
Compounds | Minimum Inhibitory Concentration Values (mg/mL) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Bacterial Strains | Fungal Strains | ||||||||
Bacillus subtilis | Staphylococcus saphyphiticus | Staphylococcus aureus | Escherichia coli | Pseudomonas aeruginosa | Enterobacter species | Aspergillus niger | Candida albicans | Ref. | |
Control | 5.4 | 4.8 | 7.9 | 6.2 | 8.9 | 11.2 | 11.0 | 10.6 | [25] |
5-FU(A) | 12.1 | 14.6 | 16.4 | 21.8 | 25.1 | 21.6 | 23.8 | 24.9 | [25] |
Ni(II)-5-FU-ala | 8.1 | 9.8 | 8.3 | 13.5 | 18.3 | 13.8 | 18.9 | 20.0 | [25] |
Cu(II)-5-FU-ala | 11.7 | 12.3 | 11.0 | 14.7 | 24.9 | 21.6 | 22.8 | 23.5 | [25] |
Zn(II)-5-FU-ala | 9.1 | 2.7 | 10.1 | 5.4 | 23.1 | 20.1 | 18.4 | 23.7 | [25] |
Ni(II)-5-FU-pal | 11.6 | 6.2 | 9.8 | 11.4 | 21.5 | 18.2 | 21.8 | 16.8 | [25] |
Cu(II)-5-FU-pal | 10.1 | 5.0 | 7.5 | 9.9 | 18.1 | 17.2 | 19.6 | 15.9 | [25] |
Zn(II)-5-FU-pal | 9.3 | 2.9 | 6.2 | 5.5 | 13.0 | 10.3 | 18.2 | 13.3 | [25] |
Bacillus cereus | Proteus vulgaris | Staphylococcus aureus | Escherichia coli | Salmonella thyphimirium | Candida albicans | Ref. | |||
1 | 1.56 | 3.12 | 3.12 | 0.39 | 1.56 | 0.39 | [20] | ||
2 | 3.12 | 3.12 | - | 3.12 | 6.25 | 1.56 | [20] | ||
3 | - | 6.25 | - | - | 6.25 | 1.25 | [20] | ||
Cu(L)OAc·H2O | 6.25 | 6.25 | - | 6.25 | - | 1.56 | [20] | ||
Cu(L)Cl·H2O | - | 6.25 | - | - | - | 6.25 | [20] | ||
Ni(L)Cl·3H2O | 6.25 | 3.12 | - | 6.25 | 3.12 | - | [20] | ||
Ni(L)(OAc)·3H2O | 3.12 | 6.25 | 3.12 | 3.12 | 3.12 | 1.56 | [20] | ||
Ni(L)Cl·3H2O | 6.25 | 6.25 | 6.25 | 3.12 | 6.25 | 3.12 | [20] | ||
Co(L)OAc·3H2O | 0.78 | 3.12 | - | 3.12 | 3.12 | 0.19 | [20] | ||
Cu(L)OAc·H2O | 6.25 | 3.12 | - | 6.25 | - | 3.12 | [20] |
Compounds | Inhibition Zone Diameter, mm | |||
---|---|---|---|---|
Antibacterial | Antifungal | |||
Escherichia coli | Staphylococcus aureus | Candida albicans | References | |
2-thiouracil (L) | 10 | 9 | 9 | [31] |
Cu(II)L | 21 | 29 | 16 | [31] |
Pd(II)L | 12 | 18 | 16 | [31] |
Au(III)L | 15 | 21 | 16 | [31] |
6-methyl-2-thiouracil (L1) | - | - | 11 | [32] |
6-propyl-2-thiouracil (L2) | - | - | 12 | [32] |
[3L1Cu·(DMSO)] | 11 | 8 | 11 | [32] |
[5L1Pd·(DMSO)]·H2O | 10 | - | 9/10 | [32] |
[L2Cu·H2O·(OH−)2·(DMSO)2] | 10 | 8 | 11 | [32] |
[4L2Pd·(DMSO)2]·H2O | - | 11/16 | 11 | [32] |
[CuL(NH3)4]Cl2·0.5H2O | 14 | 14 | 12 | [39] |
[Cu3Co(L)4·8H2O]Cl·4.5H2O | 15 | 16 | 14 | [39] |
[Cu2Ni(L)2(NH3)2Cl2·6H2O]·2H2O | 12 | 13 | 18 | [39] |
[Cu4Co2Ni(L)3(OH)4(NH3)Cl4·3H2O]·4H2O | 22 | 20 | 21 | [39] |
tetracycline | 32 | 30 | - | [39] |
Amphotericin B | - | - | 19 | [39] |
Compounds | Dosage Injection ip mg/kg Body Weight | Mean Lifespan of Non-Survivors T/C (Days) | No. of Mice Surviving >6 Months | T/C % | % ILS | Ref. |
---|---|---|---|---|---|---|
5FU (5-fluorouracil) | 12.5 | 30/22 | - | 136.36 | 36.36 | [22] |
25.0 | 33/22 | - | 150.00 | 50.00 | ||
50.0 | 34/22 | - | 154.54 | 54.54 | ||
Co(5FU)(Hm)(OH)·2H2O | 12.5 | 38/22 | - | 172.72 | 72.72 | [22] |
25.0 | 35/22 | - | 159.09 | 59.09 | ||
50.0 | 36/22 | - | 163.36 | 63.63 | ||
Ni(5FU)(Hm)(OH)·2H2O | 12.5 | 25/22 | - | 113.63 | 13.63 | [22] |
25.0 | 20/22 | - | 90.90 | - | ||
50.0 | 24/22 | - | 109.09 | 09.09 | ||
Cu(5FU)(Hm)(OH)·2H2O | 12.5 | 16/22 | - | 72.72 | - | [22] |
25.0 | 08/22 | - | 36.36 | - | ||
50.0 | 13/22 | - | 59.09 | - | ||
Zn(5FU)(Hm)(OH)·2H2O | 12.5 | 35/22 | - | 159.09 | 59.09 | [22] |
25.0 | 33/22 | - | 150.00 | 50.00 | ||
50.0 | All alive | 6 (100) | - | - | ||
Cd(5FU)(Hm)(OH)·2H2O | 12.5 | 19/22 | - | 86.36 | - | [22] |
25.0 | 14/22 | - | 63.63 | - | ||
50.0 | 03/22 | - | 13.63 | - | ||
C9H13N3SO2 | 25 | 48 | 48 | [37] | ||
50 | 58 | |||||
75 | 67 | |||||
100 | 76 | |||||
[C9H13N3SO2CoBr2] | 25 | 59 | 80 | [37] | ||
50 | 63 | |||||
75 | 75 | |||||
100 | 87 | |||||
[C9H13N3SO2_Ni(H2O)2]I | 25 | 52 | 75 | [37] | ||
50 | 60 | |||||
75 | 71 | |||||
100 | 80 | |||||
[(C9H13N3SO2)2ZnCl2_H2O] | 25 | 63 | 86 | [37] | ||
50 | 72 | |||||
75 | 82 | |||||
100 | 90 | |||||
[C9H13N3SO2_Zn2(SO4)2] | 25 | 68 | 91 | [37] | ||
50 | 76 | |||||
75 | 85 | |||||
100 | 96 | |||||
5CTU(5-Carboxy-2-thiouracil) | 12.5 | 32/40 | - | 80.0 | [53] | |
25.0 | 46/40 | - | 115.0 | |||
Mn(5CTU)(NO3)·3H2O | 12.5 | 40/40 | - | 100.0 | [53] | |
25.0 | 26/40 | - | 65.0 | |||
Co(5CTU)(NO3)·3H2O | 12.5 | All alive | 6 (100) | - | [53] | |
25.0 | 32/40 | - | 80.0 | |||
Ni(5CTU)(NO3)·3H2O | 12.5 | 48/40 | - | 120.0 | [53] | |
25.0 | 34/40 | - | 85.0 | |||
Cu(5CTU)(NO3)·3H2O | 12.5 | 38/40 | - | 95.0 | [53] | |
25 | All alive | 6 (100) | - | |||
Zn(5CTU)(NO3)·3H2O | 12.5 | 36/40 | - | 90.0 | [53] | |
25.0 | 30/40 | - | 75.0 | |||
Cd(5CTU)(NO3)·3H2O | 12.5 | 2/40 | - | 5.0 | [53] | |
25.0 | 2/40 | - | 5.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marinova, P.E.; Tamahkyarova, K.D. Synthesis and Biological Activities of Some Metal Complexes of 2-Thiouracil and Its Derivatives: A Review. Compounds 2024, 4, 186-213. https://doi.org/10.3390/compounds4010010
Marinova PE, Tamahkyarova KD. Synthesis and Biological Activities of Some Metal Complexes of 2-Thiouracil and Its Derivatives: A Review. Compounds. 2024; 4(1):186-213. https://doi.org/10.3390/compounds4010010
Chicago/Turabian StyleMarinova, Petja Emilova, and Kristina Dimova Tamahkyarova. 2024. "Synthesis and Biological Activities of Some Metal Complexes of 2-Thiouracil and Its Derivatives: A Review" Compounds 4, no. 1: 186-213. https://doi.org/10.3390/compounds4010010
APA StyleMarinova, P. E., & Tamahkyarova, K. D. (2024). Synthesis and Biological Activities of Some Metal Complexes of 2-Thiouracil and Its Derivatives: A Review. Compounds, 4(1), 186-213. https://doi.org/10.3390/compounds4010010