Synthesis and Predicted Activity of Some 4-Amine and 4-(α-Aminoacid) Derivatives of N-Expanded-metronidazole Analogues
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Reactions of N-Alkyl-2-methyl-4,5-dinitroimidazole (2) with Primary and Secondary Amines
3.1.1. Reactions with Primary Amines
3.1.2. Reactions with Secondary Amines
3.2. Reactions of N-Alkyl-2-methyl-4,5-dinitroimidazole (2) with α-Aminoacids
4. Discussion
Calculation of the Level of Potential Biological Activities of the Obtained Compounds Using the PASS and AntiBac-Pred Methods
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Experimental Data
Appendix A.1. 3-Isopropoxy-1-(2-methyl-4,5-dinitroimidazol-1-yl)propan-2-ol (2)
Appendix A.2. General Methods for the Reactions with Primary and Secondary Amines
Appendix A.3. 3-Isopropoxy-1-(4-isobutylamino-2-metyl-5-nitroimidazol-1-yl)propan-2-ol (3)
Appendix A.4. 3-Isopropoxy-1-(4-phenylamino-2-methyl-5-nitroimidazol-1-yl)propan-2-ol (4)
Appendix A.5. 3-Isopropoxy-1-(2-methyl-4-(p-bromophenylamino)-5-nitroimidazol-1-yl)propan-2-ol (5)
Appendix A.6. 3-Isopropoxy-1-(2-methyl-5-nitro-4-morpholinoimidazol-1-yl)propan-2-ol (6)
Appendix A.7. 3-Isopropoxy-1-(2-methyl-5-nitro-4-piperidinoimidazol-1-yl)propan-2-ol (7)
Appendix A.8. 3-Isopropoxy-1-(2-methyl-4-(N-methylpiperazino)-5-nitroimidazol-1-yl)propan-2-ol (8)
Appendix A.9. General Method for Reaction with α-Aminoacids
Appendix A.10. 2-{N-[1-(3-Isopropoxy-2-hydroxypropyl)-2-methyl-5-nitroimidazol-4-yl]}amino-4-methylthiobutanoic Acid (9)
Appendix A.11. 2-{N-[1-(3-Isopropoxy-2-hydroxypropyl)-2-methyl-5-nitroimidazol-4-yl]}amino-3-methylobutanoic Acid (10)
References
- Mital, A. Synthetic Nitroimidazoles: Biological Activities and Mutagenicity Relationships. Sci Pharm. 2009, 77, 497–520. [Google Scholar] [CrossRef] [Green Version]
- Alghamdi, S.S.; Suliman, R.S.; Almutairi, K.; Kahtani, K.; Aljatli, D. Imidazole as a promising medicinal scaffold: Current status and future direction. Drug Des. Devel. Ther. 2021, 15, 3289–3312. [Google Scholar] [CrossRef] [PubMed]
- De Luca, L. Naturally Occurring and Synthetic Imidazoles: Their Chemistry and Their Biological Activities. Curr. Med. Chem. 2006, 13, 1–23. [Google Scholar] [PubMed]
- Żwawiak, J.; Olender, D.; Zaprutko, L. Some nitroimidazole derivatives as antibacterial and antifungal agents in in vitro study. J. Med. Sci. 2019, 88, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Olender, D.; Żwawiak, J.; Zaprutko, L. Multidirectional Efficacy of Biologically Active Nitro Compounds Included in Medicines. Pharmaceuticals 2018, 11, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, K.; Osata, T.; Umezawa, H. A new antibiotic, azomycin. J. Antibiot. 1953, 6, 182. [Google Scholar]
- Wardman, P. Nitroimidazoles as hypoxic cell radiosensitizers and hypoxia probes: Misonidazole, myths and mistakes. Br. J. Radiol. 2019, 92, 20170915. [Google Scholar] [CrossRef]
- Fung, H.B.; Doan, T.L. Tinidazole: A nitroimidazole antiprotozoal agent. Clin. Ther. 2005, 27, 1859–1884. [Google Scholar] [CrossRef]
- Suwiński, J.; Król, W.; Pacocha, C. Zeszyty Naukowe Politechniki Śląskiej, s. Chemia 1985, 111, 13–18. [Google Scholar]
- Zhang, J.; Ba, Y.; Wang, S.; Yang, H.; Hou, X.; Xu, Z. Nitroimidazole-containing compounds and their antibacterial and antitubercular activities. Eur. J. Med. Chem. 2019, 179, 376–388. [Google Scholar] [CrossRef]
- Rice, A.M.; Long, Y.; King, S.B. Nitroaromatic Antibiotics as Nitrogen Oxide Sources. Biomolecules 2021, 11, 267. [Google Scholar] [CrossRef] [PubMed]
- Nepali, K.; Lee, H.Y.; Liou, J.P. Nitro-group-containing drugs. J. Med. Chem. 2019, 62, 2851–2893. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, T.; Boshoff, H. Nitroimidazoles for the treatment of TB: Past, present and future. Futur. Med. Chem. 2011, 3, 1427–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceruelos, A.H.; Romero-Quezada, L.C.; Ruvalcaba Ledezma, J.C.; Lopez Contreras, L. Therapeutic uses of metronidazole and its side effects: An update. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 397–401. [Google Scholar]
- Ria Gupta, R.; Sharma, S.; Singh, R.; Vishwakarma, R.A.; Mignani, S. Functionalized Nitroimidazole Scaffold Construction and Their Pharmaceutical Applications: A 1950–2021 Comprehensive Overview. Pharmaceuticals 2022, 15, 561. [Google Scholar] [CrossRef]
- Overgaard, J. Hypoxic Radiosensitization: Adored and Ignored. J. Clin. Oncol. 2007, 25, 4066–4074. [Google Scholar] [CrossRef] [Green Version]
- Boyer, J.H. Nitroazoles; VCH Publishers Inc.: Arcadia, FL, USA, 1986; pp. 165–166. [Google Scholar]
- Zhang, L.; Peng, X.-M.; Damu, G.L.V.; Geng, R.-X.; Zhou, C.-H. Comprehensive Review in Current Developments of Imidazole-Based Medicinal Chemistry. Med. Res. Rev. 2014, 34, 340–437. [Google Scholar] [CrossRef]
- Khabnadideh, S.; Rezaei, Z.; Khalafi-Nezhad, A.; Bahrinajafi, R.; Mohamadi, R.; Farrokhroz, A.A. Synthesis of N-alkylated derivatives of imidazole as antibacterial agents. Bioorg. Med. Chem. Lett. 2003, 13, 2863–2865. [Google Scholar] [CrossRef]
- Nowikow, S.S.; Chmielnickij, L.; Lebiedew, O.W.; Sevastyanova, V.V.; Epishina, L.V. Nitration of imidazoles with various nitrating agents. Chim. Geter. Sojed. 1970, 6, 503–507. [Google Scholar]
- Zaprutko, L.; Gajdziński, M.; Michalska, W.; Pietkiewicz, K.; Lutomski, K.; Łukaszewski, Z.; Wrzeciono, U. Azoles. Part 27: Nitroimidazole derivatives, their antibacterial and antifungicidal activity and electron affinity. Pharmazie 1989, 44, 81–84. [Google Scholar]
- Gzella, A.; Żwawiak, J.; Zaprutko, L. (R)-(+)-3-Chlor-1-(4-morpholino-5-nitro-1H-imidazol-1-yl)propan-2-ol. Acta Crystallogr. E 2005, 61, o4071–o4072. [Google Scholar] [CrossRef] [Green Version]
- Gzella, A.; Żwawiak, J.; Zaprutko, L. (S)-(−)-3-Chlor-1-(4-morpholino-5-nitro-1H-imidazol-1-yl)propan-2-ol. Acta Crystallogr. E 2005, 61, o4231–o4232. [Google Scholar] [CrossRef] [Green Version]
- Zaprutko, L.; Żwawiak, J.; Augustynowicz-Kopeć, E.; Zwolska, Z.; Bartoszak-Adamska, E.; Nowicki, W. Synthesis, structure and biological evaluation of novel bicyclic nitroimidazole derivatives. Arch. Pharm. Chem. Life Sci. 2012, 345, 463–467. [Google Scholar] [CrossRef] [PubMed]
- Zaprutko, L.; Żwawiak, J. Synthesis of optically active bicyclic derivatives of nitroimidazoles. Compounds 2021, 1, 145–153. [Google Scholar]
- Parasuraman, S. Prediction of activity spectra for substances. J Pharmacol. Pharmacother. 2011, 2, 52–53. [Google Scholar]
- Pogodin, P.V.; Lagunin, A.A.; Rudik, A.V.; Druzhilovskiy, D.S.; Filimonov, D.A.; Poroikov, V.V. AntiBac-Pred: A Web Application for Predicting Antibacterial Activity of Chemical Compounds. J. Chem. Inf. Model. 2019, 59, 4513–4518. [Google Scholar] [CrossRef]
No. | Pa | PASS Activity | Pa | AntiBac-Pred Activity |
---|---|---|---|---|
3 | 0.752 0.608 0.520 | Radiosensitizing Antiprotozoal Ophtalmic drug | 0.84 0.84 0.76 | Prevotella disiens Bact. stercoris Clostridium ramosum |
4 | 0.673 0.631 0.529 | Radiosensitizing Antiprotozoal Skeletal muscle relaxant | 0.84 0.83 0.75 | Prevotella disiens Bact. stercoris Clostridium ramosum |
5 | 0.733 0.658 0.631 | Diazylglicerol lipase inhibitor Radiosensitizing Anti-infective | 0.78 0.77 0.68 | Bact. stercoris Prevotella disiens Clostridium ramosum |
6 | 0.702 0.624 | Radiosensitizing Antiprotozoal | 0.93 0.91 0.82 | Pseudomonas aeruginosa (resistant strains) Prevotella disiens Bact. stercoris |
7 | 0.687 0.633 0.617 | Radiosensitizing Cardioprotective Antiprotozoal | 0.92 0.86 0.82 | Pseudomonas aeruginosa (resistant strains) Prevotella disiens Bact. stercoris |
8 | 0.686 0.647 0.626 | Radiosensitizing Cardioprotective Antiprotozoal | 0.94 0.83 0.80 | Pseudomonas aeruginosa (resistant strains) Prevotella disiens Bact. stercoris |
9 | 0.727 0.718 0.667 | Myocardial ischemia therapy Radiosensitizing Cardioprotective | 0.78 0.75 0.73 | Bact. stercoris Prevotella disiens Clostridium ramosum |
10 | 0.728 0.675 0.565 | Radiosensitizing Cardioprotective Antiprotozoal | 0.80 0.80 0.73 | Bact. stercoris Prevotella disiens Clostridium ramosum |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żwawiak, J.; Zaprutko, L. Synthesis and Predicted Activity of Some 4-Amine and 4-(α-Aminoacid) Derivatives of N-Expanded-metronidazole Analogues. Compounds 2023, 3, 97-106. https://doi.org/10.3390/compounds3010009
Żwawiak J, Zaprutko L. Synthesis and Predicted Activity of Some 4-Amine and 4-(α-Aminoacid) Derivatives of N-Expanded-metronidazole Analogues. Compounds. 2023; 3(1):97-106. https://doi.org/10.3390/compounds3010009
Chicago/Turabian StyleŻwawiak, Justyna, and Lucjusz Zaprutko. 2023. "Synthesis and Predicted Activity of Some 4-Amine and 4-(α-Aminoacid) Derivatives of N-Expanded-metronidazole Analogues" Compounds 3, no. 1: 97-106. https://doi.org/10.3390/compounds3010009
APA StyleŻwawiak, J., & Zaprutko, L. (2023). Synthesis and Predicted Activity of Some 4-Amine and 4-(α-Aminoacid) Derivatives of N-Expanded-metronidazole Analogues. Compounds, 3(1), 97-106. https://doi.org/10.3390/compounds3010009