Waste-Glycerol as a Precursor for Carbon Materials: An Overview
Abstract
:1. Introduction
2. Synthesis of Glycerol-Based Carbon Materials
3. Principal Uses of Carbons from Glycerol
3.1. Catalysis
3.2. Adsorption
3.3. Capacitors
4. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mathew, G.M.; Raina, D.; Narisetty, V.; Kumar, V.; Saran, S.; Pugazhendi, A.; Sindhu, R.; Pandey, A.; Binod, P. Recent advances in biodiesel production: Challenges and solutions. Sci. Total Environ. 2021, 794, 148751. [Google Scholar] [CrossRef] [PubMed]
- Niekurzak, M. Determining the Unit Values of the Allocation of Greenhouse Gas Emissions for the Production of Biofuels in the Life Cycle. Energies 2021, 14, 8394. [Google Scholar] [CrossRef]
- Noureddini, H.; Zhu, D. Kinetics of transesterification of soybean oil. J. Am. Oil Chem. Soc. 1997, 74, 1457–1463. [Google Scholar] [CrossRef]
- Porte, A.F.; Schneider, R.D.C.D.S.; Kaercher, J.A.; Klamt, R.A.; Schmatz, W.L.; da Silva, W.L.T.; Filho, W.A.S. Sunflower biodiesel production and application in family farms in Brazil. Fuel 2010, 89, 3718–3724. [Google Scholar] [CrossRef]
- Darnoko, D.; Cheryan, M. Kinetics of palm oil transesterification in a batch reactor. J. Am. Oil Chem. Soc. 2000, 77, 1263–1267. [Google Scholar] [CrossRef]
- Kusdiana, D.; Saka, S. Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel 2001, 80, 693–698. [Google Scholar] [CrossRef]
- Jang, M.G.; Kim, D.K.; Park, S.C.; Lee, J.S.; Kim, S.W. Biodiesel production from crude canola oil by two-step enzymatic processes. Renew. Energy 2012, 42, 99–104. [Google Scholar] [CrossRef]
- Folaranmi, J. Production of Biodiesel (B100) from Jatropha Oil Using Sodium Hydroxide as Catalyst. J. Pet. Eng. 2013, 2013, 430–438. [Google Scholar] [CrossRef]
- Sharma, L.; Grover, N.K.; Bhardwaj, M.; Kaushal, I. Comparison of Engine Performance of Mixed Jatropha and Cottonseed Derived Biodiesel Blends with Conventional Diesel. Int. J. Emerg. Technol. 2012, 3, 29–32. [Google Scholar]
- Köse, Ö.; Tüter, M.; Aksoy, H.A. Immobilized Candida antarctica lipase-catalyzed alcoholysis of cotton seed oil in a solvent-free medium. Bioresour. Technol. 2002, 83, 125–129. [Google Scholar] [CrossRef]
- Katryniok, B.; Paul, S.; Bellière-Baca, V.; Rey, P.; Dumeignil, F. Glycerol dehydration to acrolein in the context of new uses of glycerol. Green Chem. 2010, 12, 2079–2098. [Google Scholar] [CrossRef]
- Dosuna-Rodríguez, I.; Gaigneaux, E. Glycerol acetylation catalysed by ion exchange resins. Catal. Today 2012, 195, 14–21. [Google Scholar] [CrossRef]
- Choi, W.J. Glycerol-Based Biorefinery for Fuels and Chemicals. Recent Pat. Biotechnol. 2008, 2, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Melero, J.; Vicente, G.; Morales, G.; Paniagua, M.; Moreno, J.; Roldán, R.; Ezquerro, A.; Pérez, C. Acid-catalyzed etherification of bio-glycerol and isobutylene over sulfonic mesostructured silicas. Appl. Catal. A Gen. 2008, 346, 44–51. [Google Scholar] [CrossRef]
- Kong, P.S.; Aroua, M.K.; Daud, W.M.A.W. Conversion of crude and pure glycerol into derivatives: A feasibility evaluation. Renew. Sustain. Energy Rev. 2016, 63, 533–555. [Google Scholar] [CrossRef]
- Xia, L.-Z.; Yang, M.; He, M.; Jiang, M.-Z.; Qin, C.; Wei, Z.-J.; Gao, H.-T. Food emulsifier glycerin monostearate aggravates phthalates’ testicular toxicity by disrupting tight junctions’ barrier function in rats. Food Qual. Saf. 2021, 5, 1–9. [Google Scholar] [CrossRef]
- Wang, Z.W.; Saini, M.; Lin, L.-J.; Chiang, C.-J.; Chao, Y.-P. Systematic Engineering of Escherichia coli for d-Lactate Production from Crude Glycerol. J. Agric. Food Chem. 2015, 63, 9583–9589. [Google Scholar] [CrossRef]
- Feng, X.; Ding, Y.; Xian, M.; Xu, X.; Zhang, R.; Zhao, G. Production of optically pure d -lactate from glycerol by engineered Klebsiella pneumoniae strain. Bioresour. Technol. 2014, 172, 269–275. [Google Scholar] [CrossRef]
- Khan, A.; Bhide, A.; Gadre, R. Mannitol production from glycerol by resting cells of Candida magnoliae. Bioresour. Technol. 2009, 100, 4911–4913. [Google Scholar] [CrossRef]
- Pagliaro, M.; Rossi, M. Glycerol: Properties and production. In The Future of Glycerol, 2nd ed.; Green Chemistry Series; RSC: Cambridge, UK, 2010; pp. 1–187. [Google Scholar]
- Ayoub, M.; Abdullah, A.Z. Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew. Sustain. Energy Rev. 2012, 16, 2671–2686. [Google Scholar] [CrossRef]
- Ummadisetti, C.; Rachapudi, B.N.P.; Bethala, L.A.P.D. Glycerol-based SO3H-Carbon Catalyst: A green recyclable catalyst for the chemoselective synthesis of pentaerythritol diacetals. Eur. J. Chem. 2014, 5, 536–540. [Google Scholar] [CrossRef]
- Hejna, A.; Kosmela, P.; Formela, K.; Piszczyk, Ł; Haponiuk, J.T. Potential applications of crude glycerol in polymer technology–Current state and perspectives. Renew. Sustain. Energy Rev. 2016, 66, 449–475. [Google Scholar] [CrossRef]
- Hara, M.; Verkman, A.S. Glycerol replacement corrects defective skin hydration, elasticity, and barrier function in aquaporin-3-deficient mice. Proc. Natl. Acad. Sci. USA 2003, 100, 7360–7365. [Google Scholar] [CrossRef] [PubMed]
- Milani, M.; Sparavigna, A. The 24-hour skin hydration and barrier function effects of a hyaluronic 1%, glycerin 5%, and Centella asiatica stem cells extract moisturizing fluid: An intra-subject, randomized, assessor-blinded study. Clin. Cosmet. Investig. Dermatol. 2017, 10, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Becker, L.C.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.J.G.; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; et al. Safety Assessment of Glycerin as Used in Cosmetics. Int. J. Toxicol. 2019, 38, 6S–22S. [Google Scholar] [CrossRef]
- Silva, P.H.; Gonçalves, V.L.; Mota, C.J. Glycerol acetals as anti-freezing additives for biodiesel. Bioresour. Technol. 2010, 101, 6225–6229. [Google Scholar] [CrossRef]
- Trifoi, A.R.; Agachi, P.; Pap, T. Glycerol acetals and ketals as possible diesel additives. A review of their synthesis protocols. Renew. Sustain. Energy Rev. 2016, 62, 804–814. [Google Scholar] [CrossRef]
- Li, L.; Lee, E.S.; Nguyen, C.; Zhu, Y. Effects of propylene glycol, vegetable glycerin, and nicotine on emissions and dynamics of electronic cigarette aerosols. Aerosol Sci. Technol. 2020, 54, 1270–1281. [Google Scholar] [CrossRef] [PubMed]
- Ooi, B.G.; Dutta, D.; Kazipeta, K.; Chong, N.S. Influence of the E-Cigarette Emission Profile by the Ratio of Glycerol to Propylene Glycol in E-Liquid Composition. ACS Omega 2019, 4, 13338–13348. [Google Scholar] [CrossRef]
- Woodall, M.; Jacob, J.; Kalsi, K.K.; Schroeder, V.; Davis, E.; Kenyon, B.; Khan, I.; Garnett, J.P.; Tarran, R.; Baines, D.L. E-cigarette constituents propylene glycol and vegetable glycerin decrease glucose uptake and its metabolism in airway epithelial cells in vitro. Am. J. Physiol.-Lung Cell. Mol. Physiol. 2020, 319, L957–L967. [Google Scholar] [CrossRef]
- Rarata, G.; Smętek, J. Explosives Based on Hydrogen Peroxide—A Historical Review and Novel Applications. High-Energ. Mater. 2016, 8, 56–62. [Google Scholar]
- Hong, X.; McGiveron, O.; Kolah, A.K.; Orjuela, A.; Peereboom, L.; Lira, C.T.; Miller, D.J. Reaction kinetics of glycerol acetal formation via transacetalization with 1,1-diethoxyethane. Chem. Eng. J. 2013, 222, 374–381. [Google Scholar] [CrossRef]
- Nanda, M.R.; Yuan, Z.; Qin, W.; Ghaziaskar, H.S.; Poirier, M.-A.; Xu, C.C. A new continuous-flow process for catalytic conversion of glycerol to oxygenated fuel additive: Catalyst screening. Appl. Energy 2014, 123, 75–81. [Google Scholar] [CrossRef]
- Nanda, M.R.; Yuan, Z.; Qin, W.; Ghaziaskar, H.S.; Poirier, M.-A.; Xu, C.C. Thermodynamic and kinetic studies of a catalytic process to convert glycerol into solketal as an oxygenated fuel additive. Fuel 2014, 117, 470–477. [Google Scholar] [CrossRef]
- Ahmad, M.Y.; Basir, N.I.; Abdullah, A.Z. A review on one-pot synthesis of acrylic acid from glycerol on bi-functional catalysts. J. Ind. Eng. Chem. 2021, 93, 216–227. [Google Scholar] [CrossRef]
- Batista, M.K.S.; Mestre, A.S.; Matos, I.; Fonseca, I.M.; Carvalho, A.P. Biodiesel production waste as promising biomass precursor of reusable activated carbons for caffeine removal. RSC Adv. 2016, 6, 45419–45427. [Google Scholar] [CrossRef]
- Bernardo, M.; Rodrigues, S.; Lapa, N.; Matos, I.; Lemos, F.; Batista, M.K.S.; Carvalho, A.P.; Fonseca, I. High efficacy on diclofenac removal by activated carbon produced from potato peel waste. Int. J. Environ. Sci. Technol. 2016, 13, 1989–2000. [Google Scholar] [CrossRef]
- Osman, A.I.; Blewitt, J.; Abu-Dahrieh, J.K.; Farrell, C.; Al-Muhtaseb, A.H.; Harrison, J.; Rooney, D.W. Production and characterisation of activated carbon and carbon nanotubes from potato peel waste and their application in heavy metal removal. Environ. Sci. Pollut. Res. 2019, 26, 37228–37241. [Google Scholar] [CrossRef]
- Guo, Y.; Tan, C.; Sun, J.; Li, W.; Zhang, J.; Zhao, C. Porous activated carbons derived from waste sugarcane bagasse for CO2 adsorption. Chem. Eng. J. 2020, 381, 122736. [Google Scholar] [CrossRef]
- Ruiz, M.; Rolz, C. Activated Carbons from Sugar Cane Bagasse. Ind. Eng. Chem. Prod. Res. Dev. 1971, 10, 429–432. [Google Scholar] [CrossRef]
- Kemp, K.; Baek, S.-B.; Lee, W.-G.; Meyyappan, M.; Kim, K.S. Activated carbon derived from waste coffee grounds for stable methane storage. Nanotechnology 2015, 26, 385602. [Google Scholar] [CrossRef] [PubMed]
- Pagalan, E., Jr.; Sebron, M.; Gomez, S.; Salva, S.J.; Ampusta, R.; Macarayo, A.J.; Joyno, C.; Ido, A.; Arazo, R. Activated carbon from spent coffee grounds as an adsorbent for treatment of water contaminated by aniline yellow dye. Ind. Crops Prod. 2020, 145, 111953. [Google Scholar] [CrossRef]
- Riyanto; Astuti, R.; Mukti, B.I. Simple preparation of rice husk activated carbon (RHAC) and applications for laundry and methylene blue wastewater treatment. AIP Conf. Proc. 2017, 1911, 20033. [Google Scholar] [CrossRef]
- Sharath, D.; Ezana, J.; Shamil, Z. Production of activated carbon from solid waste rice peel (husk) using chemical activation. J. Ind. Pollut. Control 2017, 33, 1132–1139. [Google Scholar]
- Tsai, W.; Chang, C.; Lee, S. A low cost adsorbent from agricultural waste corn cob by zinc chloride activation. Bioresour. Technol. 1998, 64, 211–217. [Google Scholar] [CrossRef]
- Medhat, A.; El-Maghrabi, H.H.; Abdelghany, A.; Abdel Menem, N.M.; Raynaud, P.; Moustafa, Y.M.; Elsayed, M.A.; Nada, A.A. Efficiently activated carbons from corn cob for methylene blue adsorption. Appl. Surf. Sci. Adv. 2021, 3, 100037. [Google Scholar] [CrossRef]
- Devi, B.L.A.P.; Gangadhar, K.N.; Prasad, P.S.S.; Jagannadh, B.; Prasad, R.B.N. A Glycerol-based Carbon Catalyst for the Preparation of Biodiesel. ChemSusChem 2009, 2, 617–620. [Google Scholar] [CrossRef]
- Prabhavathi Devi, B.L.A.; Gangadhar, K.N.; Siva Kumar, K.L.N.; Shiva Shanker, K.; Prasad, R.B.N.; Sai Prasad, P.S. Synthesis of sulfonic acid functionalized carbon catalyst from glycerol pitch and its application for tetrahydropyranyl protection/deprotection of alcohols and phenols. J. Mol. Catal. A Chem. 2011, 345, 96–100. [Google Scholar] [CrossRef]
- Mantovani, M.; Aguiar, E.M.; Carvalho, W.A.; Mandelli, D.; Gonçalves, M. Utilization of biodiesel waste for acid carbon preparation with high catalyst activity in the glycerol etherification reaction. Quim. Nova 2015, 38, 526–532. [Google Scholar] [CrossRef]
- Gonçalves, M.; Rodrigues, R.; Galhardo, T.S.; Carvalho, W.A. Highly selective acetalization of glycerol with acetone to solketal over acidic carbon-based catalysts from biodiesel waste. Fuel 2016, 181, 46–54. [Google Scholar] [CrossRef]
- Batista, M.; Pinto, M.L.; Carvalho, R.; Pires, J. Glycerin-based adsorbents for the separation of ethane and ethylene. Colloids Surf. A Physicochem. Eng. Asp. 2022, 634, 127975. [Google Scholar] [CrossRef]
- Gonçalves, M.; Castro, C.S.; Boas, I.K.V.; Soler, F.C.; Pinto, E.D.C.; Lavall, R.L.; Carvalho, W.A. Glycerin waste as sustainable precursor for activated carbon production: Adsorption properties and application in supercapacitors. J. Environ. Chem. Eng. 2019, 7, 103059. [Google Scholar] [CrossRef]
- Cui, Y.; Atkinson, J.D. Tailored activated carbon from glycerol: Role of acid dehydrator on physiochemical characteristics and adsorption performance. J. Mater. Chem. A 2017, 5, 16812–16821. [Google Scholar] [CrossRef]
- Álvarez-Torrellas, S.; Ribeiro, R.; Gomes, H.; Ovejero, G.; García, J. Removal of antibiotic compounds by adsorption using glycerol-based carbon materials. Chem. Eng. J. 2016, 296, 277–288. [Google Scholar] [CrossRef]
- Ribeiro, R.S.; Silva, A.M.; Pinho, M.T.; Figueiredo, J.L.; Faria, J.L.; Gomes, H.T. Development of glycerol-based metal-free carbon materials for environmental catalytic applications. Catal. Today 2015, 240, 61–66. [Google Scholar] [CrossRef]
- Lee, D.-W.; Jin, M.-H.; Park, J.C.; Lee, C.-B.; Oh, D.-K.; Lee, S.-W.; Park, J.-W.; Park, J.-S. Waste-Glycerol-Directed Synthesis of Mesoporous Silica and Carbon with Superior Performance in Room-Temperature Hydrogen Production from Formic Acid. Sci. Rep. 2015, 5, 15931. [Google Scholar] [CrossRef]
- Narvekar, A.A.; Fernandes, J.; Tilve, S. Adsorption behavior of methylene blue on glycerol based carbon materials. J. Environ. Chem. Eng. 2018, 6, 1714–1725. [Google Scholar] [CrossRef]
- Medeiros, M.A.; Ardisson, J.D.; Lago, R.M. Preparation of magnetic mesoporous composites from glycerol and iron(III) salt. J. Chem. Technol. Biotechnol. 2020, 95, 1038–1045. [Google Scholar] [CrossRef]
- Batista, M.; Pinto, M.L.; Antunes, F.; Pires, J.; Carvalho, S. Chitosan Biocomposites for the Adsorption and Release of H2S. Materials 2021, 14, 6701. [Google Scholar] [CrossRef]
- Ramesh, K.; Murthy, S.N.; Karnakar, K.; Nageswar, Y.V.D.; Vijayalakhshmi, K.; Prabhavathi Devi, B.L.A.; Prasad, R.B.N. A novel bioglycerol-based recyclable carbon catalyst for an efficient one-pot synthesis of highly substituted imidazoles. Tetrahedron Lett. 2012, 53, 1126–1129. [Google Scholar] [CrossRef]
- Ramesh, K.; Murthy, S.N.; Karnakar, K.; Reddy, K.H.V.; Nageswar, Y.V.D.; Vijay, M.; Devi, B.P.; Prasad, R.B.N. A mild and expeditious synthesis of amides from aldehydes using bio glycerol-based carbon as a recyclable catalyst. Tetrahedron Lett. 2012, 53, 2636–2638. [Google Scholar] [CrossRef]
- Konkala, K.; Sabbavarapu, N.M.; Katla, R.; Durga, N.Y.V.; Kumar Reddy, T.V.; Prabhavathi, P.D.; Rachapudi, B.N.P. Revisit to the Biginelli reaction: A novel and recyclable bioglycerol-based sulfonic acid functionalized carbon catalyst for one-pot synthesis of substituted 3,4-dihydropyrimidin-2-(1H)-ones. Tetrahedron Lett. 2012, 53, 1968–1973. [Google Scholar] [CrossRef]
- Gangadhar, K.N.; Vijay, M.; Prasad, R.B.N.; Devi, B.L.A.P. Glycerol-Based Carbon-SO3H Catalyzed Benign Synthetic Protocol for the Acetylation of Alcohols, Phenols and Amines under Solvent-Free Conditions. Green Sustain. Chem. 2013, 03, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, M.; Mantovani, M.; Carvalho, W.A.; Rodrigues, R.; Mandelli, D.; Albero, J.S. Biodiesel wastes: An abundant and promising source for the preparation of acidic catalysts for utilization in etherification reaction. Chem. Eng. J. 2014, 256, 468–474. [Google Scholar] [CrossRef]
- Pinto, R.V.; Carvalho, S.; Antunes, F.; Pires, J.; Pinto, M.L. Emerging Nitric Oxide and Hydrogen Sulfide Releasing Carriers for Skin Wound Healing Therapy. ChemMedChem 2022, 17, e202100429. [Google Scholar] [CrossRef] [PubMed]
- Narvekar, A.A.; Fernandes, J.; Naik, S.; Tilve, S. Development of glycerol based carbon having enhanced surface area and capacitance obtained by KOH induced thermochemical activation. Mater. Chem. Phys. 2021, 261, 124238. [Google Scholar] [CrossRef]
- Juchen, P.T.; Barcelos, K.M.; Oliveira, K.S.; Ruotolo, L.A. Using crude residual glycerol as precursor of sustainable activated carbon electrodes for capacitive deionization desalination. Chem. Eng. J. 2022, 429, 132209. [Google Scholar] [CrossRef]
Product | Catalyst Loading (%) | Solvent | Temperature (°C) | Reaction Time (h) | Yield (%) | Recyclability of Catalyst (n° of Cycles Studied) | Reference |
---|---|---|---|---|---|---|---|
Biodiesel | 10 | Methanol | 65 | 4 | 99 * | 8 | [48] |
THP ether | 10 | Dichloromethane | R.T. | 2 | 80–98 | 8 | [49] |
Alcohols | 10 | Methanol | R.T. | 0.5 | 95–99 | 8 | [49] |
Substituted imidazole derivatives | 10 | Acetonitrile | 50–55 | 7 | 70–84 | 3 | [61] |
Substituted 3,4-dihydropyridine-2-(1H)-ones | 10 | Acetonitrile | reflux | 4–4.5 | 80–92 | 3 | [63] |
Substituted benzamides | 10 | Acetonitrile | 60–65 | - | 71–78 | 3 | [61] |
Acetylated alcohol and phenols | 15 | No-solvent | 65 | 0.5–2 | 75–96 | 5 | [64] |
Acetylated amines | 15 | No-solvent | 65 | 0.5 | 92–97 | - | [64] |
Pentaerythritol diacetals | 5 | Toluene | 80 | 1.5–8.5 | 94–98 | 5 | [22] |
Glycerol acetal + | 3 | - | 40/65 | 1 | 82 * | 5 | [51] |
Glycerol etherification | 5 | - | 120 | 6 | 52 (MTBG), 22 (DTBG + TTBG) | 8 | [65] |
Sample | ABET (m2·g−1) | Vmicro (cm3·g−1) | Adsorption Capacity | Reference | ||
Flumequine | Tetracycline | [55] | ||||
GBCM200 | 352 | 0.17 | 0.9 mmol·g−1 | 53.9 mmol·g−1 | ||
GBCM300 | 391 | 0.19 | 33.7 mmol·g−1 | 51.3 mmol·g−1 | ||
GBCM350 | 436 | 0.22 | 41.5 mmol·g−1 | 58.1 mmol·g−1 | ||
Toluene | Hexane | Cr(VI) | [54] | |||
S3-steam | 2470 | 0.80 | – | – | 30 mg·g−1 | |
S3-CO2 | 1050 | 0.38 | – | – | 15 mg·g−1 | |
P1-steam | 1420 | 0.41 | – | – | 39 mg·g−1 | |
P1-CO2 | 1590 | 0.50 | 1.5 g·g−1 | 1.1 g·g−1 | 56 mg·g−1 | |
Methylene blue | [58] | |||||
GBC-120 | 21 | 0.06 | 1050 mg·g−1 | |||
GBC-350 | 464 | 0.10 | 139 mg·g−1 | |||
Methylene blue | Paracetamol | [53] | ||||
ACZn-847 | 500 | – | 109 mol·g−1 | 39 mol·g−1 | ||
ACZn-447 | 680 | – | 151 mol·g−1 | 88 mol·g−1 | ||
ACZn-425 | 800 | – | 200 mol·g−1 | 81 mol·g−1 | ||
ACP-646 | 420 | – | 263 mol·g−1 | 28 mol·g−1 | ||
ACP-644 | 460 | – | 370 mol·g−1 | 23 mol·g−1 | ||
ACP-346 | 390 | – | 256 mol·g−1 | 28 mol·g−1 | ||
Methylene blue | Indigo carmine | [59] | ||||
GFe3-800 | 136 | – | 80% | 71% | ||
GFe3-600 | 140 | – | 62% | 30% | ||
Ethane | Ethylene | [52] | ||||
G@700/3 | 1564 | 0.69 | 8.98 mol·g−1 | 8.62 mol·g−1 | ||
G@700/2 | 1441 | 0.64 | 13.24 mol·g−1 | 12.63 mol·g−1 | ||
G@700/1 | 1166 | 0.63 | 8.92 mol·g−1 | 8.27 mol·g−1 | ||
G@800/3 | 2150 | 1.03 | 13.46 mol·g−1 | 10.88 mol·g−1 | ||
G@800/2 | 1895 | 0.95 | 14.81 mol·g−1 | 12.19 mol·g−1 | ||
G@800/1 | 1720 | 0.76 | 12.64 mol·g−1 | 11.67 mol·g−1 | ||
H2S | [60] | |||||
Gta@600 | 466 | – | 0.02 mol·g−1 | |||
Gta@600Chi | <5 | – | 0.012 mol·g−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batista, M.; Carvalho, S.; Carvalho, R.; Pinto, M.L.; Pires, J. Waste-Glycerol as a Precursor for Carbon Materials: An Overview. Compounds 2022, 2, 222-236. https://doi.org/10.3390/compounds2030018
Batista M, Carvalho S, Carvalho R, Pinto ML, Pires J. Waste-Glycerol as a Precursor for Carbon Materials: An Overview. Compounds. 2022; 2(3):222-236. https://doi.org/10.3390/compounds2030018
Chicago/Turabian StyleBatista, Mary, Silvia Carvalho, Renato Carvalho, Moisés L. Pinto, and João Pires. 2022. "Waste-Glycerol as a Precursor for Carbon Materials: An Overview" Compounds 2, no. 3: 222-236. https://doi.org/10.3390/compounds2030018