Superferromagnetic Sensors
Abstract
:1. Introduction
2. SPM Shells Structure
Shells in the Band Structure of SPM
3. SFM as SPMA with Direct and/or Indirect Exchange Coupling
3.1. SPMA in Insulator Substrate
TMR Tunneling Magnetoresistance
3.2. SPMA in Conducting Substrate
GMR Giant Magnetoresistance
4. SFM as SPMA with Ferromagnetic Coupling
4.1. Mean-Field Treatment of SFM State Equation
4.2. SFM Phase Diagram
4.3. SFM Dynamics and Analytical Tools to Reveal SFM Structure
5. SPMA as Sensors for SPM
6. Discussion
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reiss, G.; Brueckl, H.; Huetten, A.; Schotter, J.; Brzeska, M.; Panhorst, M.; Sudfeld, D.; Becker, A.; Kamp, P.B.; Puehler, A.; et al. Magnetoresistive sensors and magnetic nanoparticles for biotechnology. J. Mater. Res. 2005, 20, 3294–3302. [Google Scholar] [CrossRef]
- Ennen, I.; Kappe, D.; Rempel, T.; Glenske, C.; Hütten, A. Giant magnetoresistance: Basic concepts, microstructure, magnetic interactions and applications. Sensors 2016, 16, 904. [Google Scholar] [CrossRef]
- Matus, M.F.; Häkkinen, H. Understanding ligand-protected noble metal nanoclusters at work. Nat. Rev. Mater. 2023, 8, 372–389. [Google Scholar] [CrossRef]
- Chuanbo, G.; Fenglei, L.; Yadong, Y. Encapsulated Metal Nanoparticles for Catalysis. Chem. Rev. 2021, 121, 834–881. [Google Scholar]
- Bedanta, S.; Wolfgang, K. Supermagnetism. J. Phys. D Appl. Phys. 2008, 42, 013001. [Google Scholar] [CrossRef]
- Dormann, J.-L.; Fiorani, D.; Tronc, E. Magnetic relaxation in fine-particle systems. Adv. Chem. Phys. 1997, 98, 283–494. [Google Scholar]
- Heinrich, B.; Bland, J.A.C. (Eds.) Ultrathin Magnetic Structures; Springer: Berlin/Heidelberg, Germany, 1994. [Google Scholar]
- Wijn, H.P.J. (Ed.) Magnetic Properties of Metals; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Kondratyev, V.N.; Lutz, H.O. Shell effect in exchange coupling of transition metal dots and their arrays. Phys. Rev. Lett. 1998, 81, 4508–4511. [Google Scholar] [CrossRef]
- Kondratyev, V.N.; Lutz, H.O. Interdot Exchange Coupling in Superferromagnetism. Eur. Phys. J. D 1999, 9, 483–485. [Google Scholar] [CrossRef]
- Brack, M.; Bhaduri, R.K. Semiclassical Physics; Addison-Wesley: Reading, MA, USA, 1997. [Google Scholar]
- Reimann, S.M.; Persson, M.; Lindelof, P.E.; Brack, M. Shell structure of a circular quantum dot in weak magnetic field. Z. Phys. B 1996, 101, 377. [Google Scholar] [CrossRef]
- Reimann, S.M.; Manninen, M. Electronic structure of quantum dots. Rev. Mod. Phys. 2002, 74, 1283. [Google Scholar] [CrossRef]
- Kondratyev, V.N. Multipole Moments of Electronic Vacancies Produced by Fast Particles in Atomic Clusters. Phys. Lett. A 1993, 179, 209–213. [Google Scholar] [CrossRef]
- Kondratyev, V.N. Strong Valence Electron Excitation due to Internal Conversion or K-capture. Phys. Lett. A 1994, 190, 465–468. [Google Scholar] [CrossRef]
- Apsel, S.E.; Emmert, J.W.; Deng, J.; Bloomfield, L.A. Surface-enhanced magnetism in nickel clusters. Phys. Rev. Lett. 1996, 76, 1441. [Google Scholar] [CrossRef]
- Billas, I.M.L.; Becker, J.A.; Chatelain, A.; de Heer, W.A. Magnetic moments of iron clusters with 25 to 700 atoms and their dependence on temperature. Phys. Rev. Lett. 1993, 71, 4067. [Google Scholar] [CrossRef]
- Billas, I.M.L.; Chatelain, A.; de Heer, W.A. Magnetism from the atom to the bulk in iron, cobalt, and nickel clusters. Science 1994, 265, 1682. [Google Scholar] [CrossRef] [PubMed]
- van Staveren, M.P.J.; Brom, H.B.; de Jongh, L.J. Metal-cluster compounds and universal features of the hopping conductivity of solids. Phys. Rep. 1991, 208, 1–96. [Google Scholar] [CrossRef]
- Slonczewski, J.C. Conductance and exchange coupling of two ferromagnets separated by a tunneling barrier. Phys. Rev. B 1989, 39, 6995. [Google Scholar] [CrossRef]
- Julliere, M. Tunneling between ferromagnetic films. Phys. Lett. A 1975, 54, 225–226. [Google Scholar] [CrossRef]
- Meservey, R.; Tedrow, P.M. Spin-polarized electron tunneling. Phys. Rep. 1994, 238, 173. [Google Scholar] [CrossRef]
- Dormann, J.; Cherkaoui, R.; Spinu, L.; Noguès, M.; Lucari, F.; D’Orazio, F.; Fiorani, D.; García-Santiago, A.; Tronc, E.; Jolivet, J. From pure superparamagnetic regime to glass collective state of magnetic moments in γ-Fe2O3 nanoparticle assemblies. J. Magn. Magn. Mater. 1998, 187, L139–L144. [Google Scholar] [CrossRef]
- Pertsev, N.A.; Tagantsev, A.K.; Setter, N. Phase transitions and strain-induced ferroelectricity in SrTiO3 epitaxial thin films. Phys. Rev. B 2000, 61, R825. [Google Scholar] [CrossRef]
- Cador, O.; Grasset, F.; Haneda, H.; Etourneau, J. Memory effect and super-spin-glass ordering in an aggregated nanoparticle sample. J. Magn. Magn. Mater. 2004, 268, 232–236. [Google Scholar] [CrossRef]
- Baibich, M.N.; Broto, J.M.; Fert, A.; van Dau, F.N.; Petro, F.; Eitenne, P.; Creuzet, G.; Friederich, A.; Chazelas, J. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Phys. Rev. Lett. 1988, 61, 2472. [Google Scholar] [CrossRef]
- Binasch, G.; Grünberg, P.; Saurenbach, F.; Zinn, W. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B 1989, 39, 4828–4830. [Google Scholar] [CrossRef]
- Berkowitz, A.E.; Mitchell, J.R.; Carey, M.J.; Young, A.P.; Zhang, S.; Spada, F.E.; Parker, F.T.; Hutten, A.; Thomas, G. Giant magnetoresistance in heterogeneous Cu-Co alloys. Phys. Rev. Lett. 1992, 68, 3745. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.; Rempel, T.; Schaefers, M.; Wittbracht, F.; Mueller, C.; Patel, A.V.; Huetten, A. Giant magnetoresistance effects in gel-like matrices. Smart Mater. Struct. 2013, 22, 025032. [Google Scholar] [CrossRef]
- Kochetov, E.A.; Osipov, V.A.; Pincak, R. Electronic properties of disclinated flexible membrane beyond the inextensional limit: Application to graphene. J. Phys. Condens. Matter 2010, 22, 395502. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshitz, E.M. Statistical Physics; Pergamon Press: Tarrytown, NY, USA, 1977; Volume 5. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M. Quantum Mechanics; Pergamon Press: Tarrytown, NY, USA, 1977; Volume 3. [Google Scholar]
- Barman, A.; Mondal, S.; Sahoo, S.; De, A. Magnetization dynamics of nanoscale magnetic materials: A perspective. J. Appl. Phys. 2020, 128, 170901. [Google Scholar] [CrossRef]
- Kondratyev, V.N. Dynamics of magnetic nanoparticle assembly. J. Phys. CS 2010, 248, 012027. [Google Scholar]
- Kondratyev, V.N.; Krylov, V.V.; Bezshyyko, O.A.; Golinka-Bezshyyko, L.O.; Osipov, V.A. Response of magnetic nanoparticle assemblies. J. Phys. CS 2012, 393, 012005. [Google Scholar] [CrossRef]
- Kondratyev, V.N.; Lutz, H.O.; Ayik, S. Critical Evolution of Hot van der Waals Droplets. J. Chem. Phys. 1997, 106, 7766. [Google Scholar] [CrossRef]
- Kondratyev, V.N. Mean versus strongest signals for self-organized criticality in magnetic quantum dot arrays. Phys. Lett. A 2006, 354, 217. [Google Scholar] [CrossRef]
- Tay, Z.W.; Savliwala, S.; Hensley, D.W.; Fung, K.L.B.; Colson, C.; Fellows, B.D.; Zhou, X.; Huynh, Q.; Lu, Y.; Zheng, B.; et al. Superferromagnetic Nanoparticles Enable Order-of-Magnitude Resolution & Sensitivity Gain in Magnetic Particle Imaging. Small Methods 2021, 5, 2100796. [Google Scholar]
- Bui, T.Q.; Biacchi, A.J.; Dennis, C.L.; Tew, W.L.; Walker, A.R.H.; Woods, S.I. Advanced characterization of magnetization dynamics in iron oxide magnetic nanoparticle tracers. Appl. Phys. Lett. 2022, 120, 012407. [Google Scholar] [CrossRef] [PubMed]
- Kondratyev, V.N. Magnetoemission of Magnetars. Phys. Part. Nucl. 2019, 50, 613. [Google Scholar] [CrossRef]
- Kondratyev, V.N. R-process with magnetized nuclei at dynamo-explosive supernovae and neutron star mergers. Universe 2021, 7, 487. [Google Scholar] [CrossRef]
- Blanchard, P.; Brüning, E. Mathematical Methods in Physics; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Sornette, A. Critical Phenomena in Natural Sciences; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondratyev, V.N.; Osipov, V.A. Superferromagnetic Sensors. Nanomanufacturing 2023, 3, 263-280. https://doi.org/10.3390/nanomanufacturing3030017
Kondratyev VN, Osipov VA. Superferromagnetic Sensors. Nanomanufacturing. 2023; 3(3):263-280. https://doi.org/10.3390/nanomanufacturing3030017
Chicago/Turabian StyleKondratyev, Vladimir N., and Vladimir A. Osipov. 2023. "Superferromagnetic Sensors" Nanomanufacturing 3, no. 3: 263-280. https://doi.org/10.3390/nanomanufacturing3030017
APA StyleKondratyev, V. N., & Osipov, V. A. (2023). Superferromagnetic Sensors. Nanomanufacturing, 3(3), 263-280. https://doi.org/10.3390/nanomanufacturing3030017