A Review on Metasurface Beam Splitters
Abstract
:1. Introduction
2. The Basic Principle of the Metasurface Beam Splitter
2.1. Generalized Snell’s Law
2.2. Photonic Spin Hall Effect
3. Polarization Metasurface Beam Splitter
3.1. Linear Polarization Metasurface Beam Splitter
3.2. Circular Polarization Metasurface Beam Splitter
3.3. Polarization-Sensitive Metasurface Beam Splitters
3.4. Polarization-Insensitive Metasurface Beam Splitters
3.5. Non-Polarizing Metasurface Beam Splitters
3.6. Summary
- The linearly polarized metasurface beam splitter is designed according to the generalized Snell’s law, and we introduce the design of four functions. Using a nanobrick structure, due to the different phase responses of the orthogonal polarization beam to the long side and the short side, the orthogonal polarization state of the incident light can be separated, and the beam-splitting direction of the two separate beams can be designed. With the multi-layer Huygens metasurface, each cell of the Huygens metasurface can control two pairs of orthogonal electric dipoles and magnetic dipoles, so the function of orthogonal polarization beam splitting is also realized. Because of the asymmetry of the elliptic cylinder structure, it also has an asymmetric response to quadratically polarized light, so it can also be used to design quadratically polarized metasurface beam splitters. Because of the flexible phase distribution design of the metasurface, it can be combined with the lens function to realize the beam splitting and focusing functions at the same time.
- The circular polarized metasurface beam splitter is based on the photon spin Hall effect and can separate a pair of beams with opposite spins. The symmetric beam-splitting function of circular polarization can be achieved using different metasurface structures, such as PB phase nanofins, multilayer open ring arrays, or planar coaxial golden disk ring resonators. In addition, the phase design of the Rochon prism is realized using nanofins, which can separate CP light and deflect only RCP light. A dual-function circular polarization metasurface can also be realized, which can switch between CP light splitting reflection and RCP light transmission, focusing on two operating frequencies.
- The polarization-sensitive metasurface beam splitter with high selectivity for polarized light can perform different wavefront transformations for each polarized light by designing the metasurface element structure; that is, the function changes when the incident light with different polarization states is irradiated. Because of the different phase distributions in the orthogonal direction, the double rectangular element structure has different working abilities under the orthogonal LP light incident. The nanofin structure with the PB phase can change the working effect according to the different incident CP lights. It can also be combined with other functions, such as using nanobrick structures that combine polarization conversion, focusing, and beam splitting to quadratically transform LP incident light and split it to obtain two focal points. It is also possible to alternate the elliptic cylinder with the cruciform structure, which combines a quarter-wave plate with a beam splitter, which can convert CP light into LP light and split the reflection.
- Polarization-insensitive metasurface beam splitters work similarly and always produce the same beam-splitting result regardless of the polarization state of the incident light. Polarization-insensitive metasurface beam splitters can be implemented in two main ways. One is the use of metasurfaces with structures, such as cylindrical elements, which are polarization-independent due to their own symmetry. Another is the use of PB phase metasurface structures. Under the specifically designed phase distribution, the intersecting CP components can only deflect to the opposite angle, and the deflection-insensitive design is realized.
- The non-polarizing metasurface beam splitter, which has the same function as the energy beam splitter, mainly considers how to beam the energy of incident light. A non-polarizing metasurface beam splitter with a high power and controllable beam-splitting ratio can be realized by using a deflection-independent cylindrical element structure or by optimizing the design algorithm.
4. Wavelength Metasurface Beam Splitters
5. Coding Metasurface Beam Splitter
6. Tunable Metasurface Beam Splitters
6.1. Mechanical System Control
6.2. Phase Change Materials
6.3. Lighting Control
6.4. Voltage Control
6.5. Summary
- Control by adding a mechanical structure outside the metasurface beam splitter. The structure of the metasurface can be changed by liquid metal and air pressure control systems, which can change the phase distribution and thus the beam-splitting effect. In memory metal metasurfaces, through mechanical stretching and heating, the metasurface structure can be expanded and folded to achieve different beam-splitting effects. The beam-splitting effect of the metasurface splitter can also be changed by mechanically controlling the transverse distance between the two layers of the metasurface.
- Use phase-change materials, such as VO2 and Ge2Sb2Te5 (GST). The lattice structure of these phase-change materials changes with temperature or voltage. For example, VO2 behaves as an insulator at room temperature. When the temperature reaches about 68 ℃, it transforms into a metallic state. While GST is amorphous at room temperature, when heated to 150 ℃, it changes to a crystalline state. The physical properties of these phase-change materials also change as the state changes. After adding phase change materials to the metasurface beam splitter, the beam-splitting effect of the metasurface can be changed by changing the temperature or voltage outside the metasurface, such as changing the beam-splitting angle and beam-splitting ratio, or the conversion of focusing function and beam-splitting function.
- The beam-splitting effect of the metasurface beam splitter can also be controlled by changing the external illumination intensity and illumination area. For example, adding a semiconductor epitaxial layer to the metasurface beam splitter can change the optical characteristics of the metasurface unit under the irradiation of an external light source, so the beam-splitting ability also change. In addition, infrared control can be combined with voltage control through the real-time control of infrared, changing the voltage of the metasurface varactor structure, realizing variable phase distribution, and then changing the beam-splitting angle. By depositing C-shaped metal SRR on top of the silicon on the sapphire substrate becomes opaque when illuminated with a laser. Therefore, the intensity of the beam splitting can be adjusted, and the beam-splitting ratio can be changed by controlling the illumination mode.
- As a new kind of material, graphene can effectively adjust the Fermi level or chemical potential of graphene by controlling the bias voltage or chemical doping so as to control the optical properties of graphene. Combining graphene with the metasurface can change the beam-splitting capability of the metasurface beam splitter by changing the external voltage. The metasurface beam splitter can be designed using trapezoidal graphene band structures. As the bias voltage increases, the frequency of the two splitting beams gradually increases. Using graphene arrays with holes, the LCP and RCP lights can be split in different directions, and the beam-splitting angle decreases as the bias voltage increases. Two slotted graphene patch arrays are combined up and down to form a metasurface. By increasing the voltage of the graphene, the operating frequency can be switched from 4 THz to 4.8 THz, achieving polarization splitting with an average efficiency of 75%.
7. Conclusions and Future Perspectives
7.1. Conclusions
- Since the phase of the metasurface is locally adjustable, the manipulation of electromagnetic waves is also more flexible. Therefore, the design of the metasurface beam splitter has higher degrees of freedom, which can not only flexibly design the beam-splitting angle, beam-splitting ratio, and other parameters but can also be integrated with the lens, wave plate, and other functions.
- The digital design and control of metasurface phase distribution can be realized by encoding metasurface technology, which is flexible.
- Due to the free choice of metasurface structure and materials, the metasurface beam splitter can bring tunable properties by external mechanical systems or the use of phase change materials, which can accurately adjust the beam splitter angle and other parameters, and flexibly and quickly switch the beam splitter function.
- Unlike the traditional three-dimensional structure, the metasurface has ultra-thin two-dimensional properties, so the use of metasurface design is conducive to the miniaturization and integration of optical devices.
7.2. Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, Y.S.; Pramanik, T.; Cho, Y.W.; Yang, M.; Han, S.W.; Lee, S.Y.; Kang, M.S.; Moon, S. Informationally symmetrical bell state preparation and measurement. Opt. Express 2018, 26, 29539–29549. [Google Scholar] [CrossRef]
- Wu, W.R.; Zhou, K.J.; Lu, C.J.; Xian, T.H. Open-loop fiber-optic gyroscope with a double sensitivity employing a polarization splitter and faraday rotator mirror. Opt. Lett. 2018, 43, 5861–5864. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, C.; Wu, T.S.; Liu, Y.M.; Wang, Y.; Yu, Z.Y.; Ye, H.; Yu, L. Efficient polarization beam splitter based on all-dielectric metasurface in visible region. Nanoscale Res. Lett. 2019, 14, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, B.; Dong, F.L.; Feng, H.; Yang, D.; Song, Z.W.; Xu, L.H.; Chu, W.G.; Gong, Q.H.; Li, Y. Rochon-prism-like planar circularly polarized beam splitters based on dielectric metasurfaces. ACS Photonics 2018, 5, 1660–1664. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Crozier, K.B. Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter. Nat. Commun. 2014, 5, 5386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Ye, H.; Wu, T.S.; Liu, Y.M.; Yu, Z.Y.; Wang, Y.; Sun, Y.H.; Yu, L. Ultra-broadband large-angle beam splitter based on a homogeneous metasurface at visible wavelengths. Opt. Express 2020, 28, 32226–32238. [Google Scholar] [CrossRef]
- Ding, J.F.; Huang, L.R.; Liu, W.B.; Ling, Y.H.; Wu, W.; Li, H.H. Mechanism and performance analyses of optical beam splitters using all-dielectric oligomer-based metasurfaces. Opt. Express 2020, 28, 32721–32737. [Google Scholar] [CrossRef]
- Ye, C.C.; Dai, D.X. Ultra-compact broadband 2 x 2 3 db power splitter using a subwavelength-grating-assisted asymmetric directional coupler. J. Light. Technol. 2020, 38, 2370–2375. [Google Scholar] [CrossRef]
- Sie, J.Y.; Chung, H.C.; Chen, X.; Tseng, S.Y. Robust arbitrary ratio power splitter by fast quasi-adiabatic elimination in optical waveguides. Opt. Express 2019, 27, 37622–37633. [Google Scholar] [CrossRef]
- Fukuda, H.; Yamada, K.; Tsuchizawa, T.; Watanabe, T.; Shinojima, H.; Itabashi, S. Ultrasmall polarization splitter based on silicon wire waveguides. Opt. Express 2006, 14, 12401–12408. [Google Scholar] [CrossRef]
- Feng, J.B.; Zhou, Z.P. Polarization beam splitter using a binary blazed grating coupler. Opt. Lett. 2007, 32, 1662–1664. [Google Scholar] [CrossRef] [Green Version]
- Ordouie, E.; Alisafaee, H.; Siahmakoun, A. Ultracompact polarizing beam splitter based on single-material birefringent photonic crystal. Opt. Lett. 2018, 43, 4288–4291. [Google Scholar] [CrossRef]
- Song, J.C.; Jung, W.K.; Kim, N.H.; Byun, K.M. Plasmonic wavelength splitter based on a large-area dielectric grating and white light illumination. Opt. Lett. 2012, 37, 3915–3917. [Google Scholar] [CrossRef] [Green Version]
- Wen, K.H.; Hu, Y.H.; Chen, L.; Zhou, J.Y.; Lei, L.; Guo, Z. Design of an optical power and wavelength splitter based on subwavelength waveguides. J. Light. Technol. 2014, 32, 3020–3026. [Google Scholar] [CrossRef]
- Erim, M.N.; Erim, N.; Kurt, H. Spectral splitting for an ingap/gaas parallel junction solar cell. Appl. Opt. 2019, 58, 4265–4270. [Google Scholar] [CrossRef]
- Wang, Z.C.; Tang, Y.B.; Wosinski, L.; He, S.L. Experimental demonstration of a high efficiency polarization splitter based on a one-dimensional grating with a bragg reflector underneath. IEEE Photonics Technol. Lett 2010, 22, 1568–1570. [Google Scholar] [CrossRef]
- Qiu, H.Y.; Jiang, J.F.; Yu, P.; Yang, J.Y.; Yu, H.; Jiang, X.Q. Broad bandwidth and large fabrication tolerance polarization beam splitter based on multimode anti-symmetric bragg sidewall gratings. Opt. Lett. 2017, 42, 3912–3915. [Google Scholar] [CrossRef]
- Zhang, F.; Yun, H.; Wang, Y.; Lu, Z.Q.; Chrostowski, L.; Jaeger, N.A.F. Compact broadband polarization beam splitter using a symmetric directional coupler with sinusoidal bends. Opt. Lett. 2017, 42, 235–238. [Google Scholar] [CrossRef]
- Chang, L.M.; Liu, L.; Gong, Y.H.; Tan, M.Q.; Yu, Y.D.; Li, Z.Y. Polarization-independent directional coupler and polarization beam splitter based on asymmetric cross-slot waveguides. Appl. Opt. 2018, 57, 678–683. [Google Scholar] [CrossRef]
- Gao, X.; Shi, J.H.; Shen, X.P.; Ma, H.F.; Jiang, W.X.; Li, L.M.; Cui, T.J. Ultrathin dual-band surface plasmonic polariton waveguide and frequency splitter in microwave frequencies. Appl. Phys. Lett. 2013, 102, 151912. [Google Scholar] [CrossRef]
- Bagnulo, S.; Landolfi, M.; Landstreet, J.D.; Degl’Innocenti, E.L.; Fossati, L.; Sterzik, M. Stellar spectropolarimetry with retarder waveplate and beam splitter devices. Publ. Astron. Soc. Pac. 2009, 121, 993–1015. [Google Scholar] [CrossRef]
- Tong, Z.M.; Yan, Y.X.; Ma, Y.F.; Wang, M.; Jia, S.T.; Chen, X.Y. Equal-intensity beam splitter fabricated by segmented half-wave plate for passive laser speckle reduction. Opt. Lett. 2021, 46, 3965–3968. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.Y.; Long, X.W.; Huang, Y.; Wu, S.Y. Design and fabrication of ultra-high precision thin-film polarizing beam splitter. Opt. Commun. 2011, 284, 4650–4653. [Google Scholar] [CrossRef]
- Yu, N.F.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, X.B.; Wei, X. Metallic metasurface for high efficiency optical phase control in transmission mode. Opt. Express 2017, 25, 15208–15215. [Google Scholar] [CrossRef]
- Arbabi, A.; Horie, Y.; Bagheri, M.; Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 2015, 10, 937–943. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.F.; Zhu, A.Y.; Paniagua-Dominguez, R.; Fu, Y.H.; Luk’yanchuk, B.; Kuznetsov, A.I. High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photonics Rev. 2015, 9, 412–418. [Google Scholar] [CrossRef]
- Zhou, Z.P.; Li, J.T.; Su, R.B.; Yao, B.M.; Fang, H.L.; Li, K.Z.; Zhou, L.D.; Liu, J.; Stellinga, D.; Reardon, C.P.; et al. Efficient silicon metasurfaces for visible light. ACS Photonics 2017, 4, 544–551. [Google Scholar] [CrossRef] [Green Version]
- Elshorbagy, M.H.; Lopez-Fraguas, E.; Sanchez-Pena, J.M.; Garcia-Camara, B.; Vergaz, R. Boosting ultrathin asi-h solar cells absorption through a nanoparticle cross-packed metasurface. Sol. Energy 2020, 202, 10–16. [Google Scholar] [CrossRef]
- Song, Z.Y.; Zhang, J.H. Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies. Opt. Express 2020, 28, 12487–12497. [Google Scholar] [CrossRef]
- Zhu, W.R.; Xiao, F.J.; Kang, M.; Premaratne, M. Coherent perfect absorption in an all-dielectric metasurface. Appl. Phys. Lett. 2016, 108, 121901. [Google Scholar] [CrossRef]
- Yu, P.; Besteiro, L.V.; Wu, J.; Huang, Y.J.; Wang, Y.Q.; Govorov, A.O.; Wang, Z.M. Metamaterial perfect absorber with unabated size-independent absorption. Opt. Express 2018, 26, 20471–20480. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, J.; Jin, S.X.; Wu, M.Z.; Chen, X.Y.; Wu, W.G. Polarization-controlled bifunctional metasurface for structural color printing and beam deflection. Opt. Lett. 2020, 45, 1707–1710. [Google Scholar] [CrossRef]
- Li, T.; Hu, X.B.; Chen, H.M.; Zhao, C.; Xu, Y.; Wei, X.; Song, G.F. Metallic metasurfaces for high efficient polarization conversion control in transmission mode. Opt. Express 2017, 25, 23597–23604. [Google Scholar] [CrossRef]
- Chen, M.; Cai, J.J.; Sun, W.; Chang, L.Z.; Xiao, X.F. High-efficiency all-dielectric metasurfaces for broadband polarization conversion. Plasmonics 2018, 13, 21–29. [Google Scholar] [CrossRef]
- Owiti, E.O.; Yang, H.N.; Liu, P.; Ominde, C.F.; Sun, X.D. Polarization converter with controllable birefringence based on hybrid all-dielectric-graphene metasurface. Nanoscale Res. Lett. 2018, 13, 38. [Google Scholar] [CrossRef] [Green Version]
- Alaee, R.; Albooyeh, M.; Rockstuhl, C. Theory of metasurface based perfect absorbers. J. Phys. D Appl. Phys. 2017, 50, 503002. [Google Scholar] [CrossRef] [Green Version]
- Badloe, T.; Mun, J.; Rho, J. Metasurfaces-based absorption and reflection control: Perfect absorbers and reflectors. J. Nanomater. 2017, 2017, 2361042. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; He, Q. Mutual circular polarization conversions in asymmetric transmission and reflection modes by three-layer metasurface with gold split-rings. Opt. Express 2021, 29, 34850–34862. [Google Scholar] [CrossRef]
- Shen, Z.; Du, M.Y. High-performance refractive index sensing system based on multiple fano resonances in polarization-insensitive metasurface with nanorings. Opt. Express 2021, 29, 28287–28296. [Google Scholar] [CrossRef]
- Cerjan, B.; Gerislioglu, B.; Link, S.; Nordlander, P.; Halas, N.J.; Griep, M. Towards scalable plasmonic fano-resonant metasurfaces for colorimetric sensing. Nanotechnology 2022, 33, 405201. [Google Scholar] [CrossRef] [PubMed]
- Ling, X.H.; Zhou, X.X.; Yi, X.N.; Shu, W.X.; Liu, Y.C.; Chen, S.Z.; Luo, H.L.; Wen, S.C.; Fan, D.Y. Giant photonic spin hall effect in momentum space in a structured metamaterial with spatially varying birefringence. Light. Sci. Appl. 2015, 4, e290. [Google Scholar] [CrossRef] [Green Version]
- Hosten, O.; Kwiat, P. Observation of the spin hall effect of light via weak measurements. Science 2008, 319, 787–790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benetou, M.I.; Tsakmakidis, K.L. Multifunctional plasmonic metasurface demultiplexer and wavelength-polarization controllable beam splitter. J. Opt. Soc. Am. B 2021, 38, C50–C57. [Google Scholar] [CrossRef]
- Zografopoulos, D.C.; Algorri, J.F.; Fuscaldo, W.; Lopez-Higuera, J.M.; Vergaz, R.; Sanchez-Pena, J.M.; Karolos, I.A.; Beccherelli, R.; Tsioukas, V.E.; Yioultsis, T.V.; et al. All-dielectric toroidal metasurfaces for angular-dependent resonant polarization beam splitting. Adv. Opt. Mater. 2021, 9, 2002143. [Google Scholar] [CrossRef]
- Zhu, W.; Yang, R.S.; Geng, G.Z.; Fan, Y.C.; Guo, X.Y.; Li, P.; Fu, Q.H.; Zhang, F.L.; Gu, C.Z.; Li, J.J. Titanium dioxide metasurface manipulating high-efficiency and broadband photonic spin hall effect in visible regime. Nanophotonics 2020, 9, 4327–4335. [Google Scholar] [CrossRef]
- Spektor, G.; David, A.; Gjonaj, B.; Bartal, G.; Orenstein, M. Metafocusing by a metaspiral plasmonic lens. Nano Lett. 2015, 15, 5739–5743. [Google Scholar] [CrossRef]
- Bliokh, K.Y.; Niv, A.; Kleiner, V.; Hasman, E. Geometrodynamics of spinning light. Nat. Photonics 2008, 2, 748–753. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.L.; Zhou, X.X.; Shu, W.X.; Wen, S.C.; Fan, D.A.Y. Enhanced and switchable spin hall effect of light near the brewster angle on reflection. Phys. Rev. A 2011, 84, 043806. [Google Scholar] [CrossRef] [Green Version]
- Ke, Y.G.; Liu, Y.C.; He, Y.L.; Zhou, J.X.; Luo, H.L.; Wen, S.C. Realization of spin-dependent splitting with arbitrary intensity patterns based on all-dielectric metasurfaces. Appl. Phys. Lett. 2015, 107, 041107. [Google Scholar] [CrossRef]
- Liu, Y.C.; Ling, X.H.; Yi, X.N.; Zhou, X.X.; Chen, S.Z.; Ke, Y.G.; Luo, H.L.; Wen, S.C. Photonic spin hall effect in dielectric metasurfaces with rotational symmetry breaking. Opt. Lett. 2015, 40, 756–759. [Google Scholar] [CrossRef] [Green Version]
- Luo, W.J.; Xiao, S.Y.; He, Q.; Sun, S.L.; Zhou, L. Photonic spin hall effect with nearly 100% efficiency. Adv. Opt. Mater. 2015, 3, 1102–1108. [Google Scholar] [CrossRef]
- Shaltout, A.; Liu, J.J.; Kildishev, A.; Shalaev, V. Photonic spin hall effect in gap-plasmon metasurfaces for on-chip chiroptical spectroscopy. Optica 2015, 2, 860–863. [Google Scholar] [CrossRef]
- Li, S.Q.; Li, X.Y.; Wang, G.X.; Liu, S.; Zhang, L.X.; Zeng, C.; Wang, L.R.; Sun, Q.B.; Zhao, W.; Zhang, W.F. Multidimensional manipulation of photonic spin hall effect with a single-layer dielectric metasurface. Adv. Opt. Mater. 2019, 7, 1801365. [Google Scholar] [CrossRef]
- Chaudhuri, K.; Shaltout, A.; Shah, D.; Guler, U.; Dutta, A.; Shalaev, V.M.; Boltasseva, A. Photonic spin hall effect in robust phase gradient metasurfaces utilizing transition metal nitrides. ACS Photonics 2019, 6, 99–106. [Google Scholar] [CrossRef]
- He, Y.L.; Xie, Z.Q.; Yang, B.; Chen, X.Y.; Liu, J.M.; Ye, H.P.; Zhou, X.X.; Li, Y.; Chen, S.Q.; Fan, D.Y. Controllable photonic spin hall effect with phase function construction. Photonics Res. 2020, 8, 963–971. [Google Scholar] [CrossRef]
- Zang, X.F.; Yao, B.S.; Li, Z.; Zhu, Y.; Xie, J.Y.; Chen, L.; Balakin, A.V.; Shkurinov, A.P.; Zhu, Y.M.; Zhuang, S.L. Geometric phase for multidimensional manipulation of photonics spin hall effect and helicity-dependent imaging. Nanophotonics 2020, 9, 1501–1508. [Google Scholar] [CrossRef]
- Tian, Y.; Qiu, J.F.; Liu, C.; Tian, S.H.; Huang, Z.L.; Wu, J. Compact polarization beam splitter with a high extinction ratio over s plus c plus l band. Opt. Express 2019, 27, 999–1009. [Google Scholar] [CrossRef]
- Xu, L.H.; Wang, Y.; Kumar, A.; Patel, D.; El-Fiky, E.; Xing, Z.P.; Li, R.; Plant, D.V. Polarization beam splitter based on MMI coupler with SWG birefringence engineering on SOI. IEEE Photonics Technol. Lett. 2018, 30, 403–406. [Google Scholar] [CrossRef]
- Shi, D.F.; Zhang, J.M.; Huang, J.; Wang, Y.J.; Yuan, K.; Cao, K.F.; Xie, C.B.; Liu, D.; Zhu, W.Y. Polarization-multiplexing ghost imaging. Opt. Laser Eng. 2018, 102, 100–105. [Google Scholar]
- Zheng, G.X.; Liu, G.G.; Kenney, M.G.; Li, Z.L.; He, P.A.; Li, S.; Ren, Z.; Deng, Q.L. Ultracompact high-efficiency polarising beam splitter based on silicon nanobrick arrays. Opt. Express 2016, 24, 6749–6757. [Google Scholar] [CrossRef] [PubMed]
- Jia, S.L.; Wan, X.; Bao, D.; Zhao, Y.J.; Cui, T.J. Independent controls of orthogonally polarized transmitted waves using a huygens metasurface. Laser Photonics Rev. 2015, 9, 545–553. [Google Scholar] [CrossRef]
- Emani, N.K.; Khaidarov, E.; Paniagua-Dominguez, R.; Fu, Y.H.; Valuckas, V.; Lu, S.P.; Zhang, X.L.; Tan, S.T.; Demir, H.V.; Kuznetsov, A.I. High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths. Appl. Phys. Lett. 2017, 111, 221101. [Google Scholar] [CrossRef]
- Guo, Z.Y.; Xu, H.S.; Guo, K.; Shen, F.; Zhou, H.P.; Zhou, Q.F.; Gao, J.; Yin, Z.P. High-efficiency visible transmitting polarizations devices based on the gan metasurface. Nanomaterials 2018, 8, 333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pors, A.; Albrektsen, O.; Radko, I.P.; Bozhevolnyi, S.I. Gap plasmon-based metasurfaces for total control of reflected light. Sci. Rep. 2013, 3, srep02155. [Google Scholar] [CrossRef] [Green Version]
- Niu, T.M.; Withayachumnankul, W.; Upadhyay, A.; Gutruf, P.; Abbott, D.; Bhaskaran, M.; Sriram, S.; Fumeaux, C. Terahertz reflectarray as a polarizing beam splitter. Opt. Express 2014, 22, 16148–16160. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Zhu, W.; Crozier, K.B. Efficient polarization beam splitter pixels based on a dielectric metasurface. Optica 2015, 2, 376–382. [Google Scholar] [CrossRef]
- Guo, W.-L.; Wang, G.-M.; Ding, S.-S.; Li, H.-P.; Cai, T. Utra-thin anisotropic transmitting metasurface for polarization beam splitter application. Chin. Phys. B 2016, 25, 084101. [Google Scholar] [CrossRef]
- Deshpande, R.; Pors, A.; Bozhevolnyi, S.I. Third-order gap plasmon based metasurfaces for visible light. Opt. Express 2017, 25, 12508–12517. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.L.; Wang, G.M.; Li, H.P.; Zhuang, Y.Q.; Shuai, C.Y. Ultra-thin reflecting polarization beam splitter under spherical waves’ illumination by using single-layered anisotropic metasurface. Appl. Phys. A 2017, 123, 103. [Google Scholar] [CrossRef]
- Guo, Z.Y.; Tian, L.H.; Shen, F.; Zhou, H.P.; Guo, K. Mid-infrared polarization devices based on the double-phase modulating dielectric metasurface. J. Phys. D Appl. Phys. 2017, 50, 254001. [Google Scholar] [CrossRef]
- Guo, Z.Y.; Zhu, L.; Guo, K.; Shen, F.; Yin, Z.P. High-order dielectric metasurfaces for high-efficiency polarization beam splitters and optical vortex generators. Nanoscale Res. Lett. 2017, 12, 512. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.Y.; Zhu, L.; Shen, F.; Zhou, H.P.; Gao, R.K. Dielectric metasurface based high-efficiency polarization splitters. RSC Adv. 2017, 7, 9872–9879. [Google Scholar] [CrossRef] [Green Version]
- Slovick, B.A.; Zhou, Y.; Yu, Z.G.; Kravchenko, I.I.; Briggs, D.P.; Moitra, P.; Krishnamurthy, S.; Valentine, J. Metasurface polarization splitter. Philos. Trans. R. Soc. A 2017, 375, 20160072. [Google Scholar] [CrossRef] [Green Version]
- Guo, K.; Guo, Z.Y. Ultrathin microwave devices for polarization-dependent wavefront shaping based on an anisotropic metasurface. Appl. Sci. 2018, 8, 2471. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Li, M.Z.; Liao, T.D.; Cui, X.D. Design of beam deflector, splitters, wave plates and metalens using photonic elements with dielectric metasurface. Opt. Commun. 2018, 411, 93–100. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, J.J.; Guo, K.; Shen, F.; Zhou, Q.F.; Yin, Z.P.; Guo, Z.Y. High-efficiency terahertz polarization devices based on the dielectric metasurface. Superlattice Microst. 2018, 114, 75–81. [Google Scholar] [CrossRef]
- Yang, H.; Ou, K.; Cao, G.T.; Shang, X.J.; Liu, Y.L.; Deng, Y. Polarization beam splitter with disparate functionality in transmission and reflection modes. Opt. Commun. 2019, 443, 104–109. [Google Scholar] [CrossRef]
- Zeng, H.X.; Zhang, Y.X.; Lan, F.; Liang, S.X.; Wang, L.; Song, T.Y.; Zhang, T.; Shi, Z.J.; Yang, Z.Q.; Kang, X.; et al. Terahertz dual-polarization beam splitter via an anisotropic matrix metasurface. IEEE Trans. Terahertz Sci. Technol. 2019, 9, 491–497. [Google Scholar] [CrossRef]
- Lv, B.Y.; Ouyang, C.M.; Zhang, H.F.; Xu, Q.; Li, Y.F.; Zhang, X.Q.; Tian, Z.; Gu, J.Q.; Liu, L.Y.; Han, J.G.; et al. All-dielectric metasurface-based quad-beam splitter in the terahertz regime. IEEE Photonics J. 2020, 12, 1–10. [Google Scholar] [CrossRef]
- Gu, Y.J.; Hao, R.; Li, E.P. Independent bifocal metalens design based on deep learning algebra. IEEE Photonics Technol. Lett. 2021, 33, 403–406. [Google Scholar] [CrossRef]
- Sun, Y.H.; Zhang, L.; Xia, H.J.; Cao, S.Q.; Wang, L.; Yang, S.M.; Wu, Y.Q.; Tai, R.Z. Integrated silicon metasurface polarization beam splitter on a standard soi substrate. Optik 2021, 227, 166096. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, B.F.; Han, C.; Ding, J.P. Polarization-multiplexed wavefront-engineering by all-dielectric metasurface with asymmetric polarization-decoupled meta-atoms. Opt. Express 2021, 29, 32377–32387. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, H.H.; Muller, R.E.; McGuire, J.P.; Nemchick, D.J.; Shen, C.H.; van Harten, G.; Rud, M.; Johnson, W.R.; Nordman, A.D.; Wu, Y.H.; et al. An ultra-broadband high efficiency polarization beam splitter for high spectral resolution polarimetric imaging in the near infrared. Adv. Sci. 2022, 9, 2201227. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.B.; Gong, C.Y.; Wang, S.Y.; Dong, S.Y. The comprehensive design of power distribution, polarizations, and radiate angles for split beams using transmission metasurfaces. Adv. Eng. Mater. 2022, 24, 2101487. [Google Scholar] [CrossRef]
- Liu, C.B.; Bai, Y.; Zhao, Q.; Yang, Y.H.; Chen, H.S.; Zhou, J.; Qiao, L.J. Fully controllable pancharatnam-berry metasurface array with high conversion efficiency and broad bandwidth. Sci. Rep. 2016, 6, 34819. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.S.L.; Nirantar, S.; Headland, D.; Bhaskaran, M.; Sriram, S.; Fumeaux, C.; Withayachumnankul, W. Broadband terahertz circular-polarization beam splitter. Adv. Opt. Mater. 2018, 6, 1700852. [Google Scholar] [CrossRef]
- Mao, R.Q.; Wang, G.M.; Cai, T.; Liu, K.Y.; Wang, D.P.; Wu, B.R. Ultra-thin and high-efficiency full-space pancharatnam-berry metasurface. Opt. Express 2020, 28, 31216–31225. [Google Scholar] [CrossRef]
- Khan, M.I.; Tahir, F.A. Simultaneous quarter-wave plate and half-mirror operation through a highly flexible single layer anisotropic metasurface. Sci. Rep. 2017, 7, 16059. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Zhao, D.P.; Cai, J.J.; Wang, C.Y.; Xiao, X.F.; Chang, L.Z. All-dielectric metasurfaces for circularly polarized beam-splitters with high conversion efficiency and broad bandwidth. Optik 2018, 165, 41–49. [Google Scholar] [CrossRef]
- Chen, X.G.; Tao, Z.; Chen, C.; Wang, C.; Wang, L.; Jiang, H.; Fan, D.; Ekinci, Y.; Liu, S.Y. All-dielectric metasurface-based roll-angle sensor. Sens. Actuators A 2018, 279, 509–517. [Google Scholar] [CrossRef]
- Chen, W.J.; Chen, R.; Zhou, Y.; Chen, R.P.; Ma, Y.G. Spin-dependent switchable metasurfaces using phase change materials. Opt. Express 2019, 27, 25678–25687. [Google Scholar] [CrossRef]
- Liu, F.; Xu, T.; Wang, S.S.; Hang, Z.H.; Li, J. Polarization beam splitting with gauge field metamaterials. Adv. Opt. Mater. 2019, 7, 1801582. [Google Scholar] [CrossRef]
- Kuznetsov, S.A.; Lenets, V.A.; Tumashov, M.A.; Sayanskiy, A.D.; Lazorskiy, P.A.; Belov, P.A.; Baena, J.D.; Glybovski, S.B. Self-complementary metasurfaces for designing terahertz deflecting circular-polarization beam splitters. Appl. Phys. Lett. 2021, 118, 131601. [Google Scholar] [CrossRef]
- Lenets, V.A.; Kuznetsov, S.A.; Sayanskiy, A.D.; Lazorskiy, P.A.; Baena, J.D.; Glybovski, S.B. A focusing circular-polarization thz beam splitter based on a self-complementary metasurface. IEEE Trans. Terahertz Sci. Technol. 2021, 11, 165–174. [Google Scholar] [CrossRef]
- Luo, X.Q.; Dong, X.X.; Xu, X.L.; Hu, F.R.; Li, G.Y. Narrowband terahertz metasurface circular polarization beam splitter with large spectral tunability based on lattice-induced chirality. J. Phys. D Appl. Phys. 2022, 55, 105109. [Google Scholar] [CrossRef]
- Wang, Z.H.; Jiang, S.C.; Xiong, X.; Peng, R.W.; Wang, M. Generation of equal-intensity coherent optical beams by binary geometrical phase on metasurface. Appl. Phys. Lett. 2016, 108, 261107. [Google Scholar] [CrossRef] [Green Version]
- Zang, X.F.; Gong, H.H.; Li, Z.; Xie, J.Y.; Cheng, Q.Q.; Chen, L.; Shkurinov, A.P.; Zhu, Y.M.; Zhuang, S.L. Metasurface for multi-channel terahertz beam splitters and polarization rotators. Appl. Phys. Lett. 2018, 112, 171111. [Google Scholar] [CrossRef]
- Ding, F.; Chen, Y.T.; Bozhevolnyi, S.I. Gap-surface plasmon metasurfaces for linear-polarization conversion, focusing, and beam splitting. Photonics Res. 2020, 8, 707–714. [Google Scholar] [CrossRef]
- Ding, F.; Deshpande, R.; Meng, C.; Bozhevolnyi, S.I. Metasurface-enabled broadband beam splitters integrated with quarter-wave plate functionality. Nanoscale 2020, 12, 14106–14111. [Google Scholar] [CrossRef]
- Khalid, A.U.R.; Feng, F.; Khan, M.I.; Yuan, X.C.; Somekh, M.G. All-dielectric metasurface designs for spin-tunable beam splitting via simultaneous manipulation of propagation and geometric phases. Opt. Express 2022, 30, 13459–13468. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wang, M.; Sui, Z.P.; Zeng, Z.M.; Jiang, C.P. Highly efficient beam splitter based on all-dielectric metasurfaces. Jpn. J. Appl. Phys. 2019, 58, 060918. [Google Scholar] [CrossRef]
- Tian, S.N.; Guo, H.M.; Hu, J.B.; Zhuang, S.L. Nanoscale noncoplanar beam splitters with tunable split ratio. IEEE Photonics J. 2020, 12, 1–9. [Google Scholar] [CrossRef]
- Chen, D.L.; Sun, X.H.; Wang, S.M.; Qi, Y.L.; Wang, S.A.; Wang, J.J. Design of dielectric deflecting metasurface and metalens in the visible-light range. Opt. Eng. 2021, 60, 035104. [Google Scholar] [CrossRef]
- Hu, S.; Du, S.; Li, J.J.; Gu, C.Z. Multidimensional image and beam splitter based on hyperbolic metamaterials. Nano Lett. 2021, 21, 1792–1799. [Google Scholar] [CrossRef]
- Li, J.; He, Y.G.; Ye, H.; Wu, T.S.; Liu, Y.M.; He, X.Y.; Cheng, J. High-efficiency, dual-band beam splitter based on an all-dielectric quasi-continuous metasurface. Materials 2021, 14, 3184. [Google Scholar] [CrossRef]
- Wang, H.Y.; Zhang, Z.Y.; Zhao, K.; Liu, W.; Wang, P.; Lu, Y.H. Independent phase manipulation of co- and cross- polarizations with all-dielectric metasurface. Chin Opt. Lett. 2021, 19, 053601. [Google Scholar] [CrossRef]
- Liu, Z.H.; Wu, T.S.; Wang, Y.P.; Liu, Y.; Liu, R.; Zhong, X.; Yang, D.; Yang, Z.N. Numerical analysis of an ultra-broadband and highly efficient beam splitter in the visible region. Opt. Express 2022, 30, 18032–18043. [Google Scholar] [CrossRef]
- Wei, M.G.; Xu, Q.; Wang, Q.; Zhang, X.Q.; Li, Y.F.; Gu, J.Q.; Tian, Z.; Zhang, X.X.; Han, J.G.; Zhang, W.L. Broadband non-polarizing terahertz beam splitters with variable split ratio. Appl. Phys. Lett. 2017, 111, 071101. [Google Scholar] [CrossRef] [Green Version]
- Ozer, A.; Yilmaz, N.; Kocer, H.; Kurt, H. Polarization-insensitive beam splitters using all-dielectric phase gradient metasurfaces at visible wavelengths. Opt. Lett. 2018, 43, 4350–4353. [Google Scholar] [CrossRef]
- Yoon, G.; Lee, D.; Nam, K.; Rho, J. Geometric metasurface enabling polarization independent beam splitting. Sci. Rep. 2018, 8, 9468. [Google Scholar] [CrossRef]
- Xu, Y.H.; Li, Q.; Zhang, X.Q.; Wei, M.G.; Xu, Q.; Wang, Q.; Zhang, H.F.; Zhang, W.T.; Hu, C.; Zhang, Z.W.; et al. Spin-decoupled multifunctional metasurface for asymmetric polarization generation. ACS Photonics 2019, 6, 2933–2941. [Google Scholar] [CrossRef]
- He, Q.; Shen, Z. Polarization-insensitive beam splitter with variable split angles and ratios based on phase gradient metasurfaces. Nanomaterials 2022, 12, 113. [Google Scholar] [CrossRef]
- Cai, T.; Wang, G.M.; Zhang, X.F.; Liang, J.G.; Zhuang, Y.Q.; Liu, D.; Xu, H.X. Ultra-thin polarization beam splitter using 2-d transmissive phase gradient metasurface. IEEE Trans. Antennas Propag. 2015, 63, 5629–5636. [Google Scholar] [CrossRef]
- Zhang, D.; Ren, M.X.; Wu, W.; Gao, N.H.; Yu, X.Y.; Cai, W.; Zhang, X.Z.; Xu, J.J. Nanoscale beam splitters based on gradient metasurfaces. Opt. Lett. 2018, 43, 267–270. [Google Scholar] [CrossRef]
- Zhang, Q.; Liao, T.D.; Gan, G.W.; Li, M.Z.; Cui, X.D. Polarization split lensing via polarization and phase control with metasurfaces at visible frequencies. Plasmonics 2018, 13, 2277–2284. [Google Scholar] [CrossRef]
- Chen, X.Y.; Zou, H.J.; Su, M.Y.; Tang, L.W.; Wang, C.F.; Chen, S.Q.; Su, C.L.; Li, Y. All-dielectric metasurface-based beam splitter with arbitrary splitting ratio. Nanomaterials 2021, 11, 1137. [Google Scholar] [CrossRef]
- Gao, S.; Zhou, C.Y.; Yue, W.J.; Li, Y.; Zhang, C.W.; Kan, H.; Li, C.; Lee, S.S.; Choi, D.Y. Efficient all-dielectric diatomic metasurface for linear polarization generation and 1-bit phase control. ACS Appl. Mater. Interfaces 2021, 13, 14510–14519. [Google Scholar] [CrossRef]
- Wang, J.; Jiang, Q.; Han, D.Z. Multi-channel beam splitters based on gradient metasurfaces. Results Phys. 2021, 24, 104084. [Google Scholar] [CrossRef]
- Zhang, X.L.; Deng, R.Y.; Yang, F.; Jiang, C.P.; Xu, S.H.; Li, M.K. Metasurface-based ultrathin beam splitter with variable split angle and power distribution. ACS Photonics 2018, 5, 2997–3002. [Google Scholar] [CrossRef]
- Li, J.Z.; Zhang, F.; Pu, M.B.; Guo, Y.H.; Li, X.; Ma, X.L.; Wang, C.T.; Luo, X.G. Quasi-continuous metasurface beam splitters enabled by vector iterative fourier transform algorithm. Materials 2021, 14, 1022. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Y.; Palacios, E.; Butun, S.; Aydin, K. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting. Nano Lett. 2015, 15, 1615–1621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.Y.; Palacios, E.; Butun, S.; Aydin, K. Ultrawide angle, directional spectrum splitting with visible-frequency versatile metasurfaces. Adv. Opt. Mater. 2016, 4, 953–958. [Google Scholar] [CrossRef]
- Chen, W.Q.; Zhang, D.S.; Long, S.Y.; Liu, Z.Z.; Xiao, J.J. Nearly dispersionless multicolor metasurface beam deflector for near eye display designed by a physics-driven deep neural network. Appl. Opt. 2021, 60, 3947–3953. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.Q.; Chi, Y.D.; Zhang, H.X.; Zhao, C.L.; Zhao, Y.; Lv, S.; Yang, J. Mid-infrared free space wavelength beam splitter based on dual frequency reflective metalens. Jpn. J. Appl. Phys. 2022, 61, 080901. [Google Scholar] [CrossRef]
- Della Giovampaola, C.; Engheta, N. Digital metamaterials. Nat. Mater. 2014, 13, 1115–1121. [Google Scholar] [CrossRef] [Green Version]
- Cui, T.J.; Qi, M.Q.; Wan, X.; Zhao, J.; Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light. Sci. Appl. 2014, 3, e218. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Zhang, L.; Yang, Q.L.; Xu, Q.; Yang, Y.; Noor, A.; Zhang, Q.; Iqbal, S.; Wan, X.; Tian, Z.; et al. Frequency-dependent dual-functional coding metasurfaces at terahertz frequencies. Adv. Opt. Mater. 2016, 4, 1965–1973. [Google Scholar] [CrossRef]
- Liu, S.; Cui, T.J.; Xu, Q.; Bao, D.; Du, L.L.; Wan, X.; Tang, W.X.; Ouyang, C.M.; Zhou, X.Y.; Yuan, H.; et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves. Light. Sci. Appl. 2016, 5, e16076. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Liu, S.; Li, L.L.; Cui, T.J. Spin-controlled multiple pencil beams and vortex beams with different polarizations generated by pancharatnam-berry coding metasurfaces. ACS Appl. Mater. Interfaces 2017, 9, 36447–36455. [Google Scholar] [CrossRef]
- Xing, X.H.; Li, Y.F.; Lu, Y.C.; Zhang, W.T.; Zhang, X.X.; Han, J.G.; Zhang, W.L. Terahertz metamaterial beam splitters based on untraditional coding scheme. Opt. Express 2019, 27, A1627–A1635. [Google Scholar] [CrossRef]
- Li, J.S. Metasurface-assisted reflection-type terahertz beam splitter. Laser Phys. 2021, 31, 026203. [Google Scholar] [CrossRef]
- Zhang, C.C.; Li, C.X.; Fang, B.; Liu, J.J.; Hong, Z.; Jing, X.F. Transmission terahertz power beam splitter based on a single-layer metal metasurface. Appl. Opt. 2022, 61, 4153–4159. [Google Scholar] [CrossRef]
- Li, J.S.; Zhou, C. Transmission-type terahertz beam splitter through all-dielectric metasurface. J. Phys. D Appl. Phys. 2021, 54, 085105. [Google Scholar] [CrossRef]
- Hao, H.G.; Tang, Y.H.; Zheng, S.; Ran, X.H. Design of metasurface beam splitter based on polarization characteristics of incident wave. J. Electromagn. Wave 2022, 36, 307–320. [Google Scholar] [CrossRef]
- Teng, Y.; Li, C.; Li, S.C.; Ren, Y.; Jiang, L. Broadband terahertz multi-beam splitters with uniform power distribution based on coding metasurfaces. Opt. Mater. 2022, 126, 112228. [Google Scholar] [CrossRef]
- Wei, H.L.; Cui, F.Y.; Guo, W.G.; Wu, Y.L. Transmission electromagnetic beam splitter based on double-sided all dielectric microstructure. Laser Phys. 2022, 32, 046202. [Google Scholar] [CrossRef]
- Yan, L.B.; Zhu, W.M.; Karim, M.F.; Cai, H.; Gu, A.Y.; Shen, Z.X.; Chong, P.H.J.; Tsai, D.P.; Kwong, D.L.; Qiu, C.W.; et al. Arbitrary and independent polarization control in situ via a single metasurface. Adv. Opt. Mater. 2018, 6, 1800728. [Google Scholar] [CrossRef]
- Wang, C.; Liu, S.Q.; Sun, Y.; Tao, X.; Sun, P.; Zhang, J.L.; Tao, C.N.; Wu, R.M.; Wu, F.; Zheng, Z.R. Tunable beam splitter using bilayer geometric metasurfaces in the visible spectrum. Opt. Express 2020, 28, 28672–28685. [Google Scholar] [CrossRef]
- Phon, R.; Kim, Y.; Park, E.; Jeong, H.; Lim, S. Mechanical and self-deformable spatial modulation beam steering and splitting metasurface. Adv. Opt. Mater. 2021, 9, 2100821. [Google Scholar] [CrossRef]
- Che, X.Y.; Gao, R.; Yu, Y.F.; Liu, W.J.; Sun, Y.F.; Zhu, D.; Qiao, W.Y.; Wang, L.J.; Zhang, J.P.; Yuan, Q.; et al. Generalized phase profile design method for tunable devices using bilayer metasurfaces. Opt. Express 2021, 29, 44214–44226. [Google Scholar] [CrossRef]
- Xie, X.; Pu, M.B.; Liu, K.P.; Ma, X.L.; Li, X.; Yang, J.N.; Luo, X.G. High-efficiency and tunable circular-polarization beam splitting with a liquid-filled all-metallic catenary meta-mirror. Adv. Mater. Technol. 2019, 4, 1900334. [Google Scholar] [CrossRef]
- Kocer, H.; Durna, Y.; Kurt, H.; Ozbay, E. Dynamic beam splitter employing an all-dielectric metasurface based on an elastic substrate. Opt. Lett. 2020, 45, 3521–3524. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Jeong, J.; Poon, J.K.S.; Eleftheriades, G.V. Vanadium-dioxide-assisted digital optical metasurfaces for dynamic wavefront engineering. J. Opt. Soc. Am. B 2016, 33, 980–988. [Google Scholar] [CrossRef]
- Li, J.; Li, J.T.; Zhang, Y.T.; Li, J.N.; Yang, Y.; Zhao, H.L.; Zheng, C.L.; Li, J.H.; Huang, J.; Li, F.Y.; et al. All-optical switchable terahertz spin-photonic devices based on vanadium dioxide integrated metasurfaces. Opt. Commun. 2020, 460, 124986. [Google Scholar] [CrossRef]
- Erçağlar, V.; Hajian, H.; Serebryannikov, A.E.; Ozbay, E. Multifunctional tunable gradient metasurfaces for terahertz beam splitting and light absorption. Opt. Lett. 2021, 46, 3953–3956. [Google Scholar] [CrossRef]
- Nemati, A.; Yuan, G.H.; Deng, J.; Huang, A.H.; Wang, W.D.; Toh, Y.T.; Teng, J.H.; Wang, Q. Controllable polarization-insensitive and large-angle beam switching with phase-change metasurfaces. Adv. Opt. Mater. 2022, 10, 2101847. [Google Scholar] [CrossRef]
- Cong, L.Q.; Srivastava, Y.K.; Zhang, H.F.; Zhang, X.Q.; Han, J.G.; Singh, R. All-optical active thz metasurfaces for ultrafast polarization switching and dynamic beam splitting. Light. Sci. Appl. 2018, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.L.; Zhang, X.G.; Yu, Q.; Jiang, W.X.; Cui, T.J. Infrared-controlled programmable metasurface. Sci. Bull. 2020, 65, 883–888. [Google Scholar] [CrossRef]
- Yin, S.; Zeng, D.H.; Chen, Y.T.; Huang, W.; Zhang, C.; Zhang, W.T.; Yiwen, E. Optically controlled terahertz dynamic beam splitter with adjustable split ratio. Nanomaterials 2022, 12, 1169. [Google Scholar] [CrossRef]
- Su, Z.X.; Chen, X.; Yin, J.B.; Zhao, X.P. Graphene-based terahertz metasurface with tunable spectrum splitting. Opt. Lett. 2016, 41, 3799–3802. [Google Scholar] [CrossRef]
- Liu, Z.T.; Meng, Y.; Hu, F.T.; Xiao, Q.R.; Yan, P.; Gong, M.L. Largely tunable terahertz circular polarization splitters based on patterned graphene nanoantenna arrays. IEEE Photonics J. 2019, 11, 1–11. [Google Scholar] [CrossRef]
- Tavakol, M.R.; Arik, K.; Khavasi, A.; Akbari, M. Dynamically tunable polarization beam splitting with slotted graphene patch arrays in he terahertz regime. J. Opt. Soc. Am. B 2021, 38, 401–406. [Google Scholar] [CrossRef]
Work | Material | Unit Size | Working Band | Splitting Angle | Research Type |
---|---|---|---|---|---|
[61] | Si | 720 × 720 × 490 nm | 1460~1625 nm | ±180° | Simulation |
[62] | Metal | 240 × 240 × 2 mm | 9 GHz | ±45° | Simulation/Experiment |
[63] | GaN | 330 × 330 × 460 nm | 430–470 nm | ±20° | Simulation/Experiment |
[64] | GaN | 260 × 260 × 800 nm | 530 nm | ±14.7° | Simulation |
[3] | Si | 200 × 200 × 260 nm | 579–584 nm | ±46.78° | Simulation |
Work | Material | Unit Size | Working Band | Splitting Angle | Research Type |
---|---|---|---|---|---|
[5] | Si | 3 × 0.5 × 1.5 μm | 974 nm | ±19° | Simulation/Experiment |
[86] | Cu | 7 × 7 × 9 mm | 11 GHz | ±43° | Simulation/Experiment |
[87] | Au | 120 × 120 × 200 μm | 0.58–1.00 THz | ±30°–±60° | Simulation/Experiment |
[4] | Si | 400 × 400 × 420 nm | 730–830 nm | / | Simulation/Experiment |
[88] | Metal | 10 × 10 × 3 mm | 8.3 GHz | ±37° | Simulation/Experiment |
Work | Material | Unit Size | Working Band | Splitting Angle | Research Type |
---|---|---|---|---|---|
[97] | Ag | 500 × 500 × 310 nm | 1000–1400 nm | ±27.82° | Simulation/Experiment |
[98] | Metal | 120 × 120 × 175 μm | 0.8–1.4 THZ | ±10.1°–±18.1° | Simulation/Experiment |
[99] | Au | 550 × 550 × 320 nm | 850 nm | / | Simulation/Experiment |
[100] | Au | 300 × 300 × 230 nm | 750–950 nm | ±28.2° | Simulation/Experiment |
[101] | Si | 400 × 400 nm | 780 nm | ±19° (RCP)±42° (LCP) | Simulation |
Work | Material | Unit Size | Working Band | Splitting Angle | Research Type |
---|---|---|---|---|---|
[109] | Si | 150 × 150 × 200 μm | 0.6–1.0 THz | ±28.43° | Simulation/Experiment |
[110] | TiO2 | 250 × 250 × 600 nm | 532 nm | ±46.8° | Simulation |
[111] | a-Si: H | 240 × 240 × 300 nm | 532/635 nm | ±24°/±28.5° | Simulation/Experiment |
[112] | Si | 150 × 150 × 200 μm | 1.0 THz | 19.84°/−14.03° | Simulation |
[113] | TiO2 | 250 × 250 × 600 nm | 532 nm | ±12°–±29.1° | Simulation |
Work | Material | Unit Size | Working Band | Splitting Angle | Research Type |
---|---|---|---|---|---|
[120] | Au | 250 × 250 × 230 nm | 632.8 nm | ±39.26° | Simulation/Experiment |
[121] | Si | 4.6 × 4.6 μm | 940 nm | ±70° | Algorithm |
Work | Material | Unit Size | Working Band | Splitting Angle | Research Type |
---|---|---|---|---|---|
[122] | Ag | 1000 × 200 × 30 nm | 480/520/560/660 nm | 28°/31°/34°/41° | Simulation/Experiment |
[123] | Ag | 1000 × 450 × 40 nm | 460/560/780 nm | 0°/−35°/55° | Simulation/Experiment |
[124] | TiO2 | 1200 × 1579 × 300 nm | 720/540/432 nm | / | Simulation/Algorithm |
[125] | Au | 3 × 3 × 0.37 μm | 4.0/5.5 μm | 14.2°/−16.0° | Simulation |
Work | Material | Unit Size | Working Band | Splitting Angle | Research Type |
---|---|---|---|---|---|
[128] | Au | 70 × 70 × 25 μm | 1.19 THz | 64.2° | Simulation/Experiment |
[130] | Cu | 6 × 6 × 2 mm | 15 GHz | 24.6° | Simulation/Experiment |
[131] | Si | 150 × 150 × 200 μm | 1.0 THz | / | Simulation |
[132] | Metal | 45 × 45 × 25 μm | 1.0 THz | 24.6°/6° | Simulation |
[133] | Cu | 220 × 220 × 400 μm | 1.0 THz | ±13.13°/13.9° | Simulation/Experiment |
Work | Material | Unit Size | Working Band | Splitting Angle | Research Type |
---|---|---|---|---|---|
[138] | Liquid Metal | 7 × 7 × 0.1 mm | 15 GHz | ±42°/±13°/−26° | Simulation/Experiment |
[139] | TiO2 | 250 × 250 × 600 nm | 473–633 nm | ±15°/±30°/±45°/±60° | Simulation |
[140] | Ag | 7.5 × 7.5 × 2.6 mm | 10 GHz | ±14°/±30° | Simulation/Experiment |
[141] | GaN | 200 × 200 × 600 nm | 440 nm | ±30°/±45° | Simulation |
Work | Material | Unit Size | Working Band | Splitting Angle | Research Type |
---|---|---|---|---|---|
[144] | Au/VO2 | 387.5 × 387.5 × 160 nm | 1550 nm | ±24°/±30°/±42° | Simulation |
[145] | Al/VO2 | 140 × 140 × 36 μm | 0.67 THz | 34.4° | Simulation |
[146] | Si/SiO2/VO2 | 150 × 150 × 192 μm | 0.7 THz | ±45.54°/±70.63° | Simulation |
[147] | GST | 545 × 545 × 650 nm | 1550 nm | 15° | Simulation/Experiment |
Work | Material | Unit Size | Working Band | Splitting Angle | Research Type |
---|---|---|---|---|---|
[148] | Al/Si | 80 × 80 × 460.6 μm | 0.6–1.0 THz | 51°−28° | Simulation/Experiment |
[149] | Cu | 13 × 13 × 3.036 mm | 4.10/4.35 GHz | ±45°/±20° | Simulation/Experiment |
[150] | Al | 80 × 80 × 500 μm | 0.8 THz | ±36° | Simulation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Z.; Huang, D. A Review on Metasurface Beam Splitters. Nanomanufacturing 2022, 2, 194-228. https://doi.org/10.3390/nanomanufacturing2040014
Shen Z, Huang D. A Review on Metasurface Beam Splitters. Nanomanufacturing. 2022; 2(4):194-228. https://doi.org/10.3390/nanomanufacturing2040014
Chicago/Turabian StyleShen, Zhe, and Dingxin Huang. 2022. "A Review on Metasurface Beam Splitters" Nanomanufacturing 2, no. 4: 194-228. https://doi.org/10.3390/nanomanufacturing2040014