Bacteria Associated with the Parasitic Nematode Haemonchus contortus and Its Control Using Antibiotics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Worm Collection
2.2. DNA Extraction
2.3. Primer Selection
2.4. Cloning, Sequencing and Analysis
2.5. Antibiotic Testing on L3 H. contortus Using Larval Migration Inhibition Assay (LMIA)
3. Results
3.1. Clone Library
3.2. Larval Migration INHIBITION Assay
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leathwick, D.M.; Pomroy, W.E.; Heath, A.C.G. Anthelmintic resistance in New Zealand. N. Z. Vet. J. 2001, 49, 227–235. [Google Scholar] [CrossRef]
- Vlassoff, A.; Leathwick, D.M.; Heath, A.C.G. The epidemiology of nematode infections of sheep. N. Z. Vet. J. 2001, 49, 213–221. [Google Scholar] [CrossRef]
- Brunsdon, R.V. The economic impact of nematode infection in sheep: Implications for future research and control. N. Z. Soc. Parasitol. 1988, 1, 4–15. [Google Scholar]
- West, D.M.; Bruere, A.N.; Ridler, A.L. The Sheep, Health Disease and Production; Veterinary Continuing Education; Massey University: Palmerston North, New Zealand, 2018. [Google Scholar]
- Wolstenholme, A.J.; Fairweather, I.; Prichard, R.; von Samson-Himmelstjerna, G.; Sangster, N.C. Drug resistance in veterinary helminths. Trends Parasitol. 2004, 20, 469–476. [Google Scholar] [CrossRef]
- Pomroy, W.E. Anthelmintic resistance in New Zealand: A perspective on recent findings and options for the future. N. Z. Vet. J. 2006, 54, 265–270. [Google Scholar] [CrossRef]
- Prichard, R.K.; Hall, C.A.; Kelly, J.D.; Martin, I.C.A.; Donald, A.D. The problem of anthelmintic resistance in nematodes. Aust. Vet. J. 1980, 56, 239–250. [Google Scholar] [CrossRef]
- Jackson, F.; Miller, J. Alternative approaches to control—Quo vadit? Vet. Parasitol. 2006, 139, 371–384. [Google Scholar] [CrossRef]
- Larsen, M. Biological control of nematode parasites in sheep. J. Anim. Sci. 2006, 84, E133–E139. [Google Scholar] [CrossRef]
- Taylor, M.J.; Hoerauf, A. Wolbachia bacteria of filarial nematodes. Parasitol. Today 1999, 15, 437–442. [Google Scholar] [CrossRef]
- Ferri, E.; Bain, O.; Barbuto, M.; Martin, C.; Lo, N.; Uni, S.; Landmann, F.; Baccei, S.G.; Guerrero, R.; Lima, S.S.; et al. New insights into the evolution of Wolbachia infections in filarial nematodes inferred from a large range of screened species. PLoS ONE 2011, 6, e20843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lefoulon, E.; Bain, O.; Makepeace, B.L.; d’Haese, C.; Uni, S.; Martin, C.; Gavotte, L. Breakdown of coevolution between symbiotic bacteria Wolbachia and their filarial hosts. PeerJ 2016, 4, e1840. [Google Scholar] [CrossRef] [Green Version]
- Hoerauf, A.; Volkmann, L.; Hamelmann, C.; Adjei, O.; Autenrieth, I.B.; Fleischer, B.; Buttner, D.W. Endosymbiotic bacteria in worms as targets for a novel chemotherapy in filariasis. Lancet 2000, 55, 1242–1243. [Google Scholar] [CrossRef]
- Casiraghi, M.; McCall, J.W.; Simoncini, L.; Kramer, L.H.; Sacchi, L.; Genchi, C.; Warren, J.H.; Bandi, C. Tetracycline treatment and sex-ratio distortion: A role for Wolbachia in the moulting of filarial nematodes? Int. J. Parasitol. 2002, 32, 1457–1468. [Google Scholar] [CrossRef]
- Fenn, K.; Blaxter, M. Wolbachia genomes: Revealing the biology of parasitism and mutualism. Trends Parasitol. 2006, 22, 60–65. [Google Scholar] [CrossRef]
- Hoerauf, A.; Pfarr, K. Wolbachia endosymbionts: An achilles’ heel of filarial nematodes. In Wolbachia: A Bug’s Life in Another Bug; Hoerauf, A., Rao, R.U., Eds.; Karger: Basel, Switzerland, 2007; pp. 31–51. [Google Scholar]
- Albers, A.; Esum, M.E.; Tendongfor, N.; Enyong, P.; Klarmann, U.; Wanji, S.; Hoerauf, A.; Pfarr, K. Retarded Onchocerca volvulus L1 to L3 larval development in the Simulium damnosum vector after anti-wolbachial treatment of the human host. Parasites Vectors 2012, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Darby, A.C.; Armstrong, S.D.; Bah, G.S.; Kaur, G.; Hughes, M.A.; Kay, S.M.; Koldkjær, P.; Rainbow, L.; Radford, A.D.; Blaxter, M.L.; et al. Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis. Genome Res. 2017, 22, 2467–2477. [Google Scholar] [CrossRef] [Green Version]
- Sinnathamby, G.; Henderson, G.; Umair, S.; Bland, R.J.; Janssen, P.; Simpson, H.V. The bacterial community associated with the sheep gastrointestinal nematode parasite Haemonchus contortus. PLoS ONE 2018, 13, e0192164. [Google Scholar]
- Sinnathamby, G. Bacteria Associated with Haemonchus contortus. Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 2012. [Google Scholar]
- Demeler, J.; Kuittler, U.; von Samson-Himmelstjerna, G. Adaptation and evaluation of three different in vitro tests for the detection of resistance to anthelmintics in gastrointestinal nematodes of cattle. Vet. Parasitol. 2013, 170, 61–70. [Google Scholar] [CrossRef]
- Bekelaar, K.; Waghorn, T.; Tavendale, M.; McKenzie, C.; Leathwick, D. Carbon dioxide is an absolute requirement for exsheathment of some, but not all, abomasal nematode species. Parasitol. Res. 2018, 117, 3675–3678. [Google Scholar] [CrossRef]
- Finegold, S.M.; Sutter, V.L.; Mathisen, G.E. Normal indigenous intestinal flora. In Human Intestinal Microflora in Health and Disease; Hentges, D.J., Ed.; Academic Press, Inc.: New York, NY, USA, 1983; pp. 3–31. [Google Scholar]
- Leser, T.D.; Amenuvor, J.Z.; Jensen, T.K.; Lindecrona, R.H.; Boye, M.; Mϕller, K. Culture-independent analysis of gut bacteria: The pig gastrointestinal tract microbiota revisited. Appl. Environ. Microbiol. 2002, 68, 673–690. [Google Scholar] [CrossRef] [Green Version]
- Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargeant, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversity of the human intestinal microbial flora. Science 2005, 308, 1635–1638. [Google Scholar] [CrossRef] [Green Version]
- Rajilić-Stojanović, M.; Smidt, H.; de Vos, W.M. Diversity of the human gastrointestinal tract microbiota revisited. Environ. Microbiol. 2007, 9, 2125–2136. [Google Scholar] [CrossRef]
- Mafuna, P.; Soma, P.; Tsotetsi-Khambule, A.M.; Hefer, C.A.; Muchadeyi, F.C.; Thekisoe, O.M.M.; Pierneef, R.E. Bacterial profiling of Haemonchus contortus gut microbiome infecting Dohne Merino sheep in South Africa. Sci. Rep. 2021, 11, 5905. [Google Scholar] [CrossRef]
- Townson, S.; Hutton, D.; Siemienska, J.; Hollick, L.; Scanlon, T.; Tagboto, S.K.; Taylor, M.J. Antibiotics and Wolbachia in filarial nematodes: Antifilarial activity of rifampicin, oxytetracycline and chloramphenicol against Onchocerca gutturosa, Onchocerca lienalis and Brugia pahangi. Ann. Trop. Med. Parasitol. 2000, 94, 801–816. [Google Scholar] [CrossRef]
- Hoerauf, A.; Mand, S.; Volkmann, L.; Büttner, M.; Marfo-Debrekyei, Y.; Taylor, M.; Adjei, O.; Büttner, D.W. Doxycycline in the treatment of human onchocerciasis: Kinetics of Wolbachia endobacteria reduction and of inhibition of embryogenesis in female Onchocerca worms. Microbe Infect. 2003, 5, 261–273. [Google Scholar] [CrossRef]
- Landmann, F.; Voronin, D.; Sullivan, W.; Taylor, M.J. Anti-filarial activity of antibiotic therapy in due to extensive apoptosis after Wolbachia depletion from filarial nematodes. PLoS Pathog. 2011, 7, e1002351. [Google Scholar] [CrossRef] [Green Version]
- Finlay, M.R.; Marcus, A. “Consumerist terrorists”: Battles over agricultural antibiotics in the United States and western Europe. Agric. Hist. 2016, 90, 146–172. [Google Scholar] [CrossRef]
- Manoj, R.R.S.; Latrofa, M.S.; Epis, S.; Otranto, D. Wolbachia: Endosymbiont of onchocercid nematodes and their vectors. Parasites Vectors 2021, 14, 245. [Google Scholar] [CrossRef]
Bacteria | Adult Worm | Eggs | |||||||
---|---|---|---|---|---|---|---|---|---|
Sequence Size (bp) | |||||||||
Phylum | Class | Order | Family | Genus | ~1400 | ~1000 | ~1400 | ~1000 | |
Firmicutes | Bacilli | Lactobacillales | Streptoccaceae | Streptococcus | 7 | 3 | |||
Bacillales | Staphylococcaceae | Solibacillus | 1 | ||||||
Staphylococcus | 2 | ||||||||
Enterococcaceae | Enterococcus | 1 | |||||||
Planococcaceae | Planococcus | 1 | |||||||
Clostridia | Clostridiales | Hungateiclostridiaceae | Ruminiclostridium | 1 | |||||
Lachnospiraceae | Oribacterium | 3 | |||||||
Pseudobutyrivibrio | 7 | ||||||||
Unclassified Lachnospiraceae | 2 | ||||||||
Ruminococcaceae | Ruminococcus | 69 | 90 | ||||||
TOTAL | 77 | 15 | 95 | ||||||
Tenericutes | Mollicutes | Mycoplasmatales | Mycoplasmataceae | Mycoplasma | 16 | 1 | |||
TOTAL | 16 | 1 | |||||||
Proteobacteria | Alphaproteobacteria | Rhizobiales | Bradyrhizobiaceae | Methylobacteriaceae | 1 | ||||
Bradyrhizobium | 2 | ||||||||
Brucellaceae | 3 | ||||||||
Phyllobacteriaceae | Nitrareductor | 12 | |||||||
Betaproteobacteria | Burkholderiales | Alcaligenaceae | Achromobacter | 1 | |||||
Comamonadaceae | Pelomonas | 8 | 8 | ||||||
Burkholderiaceae | Ralstonia | 18 | 31 | ||||||
Gammaproteobacteria | Nevskiales | Sinobacteraceae | Nevskia | 1 | |||||
Pseudomonadales | Pseudomonadaceae | Pseudomonas | 1 | 1 | |||||
TOTAL | 42 | 0 | 45 | 0 | |||||
Bacteroidetes | Chitinophagia | Chitinophagales | Chitinophagaceae | Asinibacterium | 17 | 20 | |||
Chitinophaga | |||||||||
Hydrobacter | 2 | ||||||||
Sediminibacterium | 53 | 67 | |||||||
TOTAL | 70 | 0 | 89 | 0 | |||||
Total sequences | 189 | 31 | 134 | 96 | 450 |
Antibiotics Combination | Concentration (ug/µL) | Percentage of Mortality |
---|---|---|
Ampicillin | 50 | 10 ± 5 |
Gentamycin | 50 | 20 ± 6 |
Tetracycline | 10 | 30 ± 3 * |
Ampicillin | 100 | 15 ± 7 |
Gentamycin | 100 | 25 ± 9 |
Tetracycline | 20 | 35 ± 5 * |
Ampicillin | 50 | 18 ± 6 * |
Gentamycin | 50 | |
Ampicillin | 50 | 22 ± 8 |
Tetracycline | 10 | |
Gentamycin | 50 | 25 ± 6 * |
Tetracycline | 10 | |
Gentamycin | 50 | NR |
Tetracycline | 20 | |
Ampicillin | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouchet, C.; Deng, Q.; Umair, S. Bacteria Associated with the Parasitic Nematode Haemonchus contortus and Its Control Using Antibiotics. Parasitologia 2022, 2, 63-70. https://doi.org/10.3390/parasitologia2020007
Bouchet C, Deng Q, Umair S. Bacteria Associated with the Parasitic Nematode Haemonchus contortus and Its Control Using Antibiotics. Parasitologia. 2022; 2(2):63-70. https://doi.org/10.3390/parasitologia2020007
Chicago/Turabian StyleBouchet, Charlotte, Qing Deng, and Saleh Umair. 2022. "Bacteria Associated with the Parasitic Nematode Haemonchus contortus and Its Control Using Antibiotics" Parasitologia 2, no. 2: 63-70. https://doi.org/10.3390/parasitologia2020007
APA StyleBouchet, C., Deng, Q., & Umair, S. (2022). Bacteria Associated with the Parasitic Nematode Haemonchus contortus and Its Control Using Antibiotics. Parasitologia, 2(2), 63-70. https://doi.org/10.3390/parasitologia2020007