Evaluating Morphological Methods for Sex Estimation on Isolated Human Skeletal Materials: Comparisons of Accuracies between German and South African Skeletal Collections
Abstract
:1. Introduction
2. Materials: From Inden, Lübeck, South Africa
2.1. Inden Collection
2.2. Lübeck Collection
2.3. South African Collection
2.4. Criteria for Selection of Bones
3. Methods
3.1. Morphological Sex Estimation Methodology
3.2. Morphological Series
3.3. Known Sex and Morphological Sex Estimation Comparison: Calculation of Accuracy Rate
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mokoena, P.; Billings, B.K.; Gibbon, V.; Bidmos, M.A.; Mazengenya, P. Development of Discriminant Functions to Estimate Sex in Upper Limb Bones for Mixed Ancestry South Africans. Sci. Justice 2019, 59, 660–666. [Google Scholar] [CrossRef] [PubMed]
- Krishan, K.; Kanchan, T.; Kharoshah, M.A. “Advances in Forensic Anthropology”–Creation of Skeletal Databases for Forensic Anthropology Research and Casework. Egypt. J. Forensic Sci. 2016, 6, 29–30. [Google Scholar] [CrossRef]
- de Boer, H.H.; Obertová, Z.; Cunha, E.; Adalian, P.; Baccino, E.; Fracasso, T.; Kranioti, E.; Lefévre, P.; Lynnerup, N.; Petaros, A. Strengthening the Role of Forensic Anthropology in Personal Identification: Position Statement by the Board of the Forensic Anthropology Society of Europe (FASE). Forensic Sci. Int. 2020, 315, 110456. [Google Scholar] [CrossRef] [PubMed]
- Hummel, S. Ancient DNA Typing; Springer: Berlin, Germany, 2003. [Google Scholar]
- Butler, J.M.; Willis, S. Interpol Review of Forensic Biology and Forensic DNA Typing 2016-2019. Forensic Sci. Int. Synerg. 2020, 2, 352–367. [Google Scholar] [CrossRef]
- Đurić, M.; Rakočević, Z.; Đonić, D. The Reliability of Sex Determination of Skeletons from Forensic Context in the Balkans. Forensic Sci. Int. 2005, 147, 159–164. [Google Scholar] [CrossRef]
- Lewis, C.J.; Garvin, H.M. Reliability of the Walker Cranial Nonmetric Method and Implications for Sex Estimation. J. Forensic Sci. 2016, 61, 743–751. [Google Scholar] [CrossRef]
- Thomas, R.M.; Parks, C.L.; Richard, A.H. Accuracy Rates of Sex Estimation by Forensic Anthropologists through Comparison with DNA Typing Results in Forensic Casework. J. Forensic Sci. 2016, 61, 1307–1310. [Google Scholar] [CrossRef]
- Inskip, S.; Scheib, C.L.; Wohns, A.W.; Ge, X.; Kivisild, T.; Robb, J. Evaluating Macroscopic Sex Estimation Methods Using Genetically Sexed Archaeological Material: The Medieval Skeletal Collection from St John’s Divinity School, Cambridge. Am. J. Phys. Anthropol. 2019, 168, 340–351. [Google Scholar] [CrossRef]
- Gualdi-Russo, E. Sex Determination from the Talus and Calcaneus Measurements. Forensic Sci. Int. 2007, 171, 151–156. [Google Scholar] [CrossRef]
- Guyomarc’h, P.; Bruzek, J. Accuracy and Reliability in Sex Determination from Skulls: A Comparison of Fordisc® 3.0 and the Discriminant Function Analysis. Forensic Sci. Int. 2011, 208, 180.e1–180.e6. [Google Scholar] [CrossRef]
- Trautmann, M.; Trautmann, I.; Hotz, G. A Simple Metric Sexing Method for Unknown Skeletal Remains: The Sacro-Clavicular Index (SCI). Anthropol. Anz. 2014, 71, 57–64. [Google Scholar] [CrossRef]
- Selliah, P.; Martino, F.; Cummaudo, M.; Indra, L.; Biehler-Gomez, L.; Campobasso, C.P.; Cattaneo, C. Sex Estimation of Skeletons in Middle and Late Adulthood: Reliability of Pelvic Morphological Traits and Long Bone Metrics on an Italian Skeletal Collection. Int. J. Leg. Med. 2020, 134, 1683–1690. [Google Scholar] [CrossRef]
- Introna, F.; Di Vella, G.; Campobasso, C.P.; Dragone, M. Sex Determination by Discriminant Analysis of Calcanei Measurements. J. Forensic Sci. 1997, 42, 725–728. [Google Scholar]
- Introna, F.; Di Vella, G.; Campobasso, C.P. Sex Determination by Discriminant Analysis of Patella Measurements. Forensic Sci. Int. 1998, 95, 39–45. [Google Scholar] [CrossRef]
- Glucksmann, A. Sexual Dimorphism in Human and Mammalian Biology and Pathology; Academic Press: Cambridge, MA, USA, 1981. [Google Scholar]
- Ubelaker, D.H.; DeGaglia, C.M. Population Variation in Skeletal Sexual Dimorphism. Forensic Sci. Int. 2017, 278, 407.e1–407.e7. [Google Scholar]
- Ross, A.H.; Ubelaker, D.H.; Kimmerle, E.H. Implications of Dimorphism, Population Variation, and Secular Change in Estimating Population Affinity in the Iberian Peninsula. Forensic Sci. Int. 2011, 206, 214.e1–214.e5. [Google Scholar] [CrossRef]
- Steyn, M.; Patriquin, M.L. Osteometric Sex Determination from the Pelvis—Does Population Specificity Matter? Forensic Sci. Int. 2009, 191, 113.e1–113.e5. [Google Scholar] [CrossRef]
- Seidenberg, V.; Schilz, F.; Pfister, D.; Georges, L.; Fehren-Schmitz, L.; Hummel, S. A New MiniSTR Heptaplex System for Genetic Fingerprinting of Ancient DNA from Archaeological Human Bone. J. Archaeol. Sci. 2012, 39, 3224–3229. [Google Scholar]
- Haas-Rochholz, H.; Weiler, G. Additional Primer Sets for an Amelogenin Gene PCR-Based DNA-Sex Test. Int. J. Leg. Med. 1997, 110, 312–315. [Google Scholar]
- Schmidt, D.; Hummel, S.; Herrmann, B. Brief Communication: Multiplex X/Y-PCR Improves Sex Identification in ADNA Analysis. Am. J. Phys. Anthropol. 2003, 121, 337–341. [Google Scholar] [CrossRef]
- Tozzo, P.; Giuliodori, A.; Corato, S.; Ponzano, E.; Rodriguez, D.; Caenazzo, L. Deletion of Amelogenin Y-Locus in Forensics: Literature Revision and Description of a Novel Method for Sex Confirmation. J. Forensic Leg. Med. 2013, 20, 387–391. [Google Scholar] [PubMed]
- Kashyap, V.K.; Sahoo, S.; Sitalaximi, T.; Trivedi, R. Deletions in the Y-Derived Amelogenin Gene Fragment in the Indian Population. BMC Med. Genet. 2006, 7, 37. [Google Scholar]
- Schmidt, N.; Schücker, K.; Krause, I.; Dörk, T.; Klintschar, M.; Hummel, S. Genome-Wide SNP Typing of Ancient DNA: Determination of Hair and Eye Color of Bronze Age Humans from Their Skeletal Remains. Am. J. Phys. Anthropol. 2020, 172, 99–109. [Google Scholar] [CrossRef]
- Salega, S.; Grosskopf, B. Evaluation of Entheseal Changes in a Modern Identified Skeletal Collection from Inden (Germany). Int. J. Osteoarchaeol. 2022, 32, 86–99. [Google Scholar] [CrossRef]
- Feicke, M. Inventory and Morphological Sexing in a Medieval Skeletal Series from Lübeck, Department of Historical Anthropology and Human Ecology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology; Georg-August-Universität Göttingen: Göttingen, Germany, 2013. [Google Scholar]
- Fasemore, M.D.; Bidmos, M.A.; Mokoena, P.; Imam, A.; Billings, B.K.; Mazengenya, P. Dimensions around the Nutrient Foramina of the Tibia and Fibula in the Estimation of Sex. Forensic Sci. Int. 2018, 287, 222.e1–222.e7. [Google Scholar] [CrossRef]
- Dayal, M.R.; Kegley, A.D.; Štrkalj, G.; Bidmos, M.A.; Kuykendall, K.L. The History and Composition of the Raymond, A. Dart Collection of Human Skeletons at the University of the Witwatersrand, Johannesburg, South Africa. Am. J. Phys. Anthropol. Off. Publ. Am. Assoc. Phys. Anthropol. 2009, 140, 324–335. [Google Scholar]
- Curate, F. The Estimation of Sex of Human Skeletal Remains in the Portuguese Identified Collections: History and Prospects. Forensic Sci. 2022, 2, 272–286. [Google Scholar] [CrossRef]
- Spradley, M.K.; Jantz, R.L. Sex Estimation in Forensic Anthropology: Skull Versus Postcranial Elements. J. Forensic Sci. 2011, 56, 289–296. [Google Scholar] [CrossRef]
- Bruzek, J. A Method for Visual Determination of Sex, Using the Human Hip Bone. Am. J. Phys. Anthropol. 2002, 117, 157–168. [Google Scholar] [CrossRef]
- Buikstra, J.E.; Ubelaker, D.H. Standards for Data Collection from Human Skeletal Remains. Ark. Archaeol. Surv. Res. Ser. 1994, 44, 10004710139. [Google Scholar]
- Ferembach, D. Recomendations for Age and Sex Diagnosis of Skeletons. J. Hum. Evol. 1980, 9, 517–549. [Google Scholar]
- Grupe, G.; Harbeck, M.; McGlynn, G.C. Prehistoric Anthropology, Original Text; Springer Spektrum: Berlin, Germany, 2015. [Google Scholar] [CrossRef]
- Herrmann, B.; Grupe, G.; Hummel, S.; Piepenbrink, H.; Schutkowski, H. Prehistoric Anthropology, Original Text: Guide to Field and Laboratory Methods; Springer: Berlin, Germany, 1990. [Google Scholar]
- Klepinger, L.L. Fundamentals of Forensic Anthropology; John Wiley & Sons: Hoboken, NJ, USA, 2006; Volume 1. [Google Scholar]
- Novotný, V. Pohlavnı Rozdıly a Identifikace Pohlavá Pınevnı Kosti [Sex Differences and Identification of Sex in Pelvic Bone]. Ph.D. Thesis, Purkyne University, Ústí nad Labem, Czech Republic, 1981. [Google Scholar]
- Loth, S.R.; Henneberg, M. Mandibular Ramus Flexure: A New Morphologic Indicator of Sexual Dimorphism in the Human Skeleton. Am. J. Phys. Anthropol. Off. Publ. Am. Assoc. Phys. Anthropol. 1996, 99, 473–485. [Google Scholar] [CrossRef]
- McFadden, C.; Oxenham, M.F. Revisiting the P Henice Technique Sex Classification Results Reported by M Ac L Aughlin and B Ruce (1990). Am. J. Phys. Anthropol. 2016, 159, 182–183. [Google Scholar] [CrossRef]
- Watson, P.F.; Petrie, A. Method Agreement Analysis: A Review of Correct Methodology. Theriogenology 2010, 73, 1167–1179. [Google Scholar] [CrossRef]
- Handbook of Forensic Anthropology and Archaeology, 2nd ed.; Blau, S.; Ubelaker, D.H. (Eds.) Routledge: New York, NY, USA, 2016. [Google Scholar] [CrossRef]
- Rowbotham, S.K. Anthropological Estimation of Sex. In Handbook of Forensic Anthropology and Archaeology; Routledge: New York, NY, USA, 2016; pp. 303–314. [Google Scholar]
- Dunsworth, H.M. Expanding the Evolutionary Explanations for Sex Differences in the Human Skeleton. Evol. Anthropol. Issues News Rev. 2020, 29, 108–116. [Google Scholar] [CrossRef]
- Krüger, G.C.; L’Abbé, E.N.; Stull, K.E.; Kenyhercz, M.W. Sexual Dimorphism in Cranial Morphology among Modern South Africans. Int. J. Leg. Med. 2015, 129, 869–875. [Google Scholar] [CrossRef] [Green Version]
Traits | Common Sources |
---|---|
Greater sciatic notch Arc composé (Composite arch) Sub-pubic angle Iliac crest | (Bruzek, 2002; Buikstra and Ubelaker, 1994; Ferembach, 1980; Grupe et al., 2015; Klepinger, 2006; Novotný, 1981; Hermann et al., 1990) [32,33,34,35,36,37,38] |
Traits | Common Sources |
---|---|
Mandible overall Condylar process Mentum (mental eminence) Gonion and angle Corpus height | (Buikstra and Ubelaker, 1994; Ferembach, 1980; Grupe et al., 2015; Herrmann et al., 1990; Klepinger, 2006; Loth & Henneberg, 1996) [33,34,35,36,37,39] |
Traits | Common Sources |
---|---|
Cranium overall Frontal tuberosity (eminence) and forehead steepness Glabella and supraorbital ridges (superciliary arch) Eye orbitals Zygomaticum (zygomatic arch) Margo orbitalis (supraorbital margin) Mastoid process | (Buikstra and Ubelaker, 1994; Ferembach, 1980; Grupe et al., 2015; Herrmann et al., 1990; Klepinger, 2006) [33,34,35,36,37] |
Population Groups | |||
---|---|---|---|
Source of Sex Estimate | Inden | Lübeck | South Africa |
Morphological | 164 | 236 | 161 |
Previously known | 109 | 76 | 161 |
Trait | Individuals Considered with Known Sex | Match | No Match | Raw Accuracy (%) | Indifferent | Without Indifferent | Match | No Match | Accuracy (%) | Cohen’s Kappa | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|
Inden Calvarium—Morphological | |||||||||||
Cranium overall | 74 | 51 | 23 | 68.92 | 13 | 61 | 51 | 10 | 83.61 | 0.665 | 0.000 |
Frontal tuberosity and Steepness | 75 | 59 | 16 | 78.7 | 13 | 62 | 52 | 10 | 83.9 | 0.665 | 0.000 |
Glabella-supra orbital ridges | 75 | 53 | 22 | 70.7 | 12 | 63 | 53 | 10 | 84.1 | 0.679 | 0.000 |
Margo orbitalis | 75 | 43 | 32 | 57.3 | 17 | 58 | 43 | 15 | 74.1 | 0.450 | 0.000 |
Eye orbitals | 62 | 43 | 19 | 69.4 | 4 | 58 | 43 | 15 | 74.1 | 0.464 | 0.000 |
Zygomaticum | 69 | 44 | 25 | 63.8 | 9 | 60 | 44 | 16 | 73.3 | 0.444 | 0.000 |
Mastoid process | 75 | 43 | 32 | 57.3 | 13 | 62 | 42 | 20 | 67.7 | 0.351 | 0.000 |
Inden Mandible—Morphological | |||||||||||
Mandible overall | 65 | 50 | 15 | 76.9 | 0 | 65 | 50 | 15 | 76.9 | 0.491 | 0.000 |
Condylar process | 64 | 43 | 21 | 67.2 | 0 | 64 | 43 | 21 | 67.2 | 0.294 | 0.019 |
Corpus height | 59 | 39 | 20 | 66.1 | 0 | 59 | 39 | 20 | 66.1 | 0.264 | 0.040 |
Mentum | 57 | 40 | 17 | 70.2 | 0 | 57 | 40 | 17 | 70.2 | 0.348 | 0.006 |
Gonion and angle | 54 | 35 | 19 | 64.8 | 1 | 53 | 35 | 18 | 66.0 | 0.183 | 0.052 |
Inden Pelvis—Morphological | |||||||||||
Iliac crest | 69 | 47 | 22 | 68.1 | 0 | 69 | 47 | 22 | 68.1 | 0.361 | 0.003 |
Arc compose | 90 | 67 | 23 | 74.4 | 3 | 87 | 67 | 20 | 77.0 | 0.530 | 0.000 |
Greater schiatic notch | 90 | 65 | 25 | 72.2 | 7 | 83 | 65 | 18 | 78.3 | 0.556 | 0.000 |
Sub pubic angle | 54 | 48 | 6 | 88.9 | 1 | 53 | 48 | 5 | 90.6 | 0.797 | 0.000 |
Trait | Individuals Considered with Known Sex | Match | No Match | Raw Accuracy (%) | Indifferent | Without Indifferent | Match | No Match | Accuracy (%) | Cohen’s Kappa | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|
South Africa Calvarium—Morphological | |||||||||||
Cranium overall | 160 | 130 | 30 | 81.3 | 0 | 160 | 130 | 30 | 81.3 | 0.595 | 0.000 |
Frontal tuberosity and Steepness | 160 | 125 | 35 | 78.1 | 2 | 158 | 125 | 33 | 79.1 | 0.573 | 0.000 |
Glabella-supra orbital ridges | 160 | 130 | 30 | 81.3 | 1 | 159 | 130 | 29 | 81.8 | 0.613 | 0.000 |
Margo orbitalis | 160 | 108 | 52 | 67.5 | 1 | 159 | 108 | 51 | 67.9 | 0.299 | 0.000 |
Eye orbitals | 160 | 124 | 36 | 77.5 | 2 | 158 | 124 | 34 | 78.5 | 0.533 | 0.000 |
Zygomaticum | 160 | 124 | 36 | 77.5 | 4 | 156 | 124 | 32 | 79.5 | 0.581 | 0.000 |
Mastoid process | 160 | 113 | 47 | 70.6 | 1 | 159 | 113 | 46 | 71.1 | 0.402 | 0.000 |
South Africa Mandible—Morphological | |||||||||||
Mandible overall | 160 | 130 | 30 | 81.3 | 4 | 156 | 130 | 26 | 83.3 | 0.634 | 0.000 |
Condylar process | 160 | 114 | 46 | 71.3 | 1 | 159 | 114 | 45 | 71.7 | 0.407 | 0.000 |
Corpus height | 160 | 117 | 43 | 73.1 | 4 | 156 | 117 | 39 | 75.0 | 0.464 | 0.000 |
Gonion and angle | 160 | 127 | 33 | 79.4 | 2 | 158 | 127 | 31 | 80.4 | 0.604 | 0.000 |
Mentum | 160 | 102 | 58 | 63.8 | 5 | 155 | 102 | 53 | 65.8 | 0.290 | 0.000 |
South Africa Pelvis—Morphological | |||||||||||
Iliac crest | 156 | 109 | 47 | 69.9 | 1 | 155 | 109 | 46 | 70.3 | 0.382 | 0.000 |
Greater schiatic notch | 156 | 122 | 34 | 78.2 | 2 | 154 | 122 | 32 | 79.2 | 0.552 | 0.000 |
Arc compose | 156 | 127 | 29 | 81.4 | 1 | 155 | 127 | 28 | 81.9 | 0.609 | 0.000 |
Sub pubic angle | 156 | 146 | 10 | 93.6 | 1 | 155 | 146 | 9 | 94.2 | 0.879 | 0.000 |
Trait | Individuals Considered with Known | Match | No Match | Raw Accuracy (%) | Indifferent | Without Indifferent | Match | No Match | Accuracy (%) | Cohen’ s Kappa | p-Value |
---|---|---|---|---|---|---|---|---|---|---|---|
Lübeck Calvarium—Morphological | |||||||||||
Cranium overall | 43 | 23 | 20 | 53.5 | 4 | 39 | 23 | 16 | 59.0 | 0.273 | 0.027 |
Frontal tubercle and Steepness | 40 | 21 | 19 | 52.5 | 3 | 37 | 21 | 16 | 56.8 | 0.204 | 0.121 |
Glabella-supra orbital ridges | 43 | 20 | 23 | 46.5 | 8 | 35 | 20 | 15 | 57.1 | 0.274 | 0.018 |
Margo orbitalis SH | 42 | 18 | 24 | 42.9 | 7 | 35 | 18 | 17 | 51.4 | 0.177 | 0.128 |
Eye orbitals | 43 | 23 | 20 | 53.5 | 1 | 42 | 23 | 19 | 54.8 | 0.222 | 0.045 |
Zygomaticum | 43 | 20 | 23 | 46.5 | 6 | 37 | 20 | 17 | 54.1 | 0.209 | 0.076 |
Mastoid process | 43 | 20 | 23 | 46.5 | 6 | 37 | 20 | 17 | 54.1 | 0.211 | 0.074 |
Lübeck Mandible—Morphological | |||||||||||
Mandible overall | 31 | 18 | 13 | 58.1 | 0 | 31 | 18 | 13 | 58.1 | 0.074 | 0.675 |
Condylar process | 26 | 12 | 14 | 46.2 | 1 | 25 | 12 | 13 | 48.0 | 0.110 | 0.405 |
Corpus height | 31 | 17 | 14 | 54.8 | 0 | 31 | 17 | 14 | 54.8 | 0.084 | 0.609 |
Mentum | 31 | 13 | 18 | 41.9 | 1 | 30 | 13 | 17 | 43.3 | −0.049 | 0.745 |
Gonion and angle | 31 | 22 | 9 | 71.0 | 0 | 31 | 22 | 9 | 71.0 | 0.318 | 0.076 |
Lübeck Pelvis—Morphological | |||||||||||
Iliac crest | 51 | 31 | 20 | 60.8 | 7 | 44 | 31 | 13 | 70.5 | 0.441 | 0.001 |
Arc compose | 51 | 40 | 11 | 78.4 | 3 | 48 | 40 | 8 | 83.3 | 0.652 | 0.000 |
Greater schiatic notch | 50 | 36 | 14 | 72.0 | 7 | 43 | 36 | 7 | 83.7 | 0.670 | 0.000 |
Sub pubic angle | 51 | 32 | 19 | 62.7 | 13 | 38 | 32 | 6 | 84.2 | 0.687 | 0.000 |
Trait | Inden | Lübeck | South Africa | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Male Match | Male Accuracy (%) | Female Match | Female Accuracy (%) | McNemar Test | Male Match | Male Accuracy (%) | Female Match | Female Accuracy (%) | McNemar Test | Male Match | Male Accuracy (%) | Female Match | Female Accuracy (%) | McNemar Test | |
Cranium—Morphological | |||||||||||||||
Cranium overall | 30 (36) | 84 | 21/25 | 83.30 | 0.754 | 11 (12) | 91.7 | 12 (27) | 44.40 | 0.001 | 87 (98) | 88.8 | 43 (62) | 69.4 | 0.200 |
Frontal tubercle and Steepness | 32 (37) | 86.5 | 20 (25) | 80 | 1.000 | 8 (10) | 80 | 13 (27) | 48.1 | 0.004 | 75 (96) | 78.1 | 50 (62) | 80.60 | 0.163 |
Glabella-supra orbital ridges | 30 (36) | 83.3 | 23 (27) | 85.2 | 0.754 | 11 (11) | 100 | 9 (24) | 37.5 | 0.000 | 84 (97) | 86.6 | 46 (62) | 74.2 | 0.711 |
Margo orbitalis | 29 (34) | 85.3 | 14 (24) | 58.3 | 0.302 | 10 (11) | 90.9 | 8 (24) | 33.3 | 0.000 | 78 (97) | 80.4 | 30 (62) | 48.4 | 0.092 |
Eye orbitals | 16 (24) | 66.7 | 27 (34) | 79.4 | 1.000 | 11 (12) | 91.7 | 12 (30) | 40 | 0.000 | 85 (96) | 88.5 | 39 (62) | 62.9 | 0.058 |
Zygomaticum | 28 (36) | 77.8 | 16 (24) | 66.7 | 1.000 | 11 (12) | 91.7 | 9 (25) | 36 | 0.000 | 74 (94) | 78.7 | 50 (62) | 80.6 | 0.215 |
Mastoid process | 24 (36) | 66.7 | 18 (26) | 69.2 | 0.503 | 10 (11) | 90.9 | 10 (26) | 38.5 | 0.000 | 71 (97) | 73.2 | 42 (62) | 67.7 | 0.461 |
Mandible—Morphological | |||||||||||||||
Mandible overall | 35 (41) | 85.4 | 15 (24) | 62.5 | 0.607 | 4 (9) | 44 | 14 (22) | 63.6 | 0.581 | 89 (96) | 92.7 | 41 (60) | 68.3 | 0.029 |
Condylar process | 30 (40) | 75 | 13 (24) | 54.2 | 1.000 | 4 (5) | 80 | 8 (20) | 40 | 0.003 | 74 (97) | 76.3 | 40 (62) | 64.5 | 1.000 |
Corpus height | 28 (36) | 77.8 | 11 (23) | 47.8 | 0.503 | 5 (9) | 55.6 | 12 (22) | 54.5 | 0.180 | 79 (95) | 83.2 | 38 (61) | 62.3 | 0.337 |
Mentum | 29 (34) | 85.3 | 11 (23) | 47.8 | 0.143 | 5 (9) | 55.6 | 8 (21) | 38.1 | 0.049 | 66 (95) | 69.5 | 36 (60) | 60 | 0.011 |
Gonion and angle | 31 (32) | 96.9 | 4 (21) | 19 | 0.000 | 5 (9) | 55.6 | 17 (22) | 77.3 | 1.000 | 74 (97) | 90.2 | 53 (61) | 86.9 | 0.583 |
Pelvis—Morphological | |||||||||||||||
Iliac crest | 26 (39) | 66.7 | 21 (30) | 70 | 0.523 | 14 (15) | 93.3 | 17 (29) | 58.6 | 0.003 | 70 (95) | 73.7 | 39 (60) | 65 | 0.659 |
Arc compose | 40 (49) | 81.6 | 27 (38) | 71.1 | 0.824 | 15 (18) | 83.3 | 25 (30) | 83.3 | 0.727 | 85 (96) | 88.5 | 42 (59) | 71.2 | 0.215 |
Greater schiatic notch | 39 (47) | 83 | 26 (36) | 72.2 | 0.815 | 15 (17) | 88.2 | 21 (26) | 80.8 | 0.453 | 82 (94) | 87.2 | 40 (60) | 66.7 | 0.345 |
Sub pubic angle | 31 (33) | 93.9 | 17 (20) | 85 | 1.000 | 15 (16) | 93.8 | 17 (22) | 77.3 | 0.219 | 89 (95) | 93.7 | 57 (60) | 95 | 0.508 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, A.; Billings, B.K.; Hummel, S.; Grosskopf, B. Evaluating Morphological Methods for Sex Estimation on Isolated Human Skeletal Materials: Comparisons of Accuracies between German and South African Skeletal Collections. Forensic Sci. 2022, 2, 574-584. https://doi.org/10.3390/forensicsci2030042
Gupta A, Billings BK, Hummel S, Grosskopf B. Evaluating Morphological Methods for Sex Estimation on Isolated Human Skeletal Materials: Comparisons of Accuracies between German and South African Skeletal Collections. Forensic Sciences. 2022; 2(3):574-584. https://doi.org/10.3390/forensicsci2030042
Chicago/Turabian StyleGupta, Avinash, Brendon K. Billings, Susanne Hummel, and Birgit Grosskopf. 2022. "Evaluating Morphological Methods for Sex Estimation on Isolated Human Skeletal Materials: Comparisons of Accuracies between German and South African Skeletal Collections" Forensic Sciences 2, no. 3: 574-584. https://doi.org/10.3390/forensicsci2030042
APA StyleGupta, A., Billings, B. K., Hummel, S., & Grosskopf, B. (2022). Evaluating Morphological Methods for Sex Estimation on Isolated Human Skeletal Materials: Comparisons of Accuracies between German and South African Skeletal Collections. Forensic Sciences, 2(3), 574-584. https://doi.org/10.3390/forensicsci2030042