R-Matrix Theory in a Semiconductor Quantum Device: Weak Formulation and Current Conserving Approximations
Abstract
1. Introduction
2. Schrödinger Scattering Problem in One Dimension: Current R-Matrix and Current S-Matrix

3. The R-Matrix in Weak Formulation
4. Wigner–Eisenbud Functions and Eigenvalue Decomposition of the R-Matrix
5. Application: The Finite Element Method

6. Discussion and Conclusions
6.1. Individual Scattering States as Solution of a Set of Linear Equations (‘Direct Calculation’)
6.2. R-Matrix Method
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| LCAO | linear combination of orbitals = linear combination of given basis states |
Appendix A. Solving the Scattering Problem as a Set of Linear Equations (‘Direct Calculation’)
Appendix B. Construction of the S-Matrix from the R-Matrix
Appendix C. The Variational Approach to the R-Matrix in Detail
Appendix C.1. The Rayleigh Quotient
Appendix C.2. Ritz Method: Space Restricted to Linear Combinations of Atomic Orbitals (LCAOs)
Appendix D. Construction of the Generalized R-Matrix in Weak Formulation
References
- Frenkel, J. On the Electrical Resistance of Contacts between Solid Conductors. Phys. Rev. 1930, 36, 1604. [Google Scholar] [CrossRef]
- Ehrenberg, W.; Hönl, H. Zur Theorie des elektrischen Kontaktes. Z. Phys. 1931, 68, 289. [Google Scholar] [CrossRef]
- Landauer, R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J. Res. Develop. 1957, 1, 223. [Google Scholar] [CrossRef]
- Landauer, R. Electrical transport in open and closed systems. Z. Phys. B 1987, 68, 217. [Google Scholar] [CrossRef]
- Tsu, R.; Esaki, L. Tunneling in a finite superlattice. Appl. Phys. Lett. 1973, 22, 562. [Google Scholar] [CrossRef]
- Fisher, D.S.; Lee, P.A. Relation between conductivity and transmission matrix. Phys. Rev. B 1981, 23, 6851. [Google Scholar] [CrossRef]
- Büttiker, M.; Imry, Y.; Landauer, R.; Pinhas, S. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B 1985, 31, 6207. [Google Scholar] [CrossRef]
- Büttiker, M. Four-Terminal Phase-Coherent Conductance. Phys. Rev. Lett. 1986, 57, 1761. [Google Scholar] [CrossRef] [PubMed]
- Büttiker, M. Symmetry of electrical conduction. IBM J. Res. Dev. 1988, 32, 317. [Google Scholar] [CrossRef]
- Wulf, U.; Kučera, J.; Richter, H.; Horstmann, M.; Wiatr, M.; Höntschel, J. Channel engineering for nanotransistors in a semiempirical quantum transport model. Mathematics 2017, 5, 68. [Google Scholar] [CrossRef]
- Nemnes, G.A.; Ion, L.; Antohe, S. Self-consistent potentials and linear regime conductance of cylindrical nanowire transistors in the R-matrix formalism. J. Appl. Phys. 2009, 106, 113714. [Google Scholar] [CrossRef]
- Nemnes, G.A.; Manolescu, A.; Gudmundsson, V. Reduction of ballistic spin scattering in a spin-FET using stray electric fields. J. Physics Conf. Ser. 2012, 338, 012012. [Google Scholar] [CrossRef]
- Nemnes, G.A.; Dragoman, D. Reconfigurable quantum logic gates using Rashba controlled spin polarized currents. Phys. E 2019, 111, 13. [Google Scholar] [CrossRef]
- Wulf, U. An Electron Waveguide Model for FDSOI Transistors. Solids 2022, 3, 203–218. [Google Scholar] [CrossRef]
- Wulf, U.; Preda, A.T.; Nemnes, G.A. Transport in a Two-Channel Nanotransistor Device with Lateral Resonant Tunneling. Micromachines 2024, 15, 1270. [Google Scholar] [CrossRef] [PubMed]
- Lane, A.M.; Thomas, R.G. R-Matrix Theory of Nuclear Reactions. Rev. Mod. Phys. 1958, 30, 257. [Google Scholar] [CrossRef]
- Burke, P.G.; Berrington, K.A. (Eds.) Atomic and Molecular Processes: An R-Matrix Approach; Institute of Physics Publishing: Bristol, UK, 1993. [Google Scholar]
- Kapur, P.L.; Peierls, R. The dispersion formula for nuclear reactions. Proc. R. Soc. Lond. 1938, A166, 277. [Google Scholar] [CrossRef]
- Smrčka, L. R-matrix and the coherent transport in mesoscopic systems. Superlattices Microstruct. 1990, 8, 221. [Google Scholar] [CrossRef]
- Rektorys, K. Variational Methods in Mathematics, Science and Engineering; D. Reidel: Dordrecht, The Netherlands, 1977. [Google Scholar] [CrossRef]
- Kirkner, D.; Lent, C. The quantum transmitting boundary method. J. Appl. Phys. 1990, 67, 6353. [Google Scholar] [CrossRef]
- Leng, M.; Lent, C.S. Recovery of quantized ballistic conductance in a periodically modulated channel. Phys. Rev. Lett. 1993, 71, 137. [Google Scholar] [CrossRef]
- Leng, M.; Lent, C.S. Quantum transmitting boundary method in a magnetic field. J. Appl. Phys. 1994, 76, 2240. [Google Scholar] [CrossRef]
- Leng, M.; Lent, C.S. Conductance quantization in a periodically modulated channel. Phys. Rev. B 1994, 50, 10823. [Google Scholar] [CrossRef]
- Shao, Z.; Porod, W.; Lent, C.S.; Kirkner, D.J. An eigenvalue method for open-boundary quantum transmission problems. J. Appl. Phys. 1995, 78, 2177. [Google Scholar] [CrossRef]
- Kučera, J.; Wulf, U. Scattering Theory in an N-pole semiconductor quantum device: Unitarity of the current S-matrix and current conservation. Micromachines 2025, 16, 306. [Google Scholar] [CrossRef] [PubMed]
- Cayley, A. Sur quelques proprietes des determinants gauches. J. Die Reine Angew. Math. 1846, 32, 119. [Google Scholar] [CrossRef]
- Mondal, S.; Sivakumar, K.; Tsatsomeros, M. The Cayley transform of prevalent matrix classes. Linear Algebra Its Appl. 2024, 681, 1. [Google Scholar] [CrossRef]
- Wulf, U. A One-Dimensional Effective Model for Nanotransistors in Landauer-Büttiker Formalism. Micromachines 2020, 11, 359. [Google Scholar] [CrossRef]
- Morton, K.W. Basic course in finite element methods. Comput. Phys. Rep. 1987, 6, 1–72. [Google Scholar] [CrossRef]
- Hughes, T.J.R. Piecewise Linear Finite Element Space. In The Finite Element Method: Linear Static and Dynamic Finite Element Analysis; Courier Corporation: North Chelmsford, MA, USA, 2012; p. 20. [Google Scholar]
- Velte, W. Die Methode der finiten Elemente. In Direkte Methoden der Variationsrechnung; B. G. Teubner: Stuttgart, Germany, 1976; p. 82. [Google Scholar] [CrossRef]
- Zwillinger, D. Sturm-Liouville Theory. In Handbook of Differential Equations, 2nd ed.; Academic Press, Inc.: San Diego, CA, USA, 1992; p. 82. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wulf, U.; Kučera, J. R-Matrix Theory in a Semiconductor Quantum Device: Weak Formulation and Current Conserving Approximations. Solids 2025, 6, 63. https://doi.org/10.3390/solids6040063
Wulf U, Kučera J. R-Matrix Theory in a Semiconductor Quantum Device: Weak Formulation and Current Conserving Approximations. Solids. 2025; 6(4):63. https://doi.org/10.3390/solids6040063
Chicago/Turabian StyleWulf, Ulrich, and Jan Kučera. 2025. "R-Matrix Theory in a Semiconductor Quantum Device: Weak Formulation and Current Conserving Approximations" Solids 6, no. 4: 63. https://doi.org/10.3390/solids6040063
APA StyleWulf, U., & Kučera, J. (2025). R-Matrix Theory in a Semiconductor Quantum Device: Weak Formulation and Current Conserving Approximations. Solids, 6(4), 63. https://doi.org/10.3390/solids6040063

