Improved Laser Cooling Efficiencies of Rare-Earth-Doped Semiconductors Using a Photonic-Crystal Nanocavity
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Positive Feedback Gain of Heating in GaAs:Er,O/GaAs PhC
3.2. Laser Cooling Efficiency in Idealized Rare-Earth-Doped PhC Nanocavities
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
PhC | Photonic crystal |
PL | Photoluminescence |
RE | Rare earth |
GaAs | Gallium arsenide |
Q-factor | Quality factor |
OMVPE | Organometallic vapor phase epitaxy |
References
- Epstein, R.I.; Buchwald, M.I.; Edwards, B.C.; Gosnell, T.R.; Mungan, C.E. Observation of laser-induced fluorescent cooling of a solid. Nature 1995, 377, 500–503. [Google Scholar] [CrossRef]
- Rostami, S.; Albrecht, A.R.; Volpi, A.; Sheik-Bahae, M. Observation of optical refrigeration in a holmium-doped crystal. Photonics Res. 2019, 7, 445–451. [Google Scholar] [CrossRef]
- Ruan, X.L.; Kaviany, M. Advances in Laser Cooling of Solids. J. Heat Transfer 2007, 129, 3–10. [Google Scholar] [CrossRef]
- Hassani Nia, I.; Rezaei, M.; Brown, R.; Jang, S.J.; Turay, A.; Fathipour, V.; Mohseni, H. Efficient luminescence extraction strategies and anti-reflective coatings to enhance optical refrigeration of semiconductors. J. Lumin. 2016, 170, 841–854. [Google Scholar] [CrossRef]
- Seletskiy, D.V.; Epstein, R.; Sheik-Bahae, M. Laser cooling in solids: Advances and prospects. Reports Prog. Phys. 2016, 79, 096401. [Google Scholar] [CrossRef]
- Hehlen, M.P.; Sheik-Bahae, M.; Epstein, R.I.; Melgaard, S.D.; Seletskiy, D.V. Materials for Optical Cryocoolers. J. Mater. Chem. C 2013, 1, 7471–7478. [Google Scholar] [CrossRef]
- Hehlen, M.P. Novel materials for laser refrigeration. In Laser Refrigeration of Solids II, SPIE OPTO: Integrated Optoelectronic Devices, San Jose, CA, USA, 24–29 January 2009; SPIE: Bellingham, WA, USA, 2009; Volume 7228. [Google Scholar] [CrossRef]
- Fernandez, J.; Garcia-Adeva, A.J.; Balda, R. Anti-Stokes Laser Cooling in Bulk Erbium-Doped Materials. Phys. Rev. Lett. 2006, 97, 033001. [Google Scholar] [CrossRef]
- Zhang, S.; Zhukovskyi, M.; Jankó, B.; Kuno, M. Progress in laser cooling semiconductor nanocrystals and nanostructures. NPG Asia Mater. 2019, 11, 1–19. [Google Scholar] [CrossRef]
- Roman, B.J.; Villegas, N.M.; Lytle, K.; Sheldon, M. Optically Cooling Cesium Lead Tribromide Nanocrystals. Nano Lett. 2020, 20, 8874–8879. [Google Scholar] [CrossRef]
- Takahashi, Y.; Inui, Y.; Chihara, M.; Asano, T.; Terawaki, R.; Noda, S. A micrometre-scale Raman silicon laser with a microwatt threshold. Nature 2013, 498, 470–474. [Google Scholar] [CrossRef] [PubMed]
- He, X.-T.; Liang, E.-T.; Yuan, J.-J.; Qiu, H.-Y.; Chen, X.-D.; Zhao, F.-L.; Dong, J.-W. A silicon-on-insulator slab for topological valley transport. Nat. Commun. 2019, 10, 872. [Google Scholar] [CrossRef]
- Ogawa, S.; Imada, M.; Yoshimoto, S.; Okano, M.; Noda, S. Control of Light Emission by 3D Photonic Crystals. Science 2004, 305, 227–229. [Google Scholar] [CrossRef]
- Guha, B.; Marsault, F.; Cadiz, F.; Morgenroth, L.; Ulin, V.; Berkovitz, V.; Lemaître, A.; Gomez, C.; Amo, A.; Combrié, S.; et al. Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 × 106. Optica 2017, 4, 218–221. [Google Scholar] [CrossRef]
- Hepp, S.; Bauer, S.; Hornung, F.; Schwartz, M.; Portalupi, S.L.; Jetter, M.; Michler, P. Bragg grating cavities embedded into nano-photonic waveguides for Purcell enhanced quantum dot emission. Opt. Express 2018, 26, 30614–30622. [Google Scholar] [CrossRef]
- Iwamoto, S.; Arakawa, Y.; Gomyo, A. Observation of enhanced photoluminescence from silicon photonic crystal nanocavity at room temperature. Appl. Phys. Lett. 2007, 91, 211104. [Google Scholar] [CrossRef]
- Noda, S.; Fujita, M.; Asano, T. Spontaneous-emission control by photonic crystals and nanocavities. Nat. Photonics 2007, 1, 449–458. [Google Scholar] [CrossRef]
- Garcia-Adeva, A.J.; Balda, R.; Fernández, J.; Epstein, R.I.; Sheik-Bahae, M. Rare-earth-doped photonic crystals for the development of solid-state optical cryocoolers. In Proceedings of the Laser Refrigeration of Solids II, SPIE OPTO: Integrated Optoelectronic Devices, San Jose, CA, USA, 24–29 January 2009; SPIE: Bellingham, WA, USA, 2009; Volume 7228. [Google Scholar] [CrossRef]
- Purcell, E.M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. B 1946, 69, 681. [Google Scholar] [CrossRef]
- Goy, P.; Raimond, J.M.; Gross, M.; Haroche, S. Observation of Cavity-Enhanced Single-Atom Spontaneous Emission. Phys. Rev. Lett. 1983, 50, 1903–1906. [Google Scholar] [CrossRef]
- Shibata, T.; Asano, T.; Noda, S. Fabrication and characterization of an L3 nanocavity designed by an iterative machine-learning method. APL Photonics 2021, 6, 036113. [Google Scholar] [CrossRef]
- Ogawa, M.; Tatebayashi, J.; Fujioka, N.; Higashi, R.; Fujita, M.; Noda, S.; Timmerman, D.; Ichikawa, S.; Fujiwara, Y. Quantitative evaluation of enhanced Er luminescence in GaAs-based two-dimensional photonic crystal nanocavities. Appl. Phys. Lett. 2020, 116, 181102. [Google Scholar] [CrossRef]
- Melgaard, S.D.; Albrecht, A.R.; Hehlen, M.P.; Sheik-Bahae, M. Solid-state optical refrigeration to sub-100 Kelvin regime. Sci. Rep. 2016, 6, 20380. [Google Scholar] [CrossRef]
- Hehlen, M.P.; Meng, J.; Albrecht, A.R.; Lee, E.R.; Gragossian, A.; Love, S.P.; Hamilton, C.E.; Epstein, R.I.; Sheik-Bahae, M. First demonstration of an all-solid-state optical cryocooler. Light. Sci. Appl. 2018, 7, 15. [Google Scholar] [CrossRef]
- Chehadi, Z.; Montanari, M.; Granchi, N.; Modaresialam, M.; Koudia, M.; Abel, M.; Putero, M.; Grosso, D.; Intonti, F.; Abbarchi, M. Soft Nano-Imprint Lithography of Rare-Earth-Doped Light-Emitting Photonic Metasurface. Adv. Opt. Mater. 2022, 10, 2201618. [Google Scholar] [CrossRef]
- Nemova, G.; Kashyap, R. Laser cooling with PbSe colloidal quantum dots. J. Opt. Soc. Am. B 2012, 29, 676–682. [Google Scholar] [CrossRef]
- Pokryshkin, N.S.; Mantsevich, V.N.; Timoshenko, V.Y. Anti-Stokes Photoluminescence in Halide Perovskite Nanocrystals: From Understanding the Mechanism towards Application in Fully Solid-State Optical Cooling. Nanomaterials 2023, 13, 1833. [Google Scholar] [CrossRef]
- Arrazola, J.M.; Bergholm, V.; Brádler, K.; Bromley, T.R.; Collins, M.J.; Dhand, I.; Fumagalli, A.; Gerrits, T.; Goussev, A.; Helt, L.G.; et al. Quantum circuits with many photons on a programmable nanophotonic chip. Nature 2021, 591, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Sheik-Bahae, M.; Epstein, R.I. Optical refrigeration. Nat. Photonics 2007, 1, 693–699. [Google Scholar] [CrossRef]
- Hogg, R.A.; Takahei, K.; Taguchi, A.; Horikoshi, Y. Preferential alignment of Er–2O centers in GaAs:Er,O revealed by anisotropic host-excited photoluminescence. Appl. Phys. Lett. 1996, 68, 3317–3319. [Google Scholar] [CrossRef]
- Takahei, K.; Taguchi, A.; Horikoshi, Y.; Nakata, J. Atomic configuration of the Er-O luminescence center in Er-doped GaAs with oxygen codoping. J. Appl. Phys. 1994, 76, 4332–4339. [Google Scholar] [CrossRef]
- Dong, P.; Qian, W.; Liang, H.; Shafiiha, R.; Feng, D.; Li, G.; Cunningham, J.E.; Krishnamoorthy, A.V.; Asghari, M. Thermally tunable silicon racetrack resonators with ultralow tuning power. Opt. Express 2010, 18, 20298–20304. [Google Scholar] [CrossRef] [PubMed]
- Jamet, E. An eye-tracking study of cueing effects in multimedia learning. Comput. Human Behav. 2014, 32, 47–53. [Google Scholar] [CrossRef]
- Dieke, G.H.; Crosswhite, H.M. The Spectra of the Doubly and Triply Ionized Rare Earths. Appl. Opt. 1963, 2, 675–686. [Google Scholar] [CrossRef]
- Papatryfonos, K.; Angelova, T.; Brimont, A.; Reid, B.; Guldin, S.; Smith, P.R.; Tang, M.; Li, K.; Seeds, A.J.; Liu, H.; et al. Refractive indices of MBE-grown AlxGa(1−x)As ternary alloys in the transparent wavelength region. AIP Adv. 2021, 11, 025327. [Google Scholar] [CrossRef]
- Boulon, G.; Laversenne, L.; Goutaudier, C.; Guyot, Y.; Cohen-Adad, M. Radiative and non-radiative energy transfers in Yb3+-doped sesquioxide and garnet laser crystals from a combinatorial approach based on gradient concentration fibers. J. Lumin. 2003, 102–103, 417–425. [Google Scholar] [CrossRef]
- Culp, T.D.; Cederberg, J.G.; Bieg, B.; Kuech, T.F.; Bray, K.L.; Pfeiffer, D.; Winter, C.H. Photoluminescence and free carrier interactions in erbium-doped GaAs. J. Appl. Phys. 1998, 83, 4918–4927. [Google Scholar] [CrossRef]
- Burdick, G.W.; Gruber, J.B.; Nash, K.L.; Chandra, S.; Sardar, D.K. Analyses of 4f11 Energy Levels and Transition Intensities Between Stark Levels of Er3+ in Y3Al5O12. Spectrosc. Lett. 2010, 43, 406–422. [Google Scholar] [CrossRef]
- Nakayama, Y.; Harada, Y.; Kita, T. Enhancement of laser cooling efficiency in rare-earth-doped oxide at elevated high temperature. In Photonic Heat Engines: Science and Applications II, SPIE OPTO, San Francisco, CA, USA, 1–6 February 2020; SPIE: Bellingham, WA, USA, 2020; Volume 11298. [Google Scholar] [CrossRef]
- Rostami, S.; Albercht, A.R.; Ghasemkhani, M.R.; Melgaard, S.D.; Gragossian, A.; Tonelli, M.; Sheik-Bahae, M. Optical refrigeration of Tm:YLF and Ho:YLF crystals. In Optical and Electronic Cooling of Solids, SPIE OPTO, San Francisco, CA, USA, 13–18 June 2016; SPIE: Bellingham, WA, USA, 2016; Volume 9765. [Google Scholar] [CrossRef]
- Gauck, H.; Gfroerer, T.H.; Renn, M.J.; Cornell, E.A.; Bertness, K.A. External radiative quantum efficiency of 96% from a GaAs/GaInP heterostructure. Appl. Phys. A 1997, 64, 143–147. [Google Scholar] [CrossRef]
- Rayner, A.; Heckenberg, N.R.; Rubinsztein-Dunlop, H. Condensed-phase optical refrigeration. J. Opt. Soc. Am. B 2003, 20, 1037–1053. [Google Scholar] [CrossRef]
- Layne, C.B.; Lowdermilk, W.H.; Weber, M.J. Multiphonon relaxation of rare-earth ions in oxide glasses. Phys. Rev. B 1977, 16, 10–20. [Google Scholar] [CrossRef]
- Akahane, Y.; Asano, T.; Song, B.-S.; Noda, S. Fine-tuned high-Q photonic-crystal nanocavity. Opt. Express 2005, 13, 1202–1214. [Google Scholar] [CrossRef]
- Andreani, L.C.; Panzarini, G.; Gérard, J.-M. Strong-coupling regime for quantum boxes in pillar microcavities. Theory. Phys. Rev. B 1999, 60, 13276–13279. [Google Scholar] [CrossRef]
- Molesky, S.; Lin, Z.; Piggott, A.Y.; Jin, W.; Vucković, J.; Rodriguez, A.W. Inverse design in nanophotonics. Nat. Photonics 2018, 12, 659–670. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakayama, Y.; Ogawa, M.; Tatebayashi, J.; Harada, Y.; Fujiwara, Y.; Kita, T. Improved Laser Cooling Efficiencies of Rare-Earth-Doped Semiconductors Using a Photonic-Crystal Nanocavity. Solids 2025, 6, 51. https://doi.org/10.3390/solids6030051
Nakayama Y, Ogawa M, Tatebayashi J, Harada Y, Fujiwara Y, Kita T. Improved Laser Cooling Efficiencies of Rare-Earth-Doped Semiconductors Using a Photonic-Crystal Nanocavity. Solids. 2025; 6(3):51. https://doi.org/10.3390/solids6030051
Chicago/Turabian StyleNakayama, Yuta, Masayuki Ogawa, Jun Tatebayashi, Yukihiro Harada, Yasufumi Fujiwara, and Takashi Kita. 2025. "Improved Laser Cooling Efficiencies of Rare-Earth-Doped Semiconductors Using a Photonic-Crystal Nanocavity" Solids 6, no. 3: 51. https://doi.org/10.3390/solids6030051
APA StyleNakayama, Y., Ogawa, M., Tatebayashi, J., Harada, Y., Fujiwara, Y., & Kita, T. (2025). Improved Laser Cooling Efficiencies of Rare-Earth-Doped Semiconductors Using a Photonic-Crystal Nanocavity. Solids, 6(3), 51. https://doi.org/10.3390/solids6030051