Plasmon Excitation in the Interaction of Slow Singly Charged Argon Ions with Magnesium
Abstract
1. Introduction
2. Experiments
3. Results and Discussion
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Holeňák, R.; Ntemou, E.; Lohmann, S.; Linnarsson, M.; Primetzhofer, D. Assessing Trajectory dependent electronic energy loss of keV ions by a binary collision approximation code. Phys. Rev. Applied 2024, 21, 024048. [Google Scholar] [CrossRef]
- Lohmann, S.; Holenák, R.; Grande, P.; Primetzhofer, D. Trajectory Dependence of Electronic Energy-Loss straggling at keV Ion Energies. Phys. Rev. B 2023, 107, 085110. [Google Scholar] [CrossRef]
- Ntemou, E.; Lohmann, S.; Holeňák, R.; Primetzhofer, D. Electronic interaction of slow hydrogen, helium, nitrogen, and neon ions with silicon. Phys. Rev. B 2023, 107, 155145. [Google Scholar] [CrossRef]
- Lohmann, S.; Holenák, R.; Primetzhofer, D. Trajectory-Dependent Electronic Excitation by Light and Heavy Ions Around and Below the Bohr Velocity. Phys. Rev. A 2020, 102, 062803. [Google Scholar] [CrossRef]
- Lohmann, S.; Primetzhofer, D. Disparate Energy Scaling of Trajectory-Dependent Electronic Excitations for Slow Protons and He Ions. Phys. Rev. Lett. 2020, 124, 096601. [Google Scholar] [CrossRef] [PubMed]
- Holenak, R.; Lohman, S.; Sekula, F.; Primetzhofer, D. Simultaneous Assessment of Energy, Charge State and Angula Distribution for Medium Energy Ions Interacting with Ultra-Thin Self-Supporting Targets: A time-of-Flight Approach. Vacuum 2021, 185, 109988. [Google Scholar] [CrossRef]
- Ntemou, E.; Holenák, R.; Primetzhofer, D. Energy Deposition by H and He Ions at keV Energies in Self-Supporting, Single Crystalline SiC Foils. Radiat. Phys. Chem. 2022, 194, 110033. [Google Scholar] [CrossRef]
- Valpreda, A.; Sturm, J.M.; Yakshin, A.E.; Ackermann, M. Resolving buried interfaces with low energy ion scattering. J. Vac. Sci. Technol. A 2023, 41, 043203. [Google Scholar] [CrossRef]
- Mousley, M.; Tabean, S.; Bouton, O.; Hoang, Q.H.; Wirtz, T.; Eswara, S. Scanning Transmission Ion Microscopy Time-of-Flight Spectroscopy Using 20 keV Helium Ions. Microsc. Microanal. 2023, 29, 563–573. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Yin, L.; Zhang, Z.; Ding, B.; Shi, Y.; Li, Y.; Zhang, X.; Song, X.; Guo, Y.; Chen, L.; et al. Anomalous Neutralization Characteristics in Na+ Neutralization on Al(111) Surfaces. Phys. Rev. A 2020, 101, 032706. [Google Scholar] [CrossRef]
- Wei, M.; Wang, X.; Guo, X.; Liu, P.; Ding, B.; Shi, Y.; Song, X.; Wang, L.; Liu, X.; Yin, L.; et al. Low-Energy Na+ Neutralization on Al(111) and Cu(110) Surfaces at Grazing Incidence. Nucl. Instrum. Methods B 2020, 478, 239–243. [Google Scholar] [CrossRef]
- Li, S.-M.; Mao, F.; Zhao, X.-D.; Li, B.-S.; Jin, W.-Q.; Zuo, W.-Q.; Wang, F.; Zhang, F.-S. First Principle Study of the Electronic Stopping Power of Indium for Protons and He Ions. Phys. Rev. B 2021, 104, 214104. [Google Scholar] [CrossRef]
- Riccardi, C.A.P. Dukes Electron Spectra of Low Energy Electrons Emitted in the Interaction of Low Energy Ne+ Ions with Mg surfaces. Surfaces 2023, 6, 257. [Google Scholar] [CrossRef]
- Riccardi, P. Electron Spectroscopy of Charge Exchange Effects in Low Energy Ion Scattering at Surfaces: Case Studies of Heavy Ions at Al Surface. Surfaces 2023, 6, 64. [Google Scholar] [CrossRef]
- Han, W.; Zheng, M.; Banerjee, A.; Luo, Y.Z.; Shen, L.; Khursheed, A. Quantitative material analysis using secondary electron energy spectromicroscopy. Sci. Rep. 2020, 10, 22144. [Google Scholar] [CrossRef] [PubMed]
- Fairchild, A.J.; Chirayath, V.A.; Sterne, P.A.; Gladen, R.W.; Koymen, A.R.; Weiss, A.H. Direct evidence for low-energy electron emission following O LVV Auger transitions at oxide surfaces. Sci. Rep. 2020, 10, 17993. [Google Scholar] [CrossRef] [PubMed]
- Hagstrum, H.D. Low energy de-excitation and neutralization processes near surfaces. In Inelastic Ion-Surface Collisions; Tolk, N.H., Tully, J.C., Heiland, W., White, C.W., Eds.; Academic Press: New York, NY, USA, 1977. [Google Scholar]
- Monreal, R. Auger Neutralization and Ionization Processes for Charge Exchange between Slow Noble Gas Atoms and Solid Surfaces. Prog. Surf. Sci. 2014, 89, 80. [Google Scholar] [CrossRef]
- Baragiola, R.A. Electron Emission from Slow Ion-Solid Interactions. In Low Energy Ion-Surface Interactions; Rabalais, J.W., Ed.; Wiley: New York, NY, USA, 1994; Chapter 4. [Google Scholar]
- Baragiola, R.A.; Monreal, R.C. Electron Emission from Surfaces Mediated by Ion-Induced Plasmon Excitation. In Slow Heavy-Particle Induced Electron Emission from Solid Surfaces; Springer Tracts in Modern Physics; Springer: Berlin/Heidelberg, Germany, 2007; Volume 225. [Google Scholar]
- Winter, H.; Lederer, S.; Winter, H. Fermi Momentum Above Metal Surfaces from Electrons Ejected by Impact of He Ions. Europhys. Lett. 2006, 75, 964. [Google Scholar] [CrossRef]
- Rabalais, J.; Bu, H.; Roux, C. Impact-Parameter Dependence of Ar+-Induced Kinetic Electron Emission from Ni(110). Phys. Rev. Lett. 1992, 69, 1391. [Google Scholar] [CrossRef]
- Lorincik, J.; Sroubek, Z.; Eder, H.; Aumayr, F.; Winter, H. Kinetic Electron Emission from Clean Polycrystalline Gold Induced by Impact of Slow C+, N+, O+, Ne+, Xe+, and Au+ Ions. Phys. Rev. B 2000, 62, 16116. [Google Scholar] [CrossRef]
- Lederer, S.; Maass, K.; Blauth, D.; Winter, H.; Winter, H.P.; Aumayr, F. Kinetic Electron Emission from the Selvage of a Free-Electron-Gas Metal. Phys. Rev. B 2003, 67, 121405. [Google Scholar] [CrossRef]
- Hagstrum, H.D. Theory of Auger Ejection of Electrons from Metals by Ions. Phys. Rev. 1954, 96, 336. [Google Scholar] [CrossRef]
- Hagstrum, H.D. Ion-Neutralization Spectroscopy of Solids and Solid Surfaces. Phys. Rev. 1966, 150, 495. [Google Scholar] [CrossRef]
- Hagstrum, H.D.; Becker, G.E. The Interrelation of Physics and Mathematics in Ion-Neutralization Spectrosocpy. Phys. Rev. 1971, 4, 4187. [Google Scholar] [CrossRef]
- Hagstrum, H.D.; Takeishi, Y.; Pretzer, D.D. Energy Broadening in the Auger-Type Neutralization of Slow Ions at Solid Surfaces. Phys. Rev. 1965, 139, A526. [Google Scholar] [CrossRef]
- Baragiola, R.A.; Dukes, C.A. Plasmon-Assisted Electron Emission from Al and Mg Surfaces by Slow Ions. Phys. Rev. Lett. 1996, 76, 2547. [Google Scholar] [CrossRef]
- Stolterfoht, N.; Niemann, D.; Hoffmann, V.; Rösler, M.; Baragiola, R.A. Plasmon production by the decay of hollow Ne atoms near an Al surface. Phys. Rev. A 2000, 61, 052902. [Google Scholar] [CrossRef]
- Commisso, M.; Minniti, M.; Sindona, A.; Bonanno, A.; Oliva, A.; Baragiola, R.A.; Riccardi, P. Kinetic electron excitation in the interaction of slow Kr+ ions with Al surfaces. Phys. Rev. B 2005, 72, 165419. [Google Scholar] [CrossRef]
- Riccardi, P.; Barone, P.; Bonanno, A.; Oliva, A.; Baragiola, R.A. Angula Studies of Potential Electron Emission in the Interaction of Slow Ions with Al Surfaces. Phys. Rev. Lett. 2000, 84, 378. [Google Scholar] [CrossRef]
- Baragiola, R.A.; Dukes, C.A.; Riccardi, P. Plasmon Excitation in Ion-Solid Interactions. Nucl. Instrum. Methods B 2001, 182, 73–83. [Google Scholar] [CrossRef]
- Monreal, R. Theoretical study for potential excitation of surface plasmons on metal surfaces. Surf. Sci. 1997, 388, 231. [Google Scholar] [CrossRef]
- Gutierrez, F.A.; Salas, C.; Jouin, H. Bulk plasmon induced ion neutralization near metal surfaces. Surf. Sci. 2012, 606, 1293. [Google Scholar] [CrossRef]
- Powell, C.J.; Swan, J.B. Origin of the Characteristic Electron Energy Losses in Magnesium. Phys. Rev. 1959, 116, 81. [Google Scholar] [CrossRef]
- Jenkins, L.H.; Chung, M.F. The Auger Satellite and other characteristic events in Mg Secondary Electron Spectra. Surf. Sci 1972, 33, 159. [Google Scholar] [CrossRef]
- Chung, M.S.; Everhart, T.E. Role of plasmon decay in secondary electron emission in the nearly-free-electron metals. Application to aluminum. Phys Rev. B 1977, 15, 4699. [Google Scholar] [CrossRef]
- Ritzau, S.M.; Baragiola, R.A.; Monreal, R.C. Proton-induced kinetic plasmon excitation in Al and Mg. Phys. Rev. B 1999, 59, 15506. [Google Scholar] [CrossRef]
- Van Attekum, P.T.M.; Trooster, J.M. Bulk- and surface-plasmon-loss intensities in photoelectron, Auger, and electron-energy-loss spectra of Mg metal. Phys. Rev. B 1979, 20, 2335. [Google Scholar] [CrossRef]
- Lancaster, J.C.; Kontur, F.J.; Walters, G.K.; Dunning, F.B. Neutralization of low-energy He+ ions at a magnesium surface. Nucl. Instrum. Methods B 2007, 256, 37. [Google Scholar] [CrossRef]
- Fano, U.; Lichten, W. Interpretation of Ar+- Ar Collisions at 50 keV. Phys. Rev. Lett. 1965, 14, 627. [Google Scholar] [CrossRef]
- Barat, M.; Lichten, W. Extension of the Electron-Promotion Model to Asymmetric Atomic Collisions. Phys. Rev. A 1972, 6, 211. [Google Scholar] [CrossRef]
- Riccardi, P.; Cosimo, F.; Sindona, A. Absence of Reionization in Low Energy Na+ scattering from Al Surfaces. Phys. Rev. A 2018, 97, 032703. [Google Scholar] [CrossRef]
- Riccardi, P.; Sindona, A.; Dukes, C. Double Electron Excitation in He Ions Interacting with an Aluminum Surface. Phys. Rev. A 2016, 93, 042710. [Google Scholar] [CrossRef]
- Runco, D.; Riccardi, P. Collisional Excitation in Neon-like Projectiles Scattered from Al. Solid State Commun. 2021, 340, 114534. [Google Scholar] [CrossRef]
- Runco, D.; Riccardi, P. Charge and Excitation State of Na Projectiles Scattered from Al Surfaces. Radiat. Eff. Defects Solids 2021, 176, 995. [Google Scholar] [CrossRef]
- Riccardi, P.; Dukes, C.A. Excitation of the Triplet 2p4(3P)3s2 Autoionixing State of Neon by Molecular Orbital Electron Promotion at Solid Surfaces. Chem. Phys. Lett. 2022, 798, 139610. [Google Scholar] [CrossRef]
- Riccardi, P.; Dukes, C.A. Effects of the Solid Target on Electronic Excitations During binary Atomic Collisions in the Interaction of Ne Ions with Al Surfaces. Vacuum 2022, 204, 111393. [Google Scholar] [CrossRef]
- Monreal, R.; Apell, S.P. Magic energies in Auger electron spectra. Nucl. Instr. Meth. Phys. Res. B 1993, 83, 459. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riccardi, P. Plasmon Excitation in the Interaction of Slow Singly Charged Argon Ions with Magnesium. Solids 2024, 5, 321-332. https://doi.org/10.3390/solids5020021
Riccardi P. Plasmon Excitation in the Interaction of Slow Singly Charged Argon Ions with Magnesium. Solids. 2024; 5(2):321-332. https://doi.org/10.3390/solids5020021
Chicago/Turabian StyleRiccardi, Pierfrancesco. 2024. "Plasmon Excitation in the Interaction of Slow Singly Charged Argon Ions with Magnesium" Solids 5, no. 2: 321-332. https://doi.org/10.3390/solids5020021
APA StyleRiccardi, P. (2024). Plasmon Excitation in the Interaction of Slow Singly Charged Argon Ions with Magnesium. Solids, 5(2), 321-332. https://doi.org/10.3390/solids5020021