Effect of Coating Thickness on Wear Behaviour of Monolithic Ni-P and Ni-P-NiTi Composite Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Coating Preparation
2.2. Coating Characterization
2.3. Hardness
2.4. Sliding Wear
3. Results
3.1. Characterization
3.2. Hardness
3.3. Sliding Wear Behaviour
3.3.1. Wear Tracks
3.3.2. Volume Loss and Wear Rates
3.3.3. Wear Mechanisms
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ebrahimian-Hosseinabadi, M.; Azari-Dorcheh, K.; Moonir Vaghefi, S.M. Wear behavior of electroless Ni–P–B4C composite coatings. Wear 2006, 260, 123–127. [Google Scholar] [CrossRef]
- Li, Z.; Farhat, Z.; Jarjoura, G.; Fayyad, E.; Abdullah, A.; Hassan, M. Synthesis and Characterization of Scratch-Resistant Ni-P-Ti-Based Composite Coating. Tribol. Trans. 2019, 62, 880–896. [Google Scholar] [CrossRef]
- Reddy, V.V.N.; Ramamoorthy, B.; Nair, P.K. A study on the wear resistance of electroless Ni–P/Diamond composite coatings. Wear 2000, 239, 111–116. [Google Scholar] [CrossRef]
- Palaniappa, M.; Seshadri, S.K. Friction and wear behavior of electroless Ni–P and Ni–W–P alloy coatings. Wear 2008, 265, 735–740. [Google Scholar] [CrossRef]
- Tamilarasan, T.R.; Sanjith, U.; Shankar, M.S.; Rajagopal, G. Effect of reduced graphene oxide (rGO) on corrosion and erosion-corrosion behaviour of electroless Ni-P coatings. Wear 2017, 390–391, 385–391. [Google Scholar] [CrossRef]
- Wang, C.; Farhat, Z.; Jarjoura, G.; Hassan, M.K.; Abdullah, A.M. Indentation and erosion behavior of electroless Ni-P coating on pipeline steel. Wear 2017, 376–377, 1630–1639. [Google Scholar] [CrossRef]
- Fayyad, E.M.; Abdullah, A.M.; Hassan, M.K.; Mohamed, A.M.; Jarjoura, G.; Farhat, Z. Recent advances in electroless-plated Ni-P and its composites for erosion and corrosion applications: A review. Emergent Mater. 2018, 1, 3–24. [Google Scholar] [CrossRef]
- Sade, W.; Proença, R.T.; Moura, T.D.D.O.; Branco, J.R.T. Electroless Ni-P Coatings: Preparation and Evaluation of Fracture Toughness and Scratch Hardness. ISRN Mater. Sci. 2011, 2011, 693046. [Google Scholar] [CrossRef] [Green Version]
- Sudagar, J.; Lian, J.; Sha, W. Electroless nickel, alloy, composite and nano coatings—A critical review. J. Alloys Compd. 2013, 571, 183–204. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.; Azhar, M.R.; Fredj, N.; Burleigh, T.D.; Oloyede, O.R.; Almajid, A.A.; Shah, S.I. Influence of SiO2 nanoparticles on hardness and corrosion resistance of electroless Ni–P coatings. Surf. Coat. Technol. 2015, 261, 141–148. [Google Scholar] [CrossRef]
- Alirezaei, S.; Monirvaghefi, S.; Salehi, M.; Saatchi, A.; Kargosha, M. Effect of alumina content on wear behaviour of Ni−P−Al2 O3 (α) electroless composite coatings. Surf. Eng. 2005, 21, 60–66. [Google Scholar] [CrossRef]
- Saravanan, I.; Elayaperumal, A.; Devaraju, A.; Karthikeyan, M.; Raji, A. Wear behaviour of electroless Ni-P and Ni-P-TiO2 composite coatings on En8 steel. Mater. Today Proc. 2020, 22, 1135–1139. [Google Scholar] [CrossRef]
- de Hazan, Y.; Zimmermann, D.; Z’Graggen, M.; Roos, S.; Aneziris, C.; Bollier, H.; Fehr, P.; Graule, T. Homogeneous electroless Ni–P/SiO2 nanocomposite coatings with improved wear resistance and modified wear behavior. Surf. Coat. Technol. 2010, 204, 3464–3470. [Google Scholar] [CrossRef]
- Dhakal, D.R.; Gyawali, G.; Kshetri, Y.K.; Choi, J.-H.; Lee, S.W. Influence of SiC and TiC nanoparticles reinforcement on the microstructure, tribological, and scratch resistance behavior of electroless Ni–P coatings. Nanotechnology 2019, 31, 104001. [Google Scholar] [CrossRef] [PubMed]
- Franco, M.; Sha, W.; Malinov, S.; Liu, H. Micro-scale wear characteristics of electroless Ni–P/SiC composite coating under two different sliding conditions. Wear 2014, 317, 254–264. [Google Scholar] [CrossRef] [Green Version]
- MacLean, M.; Farhat, Z.; Jarjoura, G.; Fayyad, E.; Abdullah, A.; Hassan, M. Fabrication and investigation of the scratch and indentation behaviour of new generation Ni-P-nano-NiTi composite coating for oil and gas pipelines. Wear 2019, 426–427, 265–276. [Google Scholar] [CrossRef]
- Li, Z.; Farhat, Z. Microstructure development and nanoindentation behaviour of annealed Ni-P-Ti coatings. Surf. Eng. 2020, 37, 527–535. [Google Scholar] [CrossRef]
- Li, Z.; Farhat, Z. The Benefit of Superelastic NiTi Addition on Corrosion Performance of Electroless Ni–P Coating During an Accidental Scratch Event. J. Bio-Tribo-Corros. 2020, 7, 12. [Google Scholar] [CrossRef]
- Basista, M.; Węglewski, W. Modelling of damage and fracture in ceramic matrix composites—An overview. J. Theor. Appl. Mech. 2006, 44, 455–484. [Google Scholar]
- Kuntz, J.; Zhan, G.-D.; Mukherjee, A.K. Nanocrystalline-Matrix Ceramic Composites for Improved Fracture Toughness. MRS Bull. 2004, 29, 22–27. [Google Scholar] [CrossRef]
- Ma, L. Fundamental formulation for transformation toughening. Int. J. Solids Struct. 2010, 47, 3214–3220. [Google Scholar] [CrossRef]
- Czapczyk, K.; Siwak, P.; Legutko, S. Study of the effect of the electroless ni-p coating thickness applied on aw-7075 aluminum alloy on its mechanical properties. Adv. Sci. Technol. Res. J. 2018, 12, 291–297. [Google Scholar] [CrossRef]
- Güler, E.S.; Karakaya, I.; Konca, E. Effects of current density, coating thickness, temperature, pH and particle concentration on internal stress during Ni–MoS2electrocodeposition. Surf. Eng. 2013, 30, 109–114. [Google Scholar] [CrossRef]
- Vereschaka, A.; Volosova, M.; Chigarev, A.; Sitnikov, N.; Ashmarin, A.; Sotova, C.; Bublikov, J.; Lytkin, D. Influence of the Thickness of a Nanolayer Composite Coating on Values of Residual Stress and the Nature of Coating Wear. Coatings 2020, 10, 63. [Google Scholar] [CrossRef] [Green Version]
- Alam, T.; Farhat, Z.N. Slurry erosion surface damage under normal impact for pipeline steels. Eng. Fail. Anal. 2018, 90, 116–128. [Google Scholar] [CrossRef]
- ASTM G77-17; Standard Test Method for Ranking Resi stance of Materials to Sliding Wear Using Block-on-Ring Wear Test. ASTM International: West Conshohocken, PA, USA, 2017. [CrossRef]
- Powder Diffraction File (PDF); No. 04-020-1330, J.I.C.F.D. Data®; JCPDS: Netwon Square, PA, USA, 2021; Available online: https://www.icdd.com/pdfsearch/ (accessed on 12 September 2022).
- Czagány, M.; Baumli, P.; Kaptay, G. The influence of the phosphorous content and heat treatment on the nano-micro-structure, thickness and micro-hardness of electroless Ni-P coatings on steel. Appl. Surf. Sci. 2017, 423, 160–169. [Google Scholar] [CrossRef]
- Li, Z.; Farhat, Z. Hertzian Indentation Behavior of Electroless Ni-P-Ti Composite Coatings. Met. Mater. Trans. A 2020, 51, 3674–3691. [Google Scholar] [CrossRef]
- Neupane, R.; Farhat, Z. Wear and dent resistance of superelastic TiNi alloy. Wear 2013, 301, 682–687. [Google Scholar] [CrossRef]
- Lee, D.-H.; Park, B.; Saxena, A.; Serene, T.P. Enhanced surface hardness by boron implantation in nitinol alloy. J. Endod. 1996, 22, 543–546. [Google Scholar] [CrossRef]
- Laera, A.M.; Massaro, M.; Dimaio, D.; Vencl, A.; Rizzo, A. Residual Stress and Tribological Performance of ZrN Coatings Produced by Reactive Bipolar Pulsed Magnetron Sputtering. Materials 2021, 14, 6462. [Google Scholar] [CrossRef]
- Farhat, Z.; Jarjoura, G.; Shahirnia, M. Dent Resistance and Effect of Indentation Loading Rate on Superelastic TiNi Alloy. Met. Mater. Trans. A 2013, 44, 3544–3551. [Google Scholar] [CrossRef]
- Lin, C.; Dadvand, N.; Farhat, Z.; Kipouros, G.J. Electroless nickel phosphorous plating on carbon steel. Mater. Sci. Technol. Montr. 2013, 3, 2224–2237. [Google Scholar]
- Klein, C.A.; Cardinale, G.F. Young’s modulus and Poisson’s ratio of CVD diamond. Diam. Relat. Mater. 1993, 2, 918–923. [Google Scholar] [CrossRef]
- Neupane, R.; Farhat, Z. Prediction of Indentation Behavior of Superelastic TiNi. Met. Mater. Trans. A 2014, 45, 4350–4360. [Google Scholar] [CrossRef]
Weight % | AISI 1018 | API X100 |
---|---|---|
C | 0.182 | 0.103 |
Mn | 0.754 | 1.221 |
Cu | 0.186 | 0.009 |
Cr | 0.181 | 0.070 |
Si | 0.095 | 0.121 |
P | 0.040 | 0.010 |
Fe | Balance | Balance |
1. Grinding | 240, 320, 400, and 600 grit SiC papers were used |
2. Polishing | 9 μm, 3 μm, and 1 μm diamond suspensions were used |
3. Alkali Cleaning | Submerged for 5 min in an alkaline solution that was heated to 85 °C The solution had a composition of 30 g/L Na3PO4, 50 g/L Na2CO3 and 30 g/L NaOH |
4. Acid Cleaning | Submerged for 10 s in room temperature 20%vol H2SO4 |
Thin Ni-P | Thick Ni-P | Thin Ni-P-NiTi | Thick Ni-P-NiTi | |
---|---|---|---|---|
Nickel | 95.49% | 94.31% | 92.51% | 92.365% |
Phosphorous | 4.595% | 5.69% | 6.125% | 6.015% |
Titanium | 0% | 0% | 1.365% | 1.62% |
Measurement Point ID | Hardness (GPa) | Elastic Modulus (GPa) | Maximum Indenter Depth |
---|---|---|---|
1 | 2.61 | 100.7 | 10 μm |
2 | 3.63 | 122.4 | 9 μm |
3 | 6.67 | 165.7 | 7 μm |
4 | 7.15 | 160.1 | 7 μm |
5 | 6.64 | 151.0 | 7 μm |
6 | 5.89 | 125.2 | 7 μm |
7 | 7.66 | 173.71 | 6.5 μm |
Average | 5.75 | 142.68 | 7.64 μm |
Measurement Point ID | Hardness (GPa) | Elastic Modulus (GPa) | Maximum Indenter Depth |
---|---|---|---|
1 | 3.44 | 108.22 | 9 μm |
2 | 2.53 | 88.14 | 11 μm |
3 | 2.60 | 70.96 | 11 μm |
4 | 3.67 | 102.48 | 9 μm |
5 | 4.12 | 111.36 | 9 μm |
6 | 4.97 | 117.64 | 8 μm |
Average | 3.55 | 99.80 | 9.5 μm |
Hardness (GPa) | Elastic Modulus (GPa) | |
---|---|---|
Experimental Ni-P | 5.75 ± 1.90 | 142.68 ± 26.89 |
Typical Ni-P | 5–6.5 | 140–160 |
Experimental Ni-P-NiTi | 3.55 ± 0.93 | 99.80 ± 17.31 |
Typical NiTi | 2.8–3.2 | 70–100 |
AISI 1018 | 1.7–2 | 200 |
Sharp Indenter | Spherical Indenter | |
---|---|---|
Monolithic Ni-P | 129.2% | 105.5% |
Nanocomposite Ni-P-NiTi | 155.4% | 137.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jensen, R.; Farhat, Z.; Islam, M.A.; Jarjoura, G. Effect of Coating Thickness on Wear Behaviour of Monolithic Ni-P and Ni-P-NiTi Composite Coatings. Solids 2022, 3, 620-642. https://doi.org/10.3390/solids3040039
Jensen R, Farhat Z, Islam MA, Jarjoura G. Effect of Coating Thickness on Wear Behaviour of Monolithic Ni-P and Ni-P-NiTi Composite Coatings. Solids. 2022; 3(4):620-642. https://doi.org/10.3390/solids3040039
Chicago/Turabian StyleJensen, Rielle, Zoheir Farhat, Md. Aminul Islam, and George Jarjoura. 2022. "Effect of Coating Thickness on Wear Behaviour of Monolithic Ni-P and Ni-P-NiTi Composite Coatings" Solids 3, no. 4: 620-642. https://doi.org/10.3390/solids3040039
APA StyleJensen, R., Farhat, Z., Islam, M. A., & Jarjoura, G. (2022). Effect of Coating Thickness on Wear Behaviour of Monolithic Ni-P and Ni-P-NiTi Composite Coatings. Solids, 3(4), 620-642. https://doi.org/10.3390/solids3040039