VNIR-SWIR Imaging Spectroscopy for Mining: Insights for Hyperspectral Drone Applications
Abstract
:1. Introduction
1.1. Uncrewed Aerial Systems in Mining
- The sparse availability of commercial turn-key solutions, outside of core scanning systems covering both the data acquisition and analysis/interpretation.
- Difficulties in sensing the vertical faces of a mine (which is currently being addressed by ground-based and UAS-based systems). Though ground-based solutions (tripod-based) have provided data on vertical faces, their deployment in an open-pit environment is at best prototypical. Some truck-mounted systems have been deployed, suggesting safer practises at open-pit sites.
- The inability of 3D modelling software systems (e.g., Datamine, MinePlan, Leapfrog, Vulcan) (at least until recently) to take spatial, (semi-)quantitative mineralogical data into account, deal with complex colour-coding and display legends for 4D spectral data.
- Concerns about the repeatability of data over the highly dynamic mining sites and seasonally variable surfaces (e.g., AMD). The consistency of the data over time is a challenge that has yet to be addressed fully.
- Methodological limitations for time-relevant data acquisition, visualisations, and processing. Current techniques of data acquisition and processing are still labour-intensive, costly, and time-consuming and heavily rely on the expertise of the interpreter.
- A lack of service providers in the mining space to offer, e.g., UAS-based HSI data collection and interpretation to non-expert users.
- A shortage of well-documented and publicly available case studies with quantified, validated results and clear value propositions.
1.2. State-of-the-Art Methods and Progress of UAS-Based HSI in Mining
2. Principles of Spectral Imaging
2.1. Spectral Data Analysis
2.2. Auxiliary Data Acquisition
3. Spectral Imaging Applied to the Resource Sector
- (1)
- Higher spatial resolution would benefit the method and interpretation and add value, and the outlook of published studies is often directly in favour of using UAS platforms, once available.
- (2)
- The use of a UAS can enable safer data acquisition compared to ground-based scanning and the acquisition of data in areas that cannot be reached by other methods
3.1. HSI Use in Mineral Exploration
3.2. HSI Use in Operational Mining and Extraction Phases
3.3. Closure and Rehabilitation
3.3.1. AMD Detection
3.3.2. Environmental Monitoring, Rehabilitation, and Revalorisation
4. Best Practises for UAS-Based Spectral Imaging
4.1. Hyperspectral Pushbroom UAS Selection
4.2. Preparation of a Hyperspectral UAS Campaign
4.3. Execution of a Hyperspectral UAS Campaign
4.4. Data Correction and Post-Processing
4.5. Sampling and Validation in Geological Remote Sensing Studies
4.6. Ground-Truth Sampling
5. Conclusions and Outlook
5.1. The Future of UAS-Based Hyperspectral Imaging
5.2. Inventory of Identified Challenges
- Currently, the turnaround time from flight to readily available data products takes > 8 h, which is not practical within a typical working shift system at a mine site.
- Commercially available SWIR UASs only operate in a nadir mode and are not able to adjust the viewing angle to scan steep terrain or sloping surfaces.
- Another significant challenge for RS HSI arises from terrain changes, especially in operational mining, where variations in illumination and adjacent light inherent to open-pit mining surfaces can affect the quality of remotely sensed data. Additionally, mining in regions with few clear sky days to provide ample sun illumination to collect data in the SWIR presents further challenges (e.g., areas with strong seasonal shifts such as influence by monsoon season or snow cover). Surfaces that are often wet or water-saturated, e.g., in tailings storage facilities and leach pads, pose another set of specific difficulties. This is tackled in active research [165].
- Similarly, the reflectance retrieval for oblique scanning angles (i.e., mine faces or steep terrain) is an active topic of research, as is the correction for atmosphere, geometry and illumination effects within near real-time (within one working shift, ca. 4 h). The real-time data correction, analysis, and visualisation of hyperspectral UAS data are currently not possible but are the objective of several EU-funded research projects such as M4Mining.
- Current airtimes of SWIR UASs do not meet mining demands, especially in large-scale mining operations. With a weight below 25 kg UAS, the airtime is around 10–12 min. When the weight of the UAS is above 25 kg, an airtime of around 20–30 min has been reported, but field tests of larger systems are yet to be published.
- The setup, preparation, and operation of a hyperspectral UAS, while research-ready, does not yet meet easy-application standards for non-expert users.
- An open issue in geological RS is the scaling effect and how the signal evolves from a microscopic to an outcrop scale, and eventually to a regional scale, e.g., captured by satellite data with moderate spatial resolution. While there have been sporadic studies in the literature on the subject [109,201,202,203,204], the scaling effect on mineral mapping is not fully understood and is an active topic of research.
- In the currently operational hyperspectral UAS community, there are few interactions between hardware suppliers and the people in charge of processing the data. With the advent of hyperspectral UASs flooding the market, including the mining sector, spectral hardware providers are hereby encouraged to provide test reports, calibration reports, and the necessary guidance for their systems so that both the potential and limitation of each collected dataset can be gauged effectively and considered for the accuracy and robustness of derived results and maps. An often-under-communicated fact is that systems can show a high amount of spatial and spectral misregistration, resulting in the observation of spectral and spatial mixtures. Instead of data analysts solving the presence of non-linear spectral mixtures from the software limitation point of view, there is a requirement for hardware optimisation. It was previously proposed that only <10% pixel spatial misregistration of the spectral fidelity of each pixel is upheld [204,205].
- And lastly, HSI data analysis is non-trivial, and data products are difficult to produce, interpret, or reproduce, requiring input from experts.
5.3. Challenges and Chances
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Application Area | Target Minerals or Endmember | Imaging System | Methodology | Results (Products) | Reference |
---|---|---|---|---|---|
Alteration mineral mapping | A suite of minerals active in the VNIR-SWIR | Airborne AVIRIS | Tetracorder | Mineral classification maps | [78] |
Mineral exploration and mapping | Hydrothermal alteration minerals, jarosite, illite, kaolinite, limonite | PRISMA | Adaptive Coherence Estimator | Mineral classification maps | [82] |
Mineral exploration and ore targeting | Kaolinite, white mica, amphiboles, iron oxides | Airborne Hyspex + simulated EnMAP | Spectral feature fitting (SFF) | Classification map over the mining site | [76] |
Mineral exploration and ore targeting | Carbonates and iron oxides (Gossans) | PRISMA | Composite ratios | Relative abundance maps over Pb-Zn deposit | [83] |
Mineral mapping | White mica, chlorite-epidote, kaolinite, alunite, pyrophyllite | Gaofen-5 | MTMF and minimum wavelength mapping | Mineral abundances and mineral chemistry maps | [84] |
Land cover classification around mining areas | Land cover | Gaofen-5 | Convolutional neural networks | Classification maps | [167] |
Mining dust mapping | Iron oxide dust | Airborne HyMap | Partial least square analysis + absorption feature analysis | Dust quantity on mangroves leaves | [160] |
Foliar dust mapping | Dust over leaves | Landsat + Hyperion | NDVI | Dust per unit area (g/m2) | [159] |
Acidic mine waste mapping | Jarosite, schwertmannite, ferrihydrite, goethite, hematite | Airborne AVIRIS | Tetracorder | Mineral classification map | [121] |
Tailings mineralogy mapping | Copiapite, jarosite, ferrihydrite, goethite, hematite | Airborne Probe1 (Hymap) | Linear spectral unmixing | Mineral abundance maps | [131] |
Mine residue chemistry mapping | Al content of mine residues | Sentinel-2 + field sampling | Conditional Gaussian co-simulation | Al2O3 concentration | [208] |
Geochemical composition mapping of tailings | Geochemistry of the tailings | Airborne HySpex | Regression modelling | Metal concentration maps | [163] |
Mine waste mineralogy mapping | Iron oxides and sulphates | Airborne HyMap | Sequential spectral unmixing | Estimation of sulphides oxidation intensity linked to climate variability | [128] |
Mine waste mineralogy mapping | Alunite, jarosite, copiapite, ferrihydrite, maghemite, schwertmannite, lepidocrocite, etc. | Airborne ProspecTIR simulated HypsIRI (AVIRIS) | Spectral Hourglass Wizard of ENVI combined with SAM + composite ratios | Mineral classification map + iron oxide feature depth | [144] |
Mineral mapping applied to mine-scale geometallurgy | Clays, sulphates, carbonates | UAS-borne Headwall system | Spectral angle mapper (SAM) | Mineral classification map | [118] |
Multiscale mapping of rock outcrops of a mine | Chlorite, white mica, calcite, jarosite, dickite, gypsum | Field-based AisaFENIX + WV-3 data | Spectral angle mapper + multi-range spectral feature fit (MRSFF) | Mineral classification map + mineral chemistry | [201] |
Multiscale mapping of rock outcrops of a mine | White mica, jarosite | Airborne and ground-based ProSpecTIR | Mixture-tuned match filter (MTMF) | Mineral classification map | [203] |
Acid mine drainage and geo-environmental mapping | Iron sulphates and oxyhydroxides | Airborne HyMap | MTMF | Mineral classification | [123] |
Acid mine drainage mapping | Copiapite, natrojarosite, jarosite, hematite, goethite, alunogen, epsomite | Airborne AVIRIS | Tetracorder | Mineral classification map | [130] |
Mine tailings mapping | Oxidised tailings, vegetation (green and dead) | Airborne hyperspectral | Constrained spectral unmixing | Fractional abundance maps | [129] |
Acid mine drainage | Pioneer vegetation cover | Airborne HyMap | Fully constrained linear spectral unmixing | Abundance map | [172] |
Acid mine drainage | pH-sensitive mineral | Airborne HyMap | Partial least square analysis | pH maps | [132,137] |
Acid mine drainage | pH-sensitive mineral | Airborne HyMap | Iterative linear spectral unmixing analysis (ISMA) | Mineral classification maps + pH maps | [126] |
Acid mine drainage | Iron sulphates and oxyhydroxides | Airborne HyMap | Spectral Hourglass Wizard of ENVI combined with SAM | Mineral classification maps | [127] |
Acid mine drainage | Iron sulphates and oxyhydroxides | Airborne Hyspex | SAM, minimum wavelength mapping | Mineral classification maps | [125] |
Red dust mapping | Red mud dust waste | CHRIS-Proba hyperspectral satellite + airborne MIVIS | Spectral feature fitting, unsupervised classification, radiative transfer model | Mineral classification maps | [161] |
Acid mine drainage | Hydrochemical parameters of mining lakes | Airborne CASI | Absorption feature analysis | pH maps of the lakes | [150] |
Mine discharge mapping | Magnesium sulphate salts | Airborne HyMap | Constrained energy minimisation (CEM) | Composition and extent of MgSO4 efflorescence | [151] |
Mine wastes mapping | Selenium contamination | Airborne AVIRIS | MTMF | Classification map | [155] |
Tailings geochemical mapping | Copper contents of the soil | Gaofen-5 | Piecewise partial least square regression (P-PLSR) | Copper contents (ppm) | [209] |
Mine waste mapping | Hematite, goethite, limonite, lepidocrocite, jarosite, copiapite | WorldView2 and 3 and Sentinel 2, HSI lab data (HySpex) | Random forest trained on lab data, band indices | Mineral classification maps | [146] |
Acid mine drainage and pH indicators | Humic coal, jarosite, goethite, lignite, pyrite, clays | Airborne HSI HyMap, in situ field and lab point spectrometry | MRSFF, multiple regression model linking the fit images from MRSFF to ground-truth pH from 15 m × 15 m homogeneous areas in HyMap | Per pixel endmember and pH maps | [139,141] |
Acid mine drainage | Jarosite/Iron, clay A, clay B, goethite/iron | HSI UAV, VNIR 504–900 nm | Band ratios (750/880 nm) and SAM classification with supervised EM extraction | Endmember classification maps and band ratio maps | [138] |
Alteration mineral mapping | 7 lithological VMS groups representing alteration and mineralisation | HSI ground-based (HySpex) (400–2500 nm) and WorldView-2 | Bi-Triangle Side Feature Fitting (BFF) and SAM, among others | Endmember classification maps | [147] |
Copper grade modelling for sorting applications | Indirect relation to copper grade via SWIR-active mineralogy | Hyperspectral point spectrometer (ASD Fieldspec3) | Multivariate logistic regression with cut-off grade of 0.4% Cu, using calculated NIR features from NIR active mineralogy as predictors | Calculated waste probability per sample, no imaging data | [210] |
Copper ore sorting ore vs. waste | White mica group minerals, tourmaline, chlorite, nontronite, kaolinite | Hyperspectral imagery in the SWIR 940–2500 nm); applicable to UAV-HSI imaging | SAM and minimum wavelength position feature modelling, PCA using resulting classification maps as input | Mineral classification maps, absorption position maps, white mica crystallinity index, PCA-based mineral groups for samples (not imaging) | [211] |
Mineral, mineral, chemistry, grain size, and alteration score mapping | Montmorillonite, kaolinite, muscovite, gypsum, prehnite, pumpellyite, epidote, amphibole, chlorite, tourmaline, inferred sulphides, quartz | HSI imaging SWIR laboratory system, applicable to UAV-HSI imaging | Second derivative for absorption feature minimum position. Strength modelling. Rule-based method to distinguish biotite and chlorite. Feature ratio for white mica thickness | Mineral occurrence maps for user-defined endmembers, white mica chemistry and thickness maps, epidote chemistry maps | [86,87,212] |
Acid mine drainage and pH | pH, goethite, schwertmannite, hematite and jarosite; physicochemical and mineralogical properties of water and sediments | UAS-borne VNIR data (Rikola) | SVM for masking of water surface, random forest regression for pH estimate | Estimated per-pixel pH of water surface; SAM-based mineral classification of sediment cover, Fe concentration, and redox conditions of water | [124] |
Long range outcrop exploration | Site 1: dolomite, tremolite, calcite Site 2: chloritic, sericitic, white mica | Ground-based long-range SPECIM, outcrops and mine faces, VNIR-SWIR | MNF smoothing, MWL | MWL maps of carbonate feature (tremolite–dolomite–calcite) (site 2) and 2200 nm feature position (site 2) | [194] |
Long range mine face alteration mapping | Carbonate, clay, iron oxide minerals, chloritic, sericitic alteration | Tripod- and lab-based SPECIM, VNIR-SWIR, and UAS-borne HSI VNIR | Spectral indices, decision tree classifier based on multifeatured MWL, RF classifier trained on labelled field sample | Mineral alteration maps via RF and DT, false colour RGB of mineral indices | [8] |
Carbonate lithology | CO3 and AlOH feature mapping, dolomite, calcite | UAS-borne HySpex VNIR-SWIR | Feature modelling using MWL | Lithological unit map based on CO3 feature map | [116] |
HSI exploration and surface alteration mapping | White mica composition, crystallinity, smectite clay composition | ASTER and airborne HSI HyMap | Feature modelling of diagnostic absorptions (position, depth, width, geometry) | Mineral abundance and composition maps | [38,213] |
Acid mine drainage | Ferric (III) iron, goethite | Simulated Sentinel-2, 4-band VNIR PlanetScope, UAS-borne VNIR, VNIR-SWIR handheld point spectrometry | Band ratio, linear regression | Ferric (Fe (III) iron) band ratio (665/560 nm) | [143] |
Exploration REE mapping | Neodymium | UAS-borne VNIR (500–900 nm) | MWL | REE feature modelling | [176] |
Multitemporal tailings dam monitoring | Tailings surface changes, including standing water | Sentinel-2 (20 m/px); Landsat 8 (15 m/px), aerial photography (<0.5 m/px), Google Earth satellite data (<1 m/px), Planet scope (3 m/px) | Visual monitoring of surface changes, normalised difference water index | Water occurrence maps, sediment index maps | [48] |
Uranium exploration | Alteration mapping | Airborne HyMap, (450–2500 nm) | MTMF and SAM | Mapping of Ca-bearing silicate endmembers in the SWIR and Fe-bearing oxy-hydroxide weathering products of sulphides in the VNIR | [214] |
Alteration mineral mapping | Hematite, sulphur + alunite + aluminous clays, wet brines, gypsum, ulexite | EO1 Hyperion, ALI, ASTER | MNF transformation, endmembers via pixel purity index, linear spectral unmixing, SAM, | Endmember group classification maps | [40] |
Mine waste mapping | Secondary iron minerals, 900 nm iron feature | Hyperion/OLI and EnMAP/Sentinel-2 | Iron feature depth index (IFD), USGS MICA | Iron feature depth ratio map, Mineral classification map based on USGS MICA algorithm | [142] |
Iron ore mapping | Iron oxides such as magnetite, hematite, and goethite (vitreous and ochreous) | Diamond drill core, drill chips and pulps, scanned via spectral imaging with HyLoggerTM, CorescanTM or via point spectrometry (pulps) | Distinction of goethite variation via FWHM of the 900 nm 6A1→4T1 crystal field absorption feature Fe-oxide depth and width | Distinction indicator between banded iron formation (BIF)-hosted iron ore deposits and bedded iron deposits (BID), respectively, named martite–goethite and martite–microplaty hematite and channel iron deposits (CIDs) | [52] |
Alteration mineral mapping | Epithermal alteration mineral endmembers | Airborne HyMap | Feature modelling | Endmember classification maps and minimum wavelength feature modelling | [69] |
Iron anomaly mapping | Iron mineral group vs. gabbro distribution, connected to local magnetic anomalies | UAS-borne HSI and MSI data | Band ratios, MNF, SAM, k-means | Iron index mapping, endmember classification maps | [179] |
Iron ore mapping | Goethite, opal, composition and abundance of ferric oxide, ferrous iron, white mica, Al smectites, kaolin, carbonates | Airborne HyMap and laboratory-based Core and drill chip spectra (HyLoggingTM) | Feature modelling, band ratios | For example, Fe oxide index maps, mineral endmember maps, mineral chemistry based on feature mapping, Fe wt% modelling | [215] |
Alteration mineral mapping | White mica, Al smectite, kaolinite, ferric/ferrous minerals, biotite, actinolite, epidote, chlorite, tourmaline, jarosite | Airborne HyMap | Feature modelling, here called multifeature extraction | Mineral abundance and chemistry mapping based on feature mapping, e.g., biotite composition mapping | [81] |
Alteration mineral mapping | Illite, muscovite, jarosite, kaolinite | Airborne, core (laboratory) and mine face ProSpecTIR-VS (SPECIM instruments), VNIR-SWIR | Endmember extraction using PPI + n-D approach, partial linear unmixing via MTMF | Endmember classification maps | [216] |
Geotechnical evaluation mapping | Kaolinite, montmorillonite, white mica, hornblende, nontronite | UAS- and tripod mounted Headwall | SAM | Endmember classification maps | [166] |
Heap leach mapping | Kaolinite, muscovite, gypsum | UAS-borne Headwall (VNIR-SWIR) | SAM | Endmember classification maps | [165] |
Clay mineral and stratigraphic mapping | Kaolinite, illite, smectite, nontronite, chlorite, talc | Tripod-mounted SPECIM, SWIR | “Automated feature extraction”, minimum wavelength mapping | Endmember maps based on feature wavelength position, depth, and width | [100] |
Mineral mapping | Mafic, pyroxenite, peridotite, basalt, gossan, gabbro, sediments, alluvial material, alluvial rusted surfaces | Airborne SPECIM (VNIR-SWIR), simulated EnMap | Endmember extraction via spatial spectral endmember extraction (SSEE), iterative spectral mixture analysis (ISMA) | Endmember classification maps | [104] |
Alteration mineral mapping | Kaolinite, muscovite, montmorillonite, gypsum, chlorite, serpentine, calcite | Airborne HyMapTM, tripod-mounted HySpex (VNIR-SWIR), laboratory based Corescan’s Hyperspectral Core Imager Mark IIITM | Minimum wavelength mapping, USGS PRISM MICA | Endmember classification maps, minimum wavelength maps for white mica | [108,109] |
Iron ore mineral mapping | Rock types: martite, goethite, BIF, chert, shale, manganiferous shale, kaolinite | Tripod-mounted SPECIM, VNIR-SWIR | SAM, SVM, derivative analysis | Colour-composite maps, endmember classification maps, ferric iron mineral maps | [60,111] |
Iron ore mineral mapping | Mineralized martite (ore) distinction from shale and banded iron (BIF) (waste) | Tripod-mounted SPECIM, VNIR-SWIR | SAM and two machine learning methods operating within a fully probabilistic Gaussian process (GP) framework—the squared exponential (SE) and the observation angle dependent (OAD) covariance functions (kernel) | Endmember classification maps | [55] |
Bauxite residue mapping | Iron oxide and Al2O3 | Sentinel-2, PRISMA | Band ratio, multivariate geostatistical analysis based on field samples | Iron oxide maps, Al2O3 concentration mapping | [157] |
Acid mine drainage | Pb, Zn, As | Airborne HyMap | Pearson’s correlation based on laboratory-based data spectral feature absorption modelling | Spectral parameter maps defined to show correlations with heavy metal content | [158] |
Appendix B
Flight Planning and Risk Assessment Reporting for UAS Operations | |
This is a suggestion of points that should be considered before a hyperspectral flight campaign to aid in flight planning and risk assessment. It is by no means a conclusive list and is merely to be considered as a suggestion. | |
Flight campaign | Name |
Survey dates | Dates |
Days of active UAS operation | Dates and time window per day |
Site | Site name |
Site location (LON/LAT) | Site location |
Local supporting agency | Name of local supporting agency |
Contact of local CAA | Name and contact of local civil aviation authority; check if permits are required |
NOTAM | Contact of local NOTAM agency Check if NOTAMs exist 24 h prior to flight |
Location of emergency services | Add location of nearest emergency services and approximate time to reach them. Add contact points. |
First aid equipment | Check presence and completeness. |
Check of necessary vaccination | Check which vaccines are necessary; ensure that vaccinations are up to date. |
Check of medical conditions | Check with team members for medical conditions that require the team’s awareness for first aid on site, e.g., allergies that require epi pens and locations of the epi pens, allergies against antibiotics, etc. This should be discussed on site prior to field work so that each team member is aware and able to provide first aid. |
Drone incident reporting | Add local contact (website, phone number) to ensure that incident reporting can be carried out in a timely manner |
Survey Operational Framework | Example: Survey will be flown in the A3 Open category (as per EASA), far away from uninvolved persons. Everyone joining the field work will be briefed on the UAS operations and either in an observer role or as an involved person. Link to regulation: https://www.easa.europa.eu/en/domains/civil-drones-rpas/open-category-civil-drones (accessed on 1 February 2024) |
Compliance with local regulations | Check local regulations |
Category | Example: A3 Open category, low risk |
Authorisation | Check if permit is required to fly. e.g., not required by CAA |
Drone Operator | |
Company name | Enter name |
UAS operator number | Enter operator number |
Registered in | Enter country |
Insurance | Name and policy number for easy access |
Contact information | Enter contact information |
Enter all pilots, visual observers, etc., that are partaking in the campaign | |
Pilot | Enter name |
Certification | Enter certification type, certification ID, and expiration date |
Role | e.g., UAS pilot, visual observer, etc. |
Contact information | Enter |
UAS | |
Platform | e.g., BFD 1400 SE8/others, https://uaxtech.com (accessed on 20 November 2024) |
Maximum take-off mass (MTOM) | e.g., 25 kg |
Operational MTOM with payload | e.g., <25 kg |
Size (motor to motor) | e.g., 1400 mm |
Maximum flight speed | e.g., 20 m/s |
Flight time with payload | e.g., 26 min (w/2 5 kg AUW) (as per manufacturer) |
Flight with payload including | |
Max. reach with payload | e.g., 31.2 km, (based on max. speed and producer-reported max. flight time, as per manufacturer) |
Flight time without payload | e.g., 60+ min (as per manufacturer) |
Max. reach without payload | e.g., 72 km+ (based on max. speed and producer reported max. flight time, as per manufacturer) |
Radio frequencies | e.g., broadcasting between UAV and ground station with 868 MHz and 2.4 GHz |
Battery specifications | e.g., enter battery stats |
Payload | |
Visual and hyperspectral payload | e.g., Mjolnir VS-620 imaging sensors Passive surface measurements With a pushbroom sensor in the wavelength range of 400–2500 nm; includes the visible range (capture of true-colour RGB on the ground) |
Additional payload | e.g., LiDAR velodyne for 3D surface reconstruction Velodyne VLP 32C Gimbal Gremsy Aevo |
Measurement mode of payload | e.g., Nadir and oblique with a 30° angle |
Flight altitude | e.g., max. 120 m AGL |
Site-specific considerations | See below |
Illumination | Ideal illumination of area of interest based on sun angle, terrain, and geometry. Possibly including challenges. Note best times for scanning under local conditions. Add resources for reliable weather and wind forecast. |
Access to site | |
Existence of no-fly zones in the region | Check local zones and include map here |
Flight geography | Add an image below that shows the total area that will be covered by the UAS flight (e.g., an overlay on imagery from Google Earth) |
For example, each individual flight will be operated with a 30 m surrounding contingency zone horizontally and vertically and an added surrounding ground risk buffer of up to 120 m. These areas will be monitored closely during individual flights and do not overlap with the location of power lines, railways, roads, etc. | |
Overall survey flight geography | Add screenshot or photo that includes the flight geography, contingency volume, and ground risk buffer volume |
Possible risks and mitigation | |
Visual line of sight | Flights will only be performed during the day in daylight conditions. Hyperspectral imagery needs clear atmospheric conditions and direct sunlight, so no additional risk is introduced by flying in subpar conditions. |
Wildlife (birds of prey, hatching, nesting, wildlife reserves…) | Check and state possible risk factors or influence the UAS operation could have on local wildlife |
Communities (informed, affected, …?) | |
Could include map showing proximity to wildlife reserves, distance to communities, …) | |
Topography (topography, effects for surrounding area, …) | For example, the overall surface expression of the mine does not extend significantly above the surrounding topography of the area. Flying at 120 m max. AGL, we do not expect to interfere with any other airspace users. Check altitude above sea level and calculate density height of the area to ensure that the hardware limits are respected. |
Add map here if necessary | |
Military zones (in the area, affected, necessary) | Check if flight is close to military zones that could be affected or could be affecting the UAS operation (e.g., GPS jammers, aeroplanes flying without sending ADSB signal, aeroplanes flying below local limitations…) |
Add screenshot of location relative to flight geography is necessary | |
Potential trajectories from commercial airports (and source) | Check if the proposed flight geography co-aligns with incoming or outgoing flights from local airport and if it could coinhabit the same airspace. Make sure you are not within the controlled airspace. If in doubt, contact the local CAA. |
Add map here if necessary from a website, such as https://skyvector.com/ (accessed on 1 February 2024) |
References
- Clark, R.N. Spectroscopy of Rocks and Minerals, and Principles of Spectroscopy. Remote Sens. Earth Sci. Man. Remote Sens. 1999, 3, 3–58. [Google Scholar]
- van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; van der Meijde, M.; Carranza, E.J.M.; de Smeth, J.B.; Woldai, T. Multi- and Hyperspectral Geologic Remote Sensing: A Review. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [Google Scholar] [CrossRef]
- Hunt, G.R. Spectroscopic Properties of Rocks and Minerals. In Practical Handbook of Physical Properties of Rocks and Minerals; Carmichael, R.S., Ed.; CRC Press: Boca Raton, FL, USA, 1982; pp. 599–669. ISBN 0-8493-3703-8. [Google Scholar]
- Hunt, G.R. Spectral Signatures of Particulate Minerals in the Visible and near Infrared. Geophysics 1977, 42, 501–513. [Google Scholar] [CrossRef]
- Hunt, G.R.; Ashley, R.P. Spectra of Altered Rocks in the Visible and near Infrared. Econ. Geol. 1979, 74, 1613–1629. [Google Scholar] [CrossRef]
- Hecker, C.; van Ruitenbeek, F.J.A.; van der Werff, H.M.A.; Bakker, W.H.; Hewson, R.D.; van der Meer, F.D. Spectral Absorption Feature Analysis for Finding Ore: A Tutorial on Using the Method in Geological Remote Sensing. IEEE Geosci. Remote Sens. Mag. 2019, 7, 51–71. [Google Scholar] [CrossRef]
- Manolakis, D.; Lockwood, R.; Cooley, T. Hyperspectral Imaging Remote Sensing: Physics, Sensors, Algorithms; Cambridge University Press: Cambridge, UK, 2016; ISBN 978-1-107-08366-0. [Google Scholar]
- Thiele, S.T.; Lorenz, S.; Kirsch, M.; Cecilia Contreras Acosta, I.; Tusa, L.; Herrmann, E.; Möckel, R.; Gloaguen, R. Multi-Scale, Multi-Sensor Data Integration for Automated 3-D Geological Mapping. Ore Geol. Rev. 2021, 136, 104252. [Google Scholar] [CrossRef]
- Jackisch, R. Drone-Based Surveys of Mineral Deposits. Nat. Rev. Earth Environ. 2020, 1, 187. [Google Scholar] [CrossRef]
- Park, S.; Choi, Y. Applications of Unmanned Aerial Vehicles in Mining from Exploration to Reclamation: A Review. Minerals 2020, 10, 663. [Google Scholar] [CrossRef]
- Mallet, C.; David, N. Digital Terrain Models Derived from Airborne LiDAR Data. In Optical Remote Sensing of Land Surface; Elsevier: Amsterdam, The Netherlands, 2016; pp. 299–319. [Google Scholar]
- Wheaton, J.M.; Brasington, J.; Darby, S.E.; Sear, D.A. Accounting for Uncertainty in DEMs from Repeat Topographic Surveys: Improved Sediment Budgets. Earth Surf. Process. Landf. 2010, 35, 136–156. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S. Straightforward Reconstruction of 3D Surfaces and Topography with a Camera: Accuracy and Geoscience Application. J. Geophys. Res. Earth Surf. 2012, 117, F03017. [Google Scholar] [CrossRef]
- Travelletti, J.; Delacourt, C.; Allemand, P.; Malet, J.-P.; Schmittbuhl, J.; Toussaint, R.; Bastard, M. Correlation of Multi-Temporal Ground-Based Optical Images for Landslide Monitoring: Application, Potential and Limitations. ISPRS J. Photogramm. Remote Sens. 2012, 70, 39–55. [Google Scholar] [CrossRef]
- Barbarella, M.; Fiani, M. Monitoring of Large Landslides by Terrestrial Laser Scanning Techniques: Field Data Collection and Processing. Eur. J. Remote Sens. 2013, 46, 126–151. [Google Scholar] [CrossRef]
- Barbarella, M.; Fiani, M.; Lugli, A. Uncertainty in Terrestrial Laser Scanner Surveys of Landslides. Remote Sens. 2017, 9, 113. [Google Scholar] [CrossRef]
- Giordan, D.; Hayakawa, Y.; Nex, F.; Remondino, F.; Tarolli, P. Review Article: The Use of Remotely Piloted Aircraft Systems (RPASs) for Natural Hazards Monitoring and Management. Nat. Hazards Earth Syst. Sci. 2018, 18, 1079–1096. [Google Scholar] [CrossRef]
- Godone, D.; Giordan, D.; Baldo, M. Rapid Mapping Application of Vegetated Terraces Based on High Resolution Airborne LiDAR. Geomat. Nat. Hazards Risk 2018, 9, 970–985. [Google Scholar] [CrossRef]
- Rossi, G.; Tanteri, L.; Tofani, V.; Vannocci, P.; Moretti, S.; Casagli, N. Multitemporal UAV Surveys for Landslide Mapping and Characterization. Landslides 2018, 15, 1045–1052. [Google Scholar] [CrossRef]
- Glenn, N.F.; Streutker, D.R.; Chadwick, D.J.; Thackray, G.D.; Dorsch, S.J. Analysis of LiDAR-Derived Topographic Information for Characterizing and Differentiating Landslide Morphology and Activity. Geomorphology 2006, 73, 131–148. [Google Scholar] [CrossRef]
- Lucieer, A.; de Jong, S.M.; Turner, D. Mapping Landslide Displacements Using Structure from Motion (SfM) and Image Correlation of Multi-Temporal UAV Photography. Prog. Phys. Geogr. Earth Environ. 2014, 38, 97–116. [Google Scholar] [CrossRef]
- Ciurleo, M.; Cascini, L.; Calvello, M. A Comparison of Statistical and Deterministic Methods for Shallow Landslide Susceptibility Zoning in Clayey Soils. Eng. Geol. 2017, 223, 71–81. [Google Scholar] [CrossRef]
- Mora, O.; Lenzano, M.; Toth, C.; Grejner-Brzezinska, D.; Fayne, J. Landslide Change Detection Based on Multi-Temporal Airborne LiDAR-Derived DEMs. Geosciences 2018, 8, 23. [Google Scholar] [CrossRef]
- Zheng, J.; Yao, W.; Lin, X.; Ma, B.; Bai, L. An Accurate Digital Subsidence Model for Deformation Detection of Coal Mining Areas Using a UAV-Based LiDAR. Remote Sens. 2022, 14, 421. [Google Scholar] [CrossRef]
- Trevisani, S.; Cavalli, M.; Marchi, L. Surface Texture Analysis of a High-Resolution DTM: Interpreting an Alpine Basin. Geomorphology 2012, 161–162, 26–39. [Google Scholar] [CrossRef]
- Colomina, I.; Molina, P. Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [Google Scholar] [CrossRef]
- Pellicani, R.; Argentiero, I.; Manzari, P.; Spilotro, G.; Marzo, C.; Ermini, R.; Apollonio, C. UAV and Airborne LiDAR Data for Interpreting Kinematic Evolution of Landslide Movements: The Case Study of the Montescaglioso Landslide (Southern Italy). Geosciences 2019, 9, 248. [Google Scholar] [CrossRef]
- Lee, S.; Choi, Y. Reviews of Unmanned Aerial Vehicle (Drone) Technology Trends and Its Applications in the Mining Industry. Geosystem Eng. 2016, 19, 197–204. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, Y.; Xiao, W.; Hu, Z. A Review of UAV Monitoring in Mining Areas: Current Status and Future Perspectives. Int. J. Coal Sci. Technol. 2019, 6, 320–333. [Google Scholar] [CrossRef]
- Bedini, E. The Use of Hyperspectral Remote Sensing for Mineral Exploration: A Review. J. Hyperspectral Remote Sens. 2017, 7, 189–211. [Google Scholar] [CrossRef]
- Fox, N.; Parbhakar-Fox, A.; Moltzen, J.; Feig, S.; Goemann, K.; Huntington, J. Applications of Hyperspectral Mineralogy for Geoenvironmental Characterisation. Miner. Eng. 2017, 107, 63–77. [Google Scholar] [CrossRef]
- Buckley, S.J.; Kurz, T.H.; Howell, J.A.; Schneider, D. Terrestrial Lidar and Hyperspectral Data Fusion Products for Geological Outcrop Analysis. Comput. Geosci. 2013, 54, 249–258. [Google Scholar] [CrossRef]
- Krupnik, D.; Khan, S. Close-Range, Ground-Based Hyperspectral Imaging for Mining Applications at Various Scales: Review and Case Studies. Earth Sci. Rev. 2019, 198, 102952. [Google Scholar] [CrossRef]
- Asadzadeh, S.; de Souza Filho, C.R. A Review on Spectral Processing Methods for Geological Remote Sensing. Int. J. Appl. Earth Obs. Geoinf. 2016, 47, 69–90. [Google Scholar] [CrossRef]
- Kruse, F.; Boardman, J.; Huntington, J. Comparison of Airborne and Satellite Hyperspectral Data for Geologic Mapping; SPIE: Bellingham, WA, USA, 2002; Volume 4725. [Google Scholar]
- Laukamp, C.; Rodger, A.; LeGras, M.; Lampinen, H.; Lau, I.C.; Pejcic, B.; Stromberg, J.; Francis, N.; Ramanaidou, E. Mineral Physicochemistry Underlying Feature-Based Extraction of Mineral Abundance and Composition from Shortwave, Mid and Thermal Infrared Reflectance Spectra. Minerals 2021, 11, 347. [Google Scholar] [CrossRef]
- Bedini, E. Mineral Mapping in the Kap Simpson Complex, Central East Greenland, Using HyMap and ASTER Remote Sensing Data. Adv. Space Res. 2011, 47, 60–73. [Google Scholar] [CrossRef]
- Cudahy, T.; Jones, M.; Thomas, M.; Laukamp, C.; Caccetta, M.; Hewson, R.; Rodger, A.; Verral, M. Next Generation Mineral Mapping: Queensland Airborne HyMap and Satellite ASTER Surveys 2006–2008; Report Number: CSIRO Report P2007/364; CSIRO: Perth, Australia, 2008. [Google Scholar]
- Maroufi Naghadehi, K.; Hezarkhani, A.; Asadzadeh, S. Mapping the Alteration Footprint and Structural Control of Taknar IOCG Deposit in East of Iran, Using ASTER Satellite Data. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 57–66. [Google Scholar] [CrossRef]
- Hubbard, B.E.; Crowley, J.K. Mineral Mapping on the Chilean–Bolivian Altiplano Using Co-Orbital ALI, ASTER and Hyperion Imagery: Data Dimensionality Issues and Solutions. Remote Sens. Environ. 2005, 99, 173–186. [Google Scholar] [CrossRef]
- Kruse, F.A. Mineral Mapping with AVIRIS and EO-1 Hyperion. In Proceedings of the Summaries of the 12th Annual Jet Propulsion Laboratory Airborne Geoscience Workshop, Pasadena, CA, USA, February 2003. [Google Scholar]
- Clark, R.N.; Swayze, G.A.; Gallagher, A. Mapping the Mineralogy and Lithology of Canyonlands, Utah with Imaging Spectrometer Data and the Multiple Spectral Feature Mapping Algorithm. In Proceedings of the Summaries of the Third Annual JPL Airborne Geoscience Workshop, Volume 1: AVIRIS Workshop, Pasadena, CA, USA, 1–5 June 1992; pp. 11–13. [Google Scholar]
- Clark, R.N.; Swayze, G.A. Mapping Minerals, Amorphous Materials, Environmental Materials, Vegetation, Water, Ice and Snow, and Other Materials: The USGS Tricorder Algorithm. In Proceedings of the JPL, Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, Volume 1: AVIRIS Workshop, Pasadena, CA, USA, 23–26 January 1995; pp. 39–40. [Google Scholar]
- Cardoso-Fernandes, J.; Santos, D.; de Almeida, C.R.; Vasques, J.T.; Mendes, A.; Ribeiro, R.; Azzalini, A.; Duarte, L.; Moura, R.; Lima, A.; et al. The INOVMineral Project’s Contribution to Mineral Exploration—A WebGIS Integration and Visualization of Spectral and Geophysical Properties of the Aldeia LCT Pegmatite Spodumene Deposit. Minerals 2023, 13, 961. [Google Scholar] [CrossRef]
- Tang, L.; Werner, T.T. Global Mining Footprint Mapped from High-Resolution Satellite Imagery. Commun. Earth Environ. 2023, 4, 134. [Google Scholar] [CrossRef]
- Rana, N.M.; Ghahramani, N.; Evans, S.G.; McDougall, S.; Small, A.; Take, W.A. A Comprehensive Global Database of Tailings Flows. 2021. Available online: https://borealisdata.ca/dataset.xhtml?persistentId=doi:10.5683/SP2/NXMXTI (accessed on 1 February 2024).
- Rana, N.M.; Ghahramani, N.; Evans, S.G.; McDougall, S.; Small, A.; Take, W.A. Catastrophic Mass Flows Resulting from Tailings Impoundment Failures. Eng. Geol. 2021, 292, 106262. [Google Scholar] [CrossRef]
- Torres-Cruz, L.A.; O’Donovan, C. Public Remotely Sensed Data Raise Concerns about History of Failed Jagersfontein Dam. Sci. Rep. 2023, 13, 4953. [Google Scholar] [CrossRef]
- IEEE Geosciences and Remote Sensing Society, Standard P4001—Standard for Characterization and Calibration of Ultraviolet Through Shortwave Infrared (250 Nm to 2500 Nm) Hyperspectral Imaging Devices, Characterization and Calibration of Hyperspectral Imaging Devices Working Group (P4001). Available online: https://www.grss-ieee.org/technical-committees/standards-for-earth-observations/working-group-standards-for-earth-observations/characterization-and-calibration-of-hyperspectral-imaging-devices-working-group-p4001/ (accessed on 20 November 2024).
- Schowengerdt, R.A. Remote Sensing Models and Methods for Image Processing, 3rd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2006; ISBN 9780080480589. [Google Scholar]
- Gupta, R.P. Remote Sensing Geology, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2017; ISBN 978-3662558744. [Google Scholar]
- Rodger, A.; Ramanaidou, E.; Laukamp, C.; Lau, I. A Qualitative Examination of the Iron Boomerang and Trends in Spectral Metrics across Iron Ore Deposits in Western Australia. Appl. Sci. 2022, 12, 1547. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The Spectral Image Processing System (SIPS)-Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Yuhas, R.H.; Goetz, A.F.H.; Boardman, J.W. Discrimination among Semi-Arid Landscape Endmembers Using the Spectral Angle Mapper (SAM) Algorithm. In Proceedings of the In JPL, Summaries of the Third Annual JPL Airborne Geoscience Workshop, Volume 1: AVIRIS Workshop (SEE N94-16666 03-42), Pasadena, CA, USA, 1–5 June 1992; pp. 147–149. [Google Scholar]
- Schneider, S.; Murphy, R.J.; Melkumyan, A.; Nettleton, E. Autonomous Mapping of Mine Face Geology Using Hyperspectral Data. In Proceedings of the 35th APCOM Symposium—Application of Computers and Operations Research in the Minerals Industry, Proceedings, Wollongong, Australia, 24–30 September 2011; pp. 865–876. [Google Scholar]
- Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep Convolutional Neural Networks for Hyperspectral Image Classification. J. Sens. 2015, 2015, 258619. [Google Scholar] [CrossRef]
- Dämpfling, H.L.C. DeepGeoMap: A Deep Learning Convolutional Neural Network Architecture for Geological Hyperspectral Classification and Mapping. Master’s Thesis, University of Potsdam, Potsdam, Germany, 2021. [Google Scholar]
- Santos, D.; Cardoso-Fernandes, J.; Lima, A.; Müller, A.; Brönner, M.; Teodoro, A.C. Spectral Analysis to Improve Inputs to Random Forest and Other Boosted Ensemble Tree-Based Algorithms for Detecting NYF Pegmatites in Tysfjord, Norway. Remote Sens. 2022, 14, 3532. [Google Scholar] [CrossRef]
- De Boissieu, F.; Sevin, B.; Cudahy, T.; Mangeas, M.; Chevrel, S.; Ong, C.; Rodger, A.; Maurizot, P.; Laukamp, C.; Lau, I.; et al. Regolith-Geology Mapping with Support Vector Machine: A Case Study over Weathered Ni-Bearing Peridotites, New Caledonia. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 377–385. [Google Scholar] [CrossRef]
- Murphy, R.J.; Monteiro, S.T.; Schneider, S. Evaluating Classification Techniques for Mapping Vertical Geology Using Field-Based Hyperspectral Sensors. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3066–3080. [Google Scholar] [CrossRef]
- Boardman, J.W. Geometric Mixture Analysis of Imaging Spectrometry Data. In Proceedings of the IGARSS’94—1994 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 8–12 August 1994; pp. 2369–2371. [Google Scholar]
- Boardman, J.W. Automating Spectral Unmixing of AVIRIS Data Using Convex Geometry Concepts. In Proceedings of the JPL, Summaries of the 4th Annual JPL Airborne Geoscience Workshop, Volume 1: AVIRIS Workshop, Washington, DC, USA, 25–29 October 1993; pp. 11–14. [Google Scholar]
- Heylen, R.; Parente, M.; Gader, P. A Review of Nonlinear Hyperspectral Unmixing Methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1844–1868. [Google Scholar] [CrossRef]
- Borsoi, R.A.; Imbiriba, T.; Bermudez, J.C.M.; Richard, C.; Chanussot, J.; Drumetz, L.; Tourneret, J.-Y.; Zare, A.; Jutten, C. Spectral Variability in Hyperspectral Data Unmixing: A Comprehensive Review. IEEE Geosci. Remote Sens. Mag. 2021, 9, 223–270. [Google Scholar] [CrossRef]
- Halimi, A.; Dobigeon, N.; Tourneret, J.-Y. Unsupervised Unmixing of Hyperspectral Images Accounting for Endmember Variability. IEEE Trans. Image Process. 2015, 24, 4904–4917. [Google Scholar] [CrossRef]
- Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379. [Google Scholar] [CrossRef]
- Thompson, D.R.; Mandrake, L.; Gilmore, M.S.; Castano, R. Superpixel Endmember Detection. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4023–4033. [Google Scholar] [CrossRef]
- van Ruitenbeek, F.J.A.; Bakker, W.H.; van der Werff, H.M.A.; Zegers, T.E.; Oosthoek, J.H.P.; Omer, Z.A.; Marsh, S.H.; van der Meer, F.D. Mapping the Wavelength Position of Deepest Absorption Features to Explore Mineral Diversity in Hyperspectral Images. Planet. Space Sci. 2014, 101, 108–117. [Google Scholar] [CrossRef]
- van der Meer, F.; Kopačková, V.; Koucká, L.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A.; Bakker, W.H. Wavelength Feature Mapping as a Proxy to Mineral Chemistry for Investigating Geologic Systems: An Example from the Rodalquilar Epithermal System. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 237–248. [Google Scholar] [CrossRef]
- Asadzadeh, S.; de Souza Filho, C.R. Iterative Curve Fitting: A Robust Technique to Estimate the Wavelength Position and Depth of Absorption Features From Spectral Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5964–5974. [Google Scholar] [CrossRef]
- Kokaly, R.F. PRISM: Processing Routines in IDL for Spectroscopic Measurements (Installation Manual and User’s Guide, Version 1.0); US Geological Survey: Reston, VA, USA, 2011.
- Clark, R.N. Imaging Spectroscopy: Earth and Planetary Remote Sensing with the USGS Tetracorder and Expert Systems. J. Geophys. Res. 2003, 108, 1–2. [Google Scholar] [CrossRef]
- Swayze, G.A.; Clark, R.N.; Goetz, A.F.H.; Chrien, T.G.; Gorelick, N.S. Effects of Spectrometer Band Pass, Sampling, and Signal-to-noise Ratio on Spectral Identification Using the Tetracorder Algorithm. J. Geophys. Res. 2003, 108, 5105. [Google Scholar] [CrossRef]
- Rodarmel, C.; Shan, J. Principal Component Analysis for Hyperspectral Image Classification. Surv. Land Inf. Sci. 2002, 62, 115–122. [Google Scholar]
- Terrestrial Ecosystem Research Network. A TERN Landscape Assessment Initiative Effective Field Calibration and Validation Practices, Version 1.3; Terrestrial Ecosystem Research Network: St. Lucia, Australia, 2018. [Google Scholar]
- Schodlok, M.C.; Frei, M.; Segl, K. Implications of New Hyperspectral Satellites for Raw Materials Exploration. Miner. Econ. 2022, 35, 495–502. [Google Scholar] [CrossRef]
- Sabins, F.F. Remote Sensing for Mineral Exploration. Ore Geol. Rev. 1999, 14, 157–183. [Google Scholar] [CrossRef]
- Swayze, G.A.; Clark, R.N.; Goetz, A.F.H.; Livo, K.E.; Breit, G.N.; Kruse, F.A.; Sutley, S.J.; Snee, L.W.; Lowers, H.A.; Post, J.L.; et al. Mapping Advanced Argillic Alteration at Cuprite, Nevada, Using Imaging Spectroscopy. Econ. Geol. 2014, 109, 1179–1221. [Google Scholar] [CrossRef]
- Laukamp, C. Rocklea Dome C3DMM. V1. CSIRO. Data Collection. 2020. Available online: https://data.csiro.au/collection/csiro:44783v1?redirected=true (accessed on 1 February 2024).
- Laukamp, C.; Haest, M.; Cudahy, T. The Rocklea Dome 3D Mineral Mapping Test Data Set. Earth Syst. Sci. Data 2021, 13, 1371–1383. [Google Scholar] [CrossRef]
- Asadzadeh, S.; Chabrillat, S.; Cudahy, T.; Rashidi, B.; de Souza Filho, C.R. Alteration Mineral Mapping of the Shadan Porphyry Cu-Au Deposit (Iran) Using Airborne Imaging Spectroscopic Data: Implications for Exploration Drilling. Econ. Geol. 2023, 119, 139–160. [Google Scholar] [CrossRef]
- Bedini, E.; Chen, J. Prospection for Economic Mineralization Using PRISMA Satellite Hyperspectral Remote Sensing Imagery: An Example from Central East Greenland. J. Hyperspectral Remote Sens. 2022, 12, 124–130. [Google Scholar] [CrossRef]
- Chirico, R.; Mondillo, N.; Laukamp, C.; Mormone, A.; Di Martire, D.; Novellino, A.; Balassone, G. Mapping Hydrothermal and Supergene Alteration Zones Associated with Carbonate-Hosted Zn-Pb Deposits by Using PRISMA Satellite Imagery Supported by Field-Based Hyperspectral Data, Mineralogical and Geochemical Analysis. Ore Geol. Rev. 2023, 152, 105244. [Google Scholar] [CrossRef]
- Dong, X.; Gan, F.; Li, N.; Zhang, S.; Li, T. Mineral Mapping in the Duolong Porphyry and Epithermal Ore District, Tibet, Using the Gaofen-5 Satellite Hyperspectral Remote Sensing Data. Ore Geol. Rev. 2022, 151, 105222. [Google Scholar] [CrossRef]
- Ye, B.; Tian, S.; Cheng, Q.; Ge, Y. Application of Lithological Mapping Based on Advanced Hyperspectral Imager (AHSI) Imagery Onboard Gaofen-5 (GF-5) Satellite. Remote Sens. 2020, 12, 3990. [Google Scholar] [CrossRef]
- Lypaczewski, P.; Rivard, B.; Lesage, G.; Byrne, K.; D’angelo, M.; Lee, R.G. Characterization of Mineralogy in the Highland Valley Porphyry Cu District Using Hyperspectral Imaging, and Potential Applications. Minerals 2020, 10, 473. [Google Scholar] [CrossRef]
- Lypaczewski, P.; Rivard, B.; Gaillard, N.; Perrouty, S.; Piette-Lauzière, N.; Bérubé, C.L.; Linnen, R.L. Using Hyperspectral Imaging to Vector towards Mineralization at the Canadian Malartic Gold Deposit, Québec, Canada. Ore Geol. Rev. 2019, 111, 102945. [Google Scholar] [CrossRef]
- Tusa, L.; Andreani, L.; Khodadadzadeh, M.; Contreras, C.; Ivascanu, P.; Gloaguen, R.; Gutzmer, J. Mineral Mapping and Vein Detection in Hyperspectral Drill-Core Scans: Application to Porphyry-Type Mineralization. Minerals 2019, 9, 122. [Google Scholar] [CrossRef]
- Tuşa, L.; Khodadadzadeh, M.; Contreras, C.; Rafiezadeh Shahi, K.; Fuchs, M.; Gloaguen, R.; Gutzmer, J. Drill-Core Mineral Abundance Estimation Using Hyperspectral and High-Resolution Mineralogical Data. Remote Sens. 2020, 12, 1218. [Google Scholar] [CrossRef]
- Acosta, I.C.C.; Khodadadzadeh, M.; Tusa, L.; Ghamisi, P.; Gloaguen, R. A Machine Learning Framework for Drill-Core Mineral Mapping Using Hyperspectral and High-Resolution Mineralogical Data Fusion. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 4829–4842. [Google Scholar] [CrossRef]
- Rodrigues, S.; Fonteneau, L.; Esterle, J. Characterisation of Coal Using Hyperspectral Core Scanning Systems. Int. J. Coal Geol. 2023, 269, 104220. [Google Scholar] [CrossRef]
- Laakso, K.S.; Haavikko, S.; Korhonen, M.; Köykkä, J.; Middleton, M.; Nykänen, V.; Rauhala, J.; Torppa, A.; Torppa, J.; Törmänen, T. Applying Self-Organizing Maps to Characterize Hyperspectral Drill Core Data from Three Ore Prospects in Northern Finland. In Proceedings of the Earth Resources and Environmental Remote Sensing/GIS Applications XIII, Berlin, Germany, 5–7 September 2022; Schulz, K., Nikolakopoulos, K.G., Michel, U., Eds.; SPIE: Bellingham, WA, USA, 2022; p. 39. [Google Scholar]
- Körting, F.; Hernandez, J.E.; Koirala, P.; Lehman, M.; Monecke, T.; Lindblom, D. Development of the HySpex Hyperspectral Drill Core Scanner: Case Study on Exploration Core from the Au-Rich LaRonde-Penna Volcanogenic Massive Sulfide Deposit, Quebec, Canada. In Proceedings of the Hyperspectral Imaging and Applications II, Birmingham, UK, 6–7 December 2022; Barnett, N.J., Gowen, A.A., Liang, H., Eds.; SPIE: Bellingham, WA, USA, 2023; p. 5. [Google Scholar]
- De La Rosa, R.; Khodadadzadeh, M.; Tusa, L.; Kirsch, M.; Gisbert, G.; Tornos, F.; Tolosana-Delgado, R.; Gloaguen, R. Mineral Quantification at Deposit Scale Using Drill-Core Hyperspectral Data: A Case Study in the Iberian Pyrite Belt. Ore Geol. Rev. 2021, 139, 104514. [Google Scholar] [CrossRef]
- Mathieu, M.; Roy, R.; Launeau, P.; Cathelineau, M.; Quirt, D. Alteration Mapping on Drill Cores Using a HySpex SWIR-320m Hyperspectral Camera: Application to the Exploration of an Unconformity-Related Uranium Deposit (Saskatchewan, Canada). J. Geochem. Explor. 2017, 172, 71–88. [Google Scholar] [CrossRef]
- Körting, F. Development of a 360° Hyperspectral Drill Core Scanner: Test of Technical Conditions and Validation of High-Resolution near-Field Analysis of Crystalline Basement Rocks Using COSC-1 Core Samples. Master’s Thesis, University of Potsdam, Potsdam, Germany, 2019. [Google Scholar]
- Turner, D.; Rivard, B.; Groat, L. Rare Earth Element Ore Grade Estimation of Mineralized Drill Core from Hyperspectral Imaging Spectroscopy. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 4612–4615. [Google Scholar]
- van Duijvenbode, J.R.; Cloete, L.M.; Shishvan, M.S.; Buxton, M.W.N. Material Fingerprinting as a Tool to Investigate between and within Material Type Variability with a Focus on Material Hardness. Miner. Eng. 2022, 189, 107885. [Google Scholar] [CrossRef]
- Silversides, K.L.; Murphy, R.J. Identification of Marker Shale Horizons in Banded Iron Formation: Linking Measurements of Downhole Natural Gamma-ray with Measurements from Reflectance Spectrometry of Rock Cores. Near Surf. Geophys. 2017, 15, 141–153. [Google Scholar] [CrossRef]
- Murphy, R.J.; Taylor, Z.; Schneider, S.; Nieto, J. Mapping Clay Minerals in an Open-Pit Mine Using Hyperspectral and LiDAR Data. Eur. J. Remote Sens. 2015, 48, 511–526. [Google Scholar] [CrossRef]
- Thompson, D.R.; Thorpe, A.K.; Frankenberg, C.; Green, R.O.; Duren, R.; Guanter, L.; Hollstein, A.; Middleton, E.; Ong, L.; Ungar, S. Space-based Remote Imaging Spectroscopy of the Aliso Canyon CH 4 Superemitter. Geophys. Res. Lett. 2016, 43, 6571–6578. [Google Scholar] [CrossRef]
- Knapp, M.; Scheidweiler, L.; Külheim, F.; Kleinschek, R.; Necki, J.; Jagoda, P.; Butz, A. Spectrometric Imaging of Sub-Hourly Methane Emission Dynamics from Coal Mine Ventilation. Environ. Res. Lett. 2023, 18, 044030. [Google Scholar] [CrossRef]
- Feng, J.; Rogge, D.; Rivard, B. Comparison of Lithological Mapping Results from Airborne Hyperspectral VNIR-SWIR, LWIR and Combined Data. Int. J. Appl. Earth Obs. Geoinf. 2018, 64, 340–353. [Google Scholar] [CrossRef]
- Rogge, D.; Rivard, B.; Segl, K.; Grant, B.; Feng, J. Mapping of NiCu-PGE Ore Hosting Ultramafic Rocks Using Airborne and Simulated EnMAP Hyperspectral Imagery, Nunavik, Canada. Remote Sens. Environ. 2014, 152, 302–317. [Google Scholar] [CrossRef]
- Scafutto, R.D.P.M.; de Souza Filho, C.R.; Rivard, B. Characterization of Mineral Substrates Impregnated with Crude Oils Using Proximal Infrared Hyperspectral Imaging. Remote Sens. Environ. 2016, 179, 116–130. [Google Scholar] [CrossRef]
- Entezari, I.; Rivard, B.; Geramian, M.; Lipsett, M.G. Predicting the Abundance of Clays and Quartz in Oil Sands Using Hyperspectral Measurements. Int. J. Appl. Earth Obs. Geoinf. 2017, 59, 1–8. [Google Scholar] [CrossRef]
- Bösche, N.K. Detection of Rare Earth Elements and Rare Earth Oxides with Hyperspectral Spectroscopy. Dr. rer. nat Thesis, University of Potsdam, Potsdam, Germany, 2015. [Google Scholar]
- Kokaly, R.F.; Graham, G.E.; Hoefen, T.M.; Kelley, K.D.; Johnson, M.R.; Hubbard, B.E. Hyperspectral Surveying for Mineral Resources in Alaska; US Geological Survey: Reston, VA, USA, 2016; 2p. [CrossRef]
- Kokaly, R.F.; Hoefen, T.M.; Graham, G.E.; Kelley, K.D.; Johnson, M.R.; Hubbard, B.E.; Goldfarb, R.J.; Buchhorn, M.; Prakash, A. Mineral Information at Micron to Kilometer Scales: Laboratory, Field, and Remote Sensing Imaging Spectrometer Data from the Orange Hill Porphyry Copper Deposit, Alaska, USA. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5418–5421. [Google Scholar] [CrossRef]
- Monteiro, S.T.; Nieto, J.; Murphy, R.; Ramakrishnan, R.; Taylor, Z. Combining Strong Features for Registration of Hyperspectral and Lidar Data from Field-Based Platforms. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS), Melbourne, Australia, 21–26 July 2013. [Google Scholar]
- Murphy, R.J.; Monteiro, S.T. Mapping the Distribution of Ferric Iron Minerals on a Vertical Mine Face Using Derivative Analysis of Hyperspectral Imagery (430–970 nm). ISPRS J. Photogramm. Remote Sens. 2013, 75, 29–39. [Google Scholar] [CrossRef]
- Austin, K.; Choros, K.; Job, A.; McAree, R. Real-Time Mining Face Grade Determination Using Hyperspectral Imaging Techniques. MRIWA Project M0518; MRIWA: Brisbane, Australia, 2021.
- Cardoso-Fernandes, J.; Teodoro, A.C.; Lima, A.; Mielke, C.; Korting, F.; Roda-Robles, E.; Cauzid, J. Multi-Scale Approach Using Remote Sensing Techniques for Lithium Pegmatite Exploration: First Results. In Proceedings of the IGARSS 2020—2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 5226–5229. [Google Scholar]
- Kurz, T.H.; Buckley, S.J.; Becker, J.K. Hyperspectral Imaging: A Novel Geological Mapping Technique for Subsurface Construction Sites. In Proceedings of the Proceedings of the World Tunnel Congress 2017—Surface Challenges—Underground Solutions, Bergen, Norway, 9–15 June 2017; p. 10. [Google Scholar]
- Kirsch, M.; Mavroudi, M.; Thiele, S.; Lorenz, S.; Tusa, L.; Booysen, R.; Herrmann, E.; Fatihi, A.; Möckel, R.; Dittrich, T.; et al. Underground Hyperspectral Outcrop Scanning for Automated Mine-face Mapping: The Lithium Deposit of Zinnwald/Cínovec. Photogramm. Rec. 2023, 38, 408–429. [Google Scholar] [CrossRef]
- Thiele, S.T.; Bnoulkacem, Z.; Lorenz, S.; Bordenave, A.; Menegoni, N.; Madriz, Y.; Dujoncquoy, E.; Gloaguen, R.; Kenter, J. Mineralogical Mapping with Accurately Corrected Shortwave Infrared Hyperspectral Data Acquired Obliquely from UAVs. Remote Sens. 2022, 14, 5. [Google Scholar] [CrossRef]
- Meyer, J.M.; Kokaly, R.F.; Holley, E. Hyperspectral Remote Sensing of White Mica: A Review of Imaging and Point-Based Spectrometer Studies for Mineral Resources, with Spectrometer Design Considerations. Remote Sens. Environ. 2022, 275, 113000. [Google Scholar] [CrossRef]
- Barton, I.F.; Gabriel, M.J.; Lyons-Baral, J.; Barton, M.D.; Duplessis, L.; Roberts, C. Extending Geometallurgy to the Mine Scale with Hyperspectral Imaging: A Pilot Study Using Drone- and Ground-Based Scanning. Min. Metall. Explor. 2021, 38, 799–818. [Google Scholar] [CrossRef]
- Dold, B. Acid Rock Drainage Prediction: A Critical Review. J. Geochem. Explor. 2017, 172, 120–132. [Google Scholar] [CrossRef]
- Lottermoser, B. Mine Wastes, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-642-12418-1. [Google Scholar]
- Swayze, G.A.; Smith, K.S.; Clark, R.N.; Sutley, S.J.; Pearson, R.M.; Vance, J.S.; Hageman, P.L.; Briggs, P.H.; Meier, A.L.; Singleton, M.J.; et al. Using Imaging Spectroscopy To Map Acidic Mine Waste. Environ. Sci. Technol. 2000, 34, 47–54. [Google Scholar] [CrossRef]
- Kemper, T.; Sommer, S. Use of Airborne Hyperspectral Data to Estimate Residual Heavy Metal Contamination and Acidification Potential in the Guadiamar Floodplain Andalusia, Spain after the Aznacollar Mining Accident. In Proceedings of the Remote sensing for environmental monitoring, GIS applications, and geology IV, Maspalomas, Spain, 14–16 September 2004; Ehlers, M., Posa, F., Kaufmann, H.J., Michel, U., De Carolis, G., Eds.; SPIE: Bellingham, WA, USA, 2004; p. 224. [Google Scholar]
- Chevrel, S.; Kuosmanen, V.; Grösel, K.; Marsh, S.; Tukiainen, T.; Schäffer, U.; Quental, L.; Vosen, P.; Fischer, C.; Loudjani, P.; et al. Assessing and Monitoring the Environmental Impact of Mining Activities in Europe Using Advanced Earth Observation Techniques; European Community: Luxembourg, 2003. [Google Scholar]
- Flores, H.; Lorenz, S.; Jackisch, R.; Tusa, L.; Contreras, I.; Zimmermann, R.; Gloaguen, R. UAS-Based Hyperspectral Environmental Monitoring of Acid Mine Drainage Affected Waters. Minerals 2021, 11, 182. [Google Scholar] [CrossRef]
- Gascueña, A.B. Mineral Exploration of Rock Wastes from Sulfide Mining Using Airborne Hyperspectral Imaging. Master’s Thesis, Universidad de Granada, Granada, Spain, 2020. [Google Scholar]
- Zabcic, N.; Rivard, B.; Ong, C.; Mueller, A. Using Airborne Hyperspectral Data to Characterize the Surface PH and Mineralogy of Pyrite Mine Tailings. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 152–162. [Google Scholar] [CrossRef]
- Quental, L.; Sousa, A.J.; Marsh, S.; Brito, G.; Abreu, M.M. Imaging Spectroscopy Answers to Acid Mine Drainage Detection at S. Domingos, Iberian Pyrite Belt, Portugal. Comun. Geol. 2011, 98, 61–71. [Google Scholar]
- Riaza, A.; Müller, A. Hyperspectral Remote Sensing Monitoring of Pyrite Mine Wastes: A Record of Climate Variability (Pyrite Belt, Spain). Environ. Earth Sci. 2010, 61, 575–594. [Google Scholar] [CrossRef]
- Richter, N.; Staenz, K.; Kaufmann, H. Spectral Unmixing of Airborne Hyperspectral Data for Baseline Mapping of Mine Tailings Areas. Int. J. Remote Sens. 2008, 29, 3937–3956. [Google Scholar] [CrossRef]
- Rockwell, B.W.; McDougal, R.R.; Gent, C.A. Remote Sensing for Environmental Site Screening and Watershed Evaluation in Utah Mine Lands—East Tintic Mountains, Oquirrh Mountains, and Tushar Mountains; U.S. Geological Survey Scientific Investigations Report 2004-5241; U.S. Geological Survey: Reston, VA, USA, 2005.
- Shang, J.; Morris, B.; Howarth, P.; Lévesque, J.; Staenz, K.; Neville, B. Mapping Mine Tailing Surface Mineralogy Using Hyperspectral Remote Sensing. Can. J. Remote Sens. 2009, 35, S126–S141. [Google Scholar] [CrossRef]
- Ong, C.; Cudahy, T.J.; Swayze, G. Predicting Acid Drainage Related PhysicochemicalMeasurements Using Hyperspectral Data. In Proceedings of the 3rd EARSeL Workshop on Imaging Spectroscopy, Herrsching, Germany, 13–16 May 2003; pp. 363–373. [Google Scholar]
- Buzzi, J.; Riaza, A.; García-Meléndez, E.; Carrère, V.; Holzwarth, S. Monitoring of River Contamination Derived From Acid Mine Drainage Using Airborne Imaging Spectroscopy (HyMap Data, South-West Spain). River Res. Appl. 2016, 32, 125–136. [Google Scholar] [CrossRef]
- Riaza, A.; Buzzi, J.; García-Meléndez, E.; Carrère, V.; Müller, A. Monitoring the Extent of Contamination from Acid Mine Drainage in the Iberian Pyrite Belt (SW Spain) Using Hyperspectral Imagery. Remote Sens. 2011, 3, 2166–2186. [Google Scholar] [CrossRef]
- Farrand, W.H.; Bhattacharya, S. Tracking Acid Generating Minerals and Trace Metal Spread from Mines Using Hyperspectral Data: Case Studies from Northwest India. Int. J. Remote Sens. 2021, 42, 2920–2939. [Google Scholar] [CrossRef]
- Ferrier, G.; Rumsby, B.; Pope, R. Application of Hyperspectral Remote Sensing Data in the Monitoring of the Environmental Impact of Hazardous Waste Derived from Abandoned Mine Sites. Geol. Soc. Lond. Spec. Publ. 2007, 283, 107–116. [Google Scholar] [CrossRef]
- Ong, C.C.H.; Cudahy, T.J. Mapping Contaminated Soils: Using Remotely-sensed Hyperspectral Data to Predict PH. Eur. J. Soil Sci. 2014, 65, 897–906. [Google Scholar] [CrossRef]
- Jackisch, R.; Lorenz, S.; Zimmermann, R.; Möckel, R.; Gloaguen, R. Drone-Borne Hyperspectral Monitoring of Acid Mine Drainage: An Example from the Sokolov Lignite District. Remote Sens. 2018, 10, 385. [Google Scholar] [CrossRef]
- Notesco, G.; Kopačková, V.; Rojík, P.; Schwartz, G.; Livne, I.; Dor, E. Ben Mineral Classification of Land Surface Using Multispectral LWIR and Hyperspectral SWIR Remote-Sensing Data. A Case Study over the Sokolov Lignite Open-Pit Mines, the Czech Republic. Remote Sens. 2014, 6, 7005–7025. [Google Scholar] [CrossRef]
- Kopačková, V. Using Multiple Spectral Feature Analysis for Quantitative PH Mapping in a Mining Environment. Int. J. Appl. Earth Obs. Geoinf. 2014, 28, 28–42. [Google Scholar] [CrossRef]
- Kopackova, V.; Chevrel, S.; Bourguignon, A.; Rojik, P. Mapping Hazardous Low-PH Material in Mining Environment: Multispectral and Hyperspectral Aproaches. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Munich, Germany, 22–27 July 2012; pp. 2695–2698. [Google Scholar] [CrossRef]
- Mielke, C.; Boesche, N.; Rogass, C.; Kaufmann, H.; Gauert, C.; de Wit, M. Spaceborne Mine Waste Mineralogy Monitoring in South Africa, Applications for Modern Push-Broom Missions: Hyperion/OLI and EnMAP/Sentinel-2. Remote Sens. 2014, 6, 6790–6816. [Google Scholar] [CrossRef]
- Chalkley, R.; Crane, R.A.; Eyre, M.; Hicks, K.; Jackson, K.-M.; Hudson-Edwards, K.A. A Multi-Scale Feasibility Study into Acid Mine Drainage (AMD) Monitoring Using Same-Day Observations. Remote Sens. 2022, 15, 76. [Google Scholar] [CrossRef]
- Davies, G.E.; Calvin, W.M. Mapping Acidic Mine Waste with Seasonal Airborne Hyperspectral Imagery at Varying Spatial Scales. Environ. Earth Sci. 2017, 76, 432. [Google Scholar] [CrossRef]
- Koellner, N. ReMon—Remote Monitoring of Tailings Using Satellites and Drones. Available online: https://www.gfz-potsdam.de/en/section/remote-sensing-and-geoinformatics/projects/remon/ (accessed on 27 April 2020).
- Hildebrand, J.C. Acid Mine Drainage and Tailing Monitoring Using Satellite Imagery for VMS-Type Deposits in the Republic of Cyprus; Scientific Technical Report STR; 22/08; Humboldt University: Berlin, Germany, 2022. [Google Scholar]
- Koerting, F.M. Hybrid Imaging Spectroscopy Approaches for Open Pit Mining—Applications for Virtual Mine Face Geology. Ph.D. Thesis, University of Potsdam, Potsdam, Germany, 2021. [Google Scholar]
- Koerting, F.; Rogass, C.; Koellner, N.; Horning, M.; Altenberger, U. Mineral Spectra and Chemistry of 37 Copper-Bearing Surface Samples from Apliki Copper-Gold-Pyrite Mine in the Republic of Cyprus; GFZ Data Services: Potsdam, Germany, 2019. [Google Scholar]
- Koerting, F.; Koellner, N.; Mielke, C.; Rogass, C.; Kuras, A.; Altenberger, U.; Kaestner, F.; Hildebrand, C. Hyperspectral Imaging Data of the Northern Mine Face and of Laboratory Samples of the Copper-Gold-Pyrite Mine Apliki, Nicosia District, Republic of Cyprus; GFZ Data Services: Potsdam, Germany, 2021. [Google Scholar]
- Gläßer, C.; Groth, D.; Frauendorf, J. Monitoring of Hydrochemical Parameters of Lignite Mining Lakes in Central Germany Using Airborne Hyperspectral Casi-Scanner Data. Int. J. Coal Geol. 2011, 86, 40–53. [Google Scholar] [CrossRef]
- Swayze, G.A.; Kokaly, R.F.; Higgins, C.T.; Clinkenbeard, J.P.; Clark, R.N.; Lowers, H.A.; Sutley, S.J. Mapping Potentially Asbestos-Bearing Rocks Using Imaging Spectroscopy. Geology 2009, 37, 763–766. [Google Scholar] [CrossRef]
- Bruno, R.; Kasmaeeyazdi, S.; Tinti, F.; Mandanici, E.; Balomenos, E. Spatial Component Analysis to Improve Mineral Estimation Using Sentinel-2 Band Ratio: Application to a Greek Bauxite Residue. Minerals 2021, 11, 549. [Google Scholar] [CrossRef]
- Pfitzner, K.S.; Harford, A.J.; Whiteside, T.G.; Bartolo, R.E. Mapping Magnesium Sulfate Salts from Saline Mine Discharge with Airborne Hyperspectral Data. Sci. Total Environ. 2018, 640–641, 1259–1271. [Google Scholar] [CrossRef]
- Yin, F.; Wu, M.; Liu, L.; Zhu, Y.; Feng, J.; Yin, D.; Yin, C.; Yin, C. Predicting the Abundance of Copper in Soil Using Reflectance Spectroscopy and GF5 Hyperspectral Imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102420. [Google Scholar] [CrossRef]
- Mars, J.C.; Crowley, J.K. Mapping Mine Wastes and Analyzing Areas Affected by Selenium-Rich Water Runoff in Southeast Idaho Using AVIRIS Imagery and Digital Elevation Data. Remote Sens. Environ. 2003, 84, 422–436. [Google Scholar] [CrossRef]
- Kasmaeeyazdi, S.; Dinelli, E.; Braga, R. Mapping Co–Cr–Cu and Fe Occurrence in a Legacy Mining Waste Using Geochemistry and Satellite Imagery Analyses. Appl. Sci. 2022, 12, 1928. [Google Scholar] [CrossRef]
- Kasmaeeyazdi, S.; Braga, R.; Tinti, F.; Mandanici, E. Mapping Bauxite Mining Residues Using Remote Sensing Techniques. Mater. Proc. 2021, 5, 91. [Google Scholar]
- Choe, E.; van der Meer, F.; van Ruitenbeek, F.; van der Werff, H.; de Smeth, B.; Kim, K.-W. Mapping of Heavy Metal Pollution in Stream Sediments Using Combined Geochemistry, Field Spectroscopy, and Hyperspectral Remote Sensing: A Case Study of the Rodalquilar Mining Area, SE Spain. Remote Sens. Environ. 2008, 112, 3222–3233. [Google Scholar] [CrossRef]
- Kayet, N.; Pathak, K.; Chakrabarty, A.; Kumar, S.; Chowdary, V.M.; Singh, C.P.; Sahoo, S.; Basumatary, S. Assessment of Foliar Dust Using Hyperion and Landsat Satellite Imagery for Mine Environmental Monitoring in an Open Cast Iron Ore Mining Areas. J. Clean. Prod. 2019, 218, 993–1006. [Google Scholar] [CrossRef]
- Ong, C.C.H.; Cudahy, T.J.; Caccetta, M.S.; Piggott, M.S. Deriving Quantitative Dust Measurements Related to Iron Ore Handling from Airborne Hyperspectral Data. Min. Technol. 2003, 112, 158–163. [Google Scholar] [CrossRef]
- Pascucci, S.; Belviso, C.; Cavalli, R.M.; Palombo, A.; Pignatti, S.; Santini, F. Using Imaging Spectroscopy to Map Red Mud Dust Waste: The Podgorica Aluminum Complex Case Study. Remote Sens. Environ. 2012, 123, 139–154. [Google Scholar] [CrossRef]
- Maurais, J.; Orban, F.; Dauphinais, E.; Ayotte, P. Monitoring Moisture Content and Evaporation Kinetics from Mine Slurries through Albedo Measurements to Help Predict and Prevent Dust Emissions. R. Soc. Open Sci. 2021, 8, 210414. [Google Scholar] [CrossRef]
- Ogen, Y.; Denk, M.; Glaesser, C.; Eichstaedt, H. A Novel Method for Predicting the Geochemical Composition of Tailings with Laboratory Field and Hyperspectral Airborne Data Using a Regression and Classification-Based Approach. Eur. J. Remote Sens. 2022, 55, 453–470. [Google Scholar] [CrossRef]
- Merrill, J.; Voisin, L. Application of the HyLogger-3 to the Characterization of Mineral and Metallurgical Residues. In Proceedings of the APCOM 2015, Fairbanks, AK, USA, 23–27 May 2015. [Google Scholar]
- He, J.; DuPlessis, L.; Barton, I. Heap Leach Pad Mapping with Drone-Based Hyperspectral Remote Sensing at the Safford Copper Mine, Arizona. Hydrometallurgy 2022, 211, 105872. [Google Scholar] [CrossRef]
- He, J.; Barton, I. Hyperspectral Remote Sensing for Detecting Geotechnical Problems at Ray Mine. Eng. Geol. 2021, 292, 106261. [Google Scholar] [CrossRef]
- Guan, R.; Li, Z.; Li, T.; Li, X.; Yang, J.; Chen, W. Classification of Heterogeneous Mining Areas Based on ResCapsNet and Gaofen-5 Imagery. Remote Sens. 2022, 14, 3216. [Google Scholar] [CrossRef]
- Zhang, B.; Wu, D.; Zhang, L.; Jiao, Q.; Li, Q. Application of Hyperspectral Remote Sensing for Environment Monitoring in Mining Areas. Environ. Earth Sci. 2012, 65, 649–658. [Google Scholar] [CrossRef]
- Buczyńska, A.; Blachowski, J.; Bugajska-Jędraszek, N. Analysis of Post-Mining Vegetation Development Using Remote Sensing and Spatial Regression Approach: A Case Study of Former Babina Mine (Western Poland). Remote Sens. 2023, 15, 719. [Google Scholar] [CrossRef]
- Weiersbye, I.; Margalit, N.; Feingersh, T.; Revivo, G.; Stark, R.; Zur, Y.; Heller, D.; Braun, O.; Cukrowska, E. Use of Airborne Hyper-Spectral Remote Sensing (HSRS) to Focus Remediation and Monitor Vegetation Processes on Gold Mining Landscapes in South Africa. In Proceedings of the First International Seminar on Mine Closure, Perth, Australia, 13–15 September 2006; pp. 601–611. [Google Scholar]
- Song, W.; Song, W.; Gu, H.; Li, F. Progress in the Remote Sensing Monitoring of the Ecological Environment in Mining Areas. Int. J. Environ. Res. Public Health 2020, 17, 1846. [Google Scholar] [CrossRef]
- Götze, C.; Beyer, F.; Gläßer, C. Pioneer Vegetation as an Indicator of the Geochemical Parameters in Abandoned Mine Sites Using Hyperspectral Airborne Data. Environ. Earth Sci. 2016, 75, 613. [Google Scholar] [CrossRef]
- Pi-Puig, T.; Solé, J.; Gómez Cruz, A. Mineralogical Study and Genetic Model of Efflorescent Salts and Crusts from Two Abandoned Tailings in the Taxco Mining District, Guerrero (Mexico). Minerals 2020, 10, 871. [Google Scholar] [CrossRef]
- Fernandes, G.W.; Goulart, F.F.; Ranieri, B.D.; Coelho, M.S.; Dales, K.; Boesche, N.; Bustamante, M.; Carvalho, F.A.; Carvalho, D.C.; Dirzo, R.; et al. Deep into the Mud: Ecological and Socio-Economic Impacts of the Dam Breach in Mariana, Brazil. Nat. Conserv. 2016, 14, 35–45. [Google Scholar] [CrossRef]
- Percival, J.B.; White, H.P.; Goodwin, T.A.; Parsons, M.B.; Smith, P.K. Mineralogy and Spectral Reflectance of Soils and Tailings from Historical Gold Mines, Nova Scotia. Geochem. Explor. Environ. Anal. 2014, 14, 3–16. [Google Scholar] [CrossRef]
- Booysen, R.; Jackisch, R.; Lorenz, S.; Zimmermann, R.; Kirsch, M.; Nex, P.A.M.; Gloaguen, R. Detection of REEs with Lightweight UAV-Based Hyperspectral Imaging. Sci. Rep. 2020, 10, 17450. [Google Scholar] [CrossRef] [PubMed]
- Jackisch, R.; Madriz, Y.; Zimmermann, R.; Pirttijärvi, M.; Saartenoja, A.; Heincke, B.H.; Salmirinne, H.; Kujasalo, J.-P.; Andreani, L.; Gloaguen, R. Drone-Borne Hyperspectral and Magnetic Data Integration: Otanmäki Fe-Ti-V Deposit in Finland. Remote Sens. 2019, 11, 2084. [Google Scholar] [CrossRef]
- JuanManuel, J.R.; Padua, L.; Hruska, J.; Feito, F.R.; Sousa, J.J. An Efficient Method for Generating UAV-Based Hyperspectral Mosaics Using Push-Broom Sensors. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 6515–6531. [Google Scholar] [CrossRef]
- Goldstein, N.; Wiggins, R.; Woodman, P.; Saleh, M.; Nakanishi, K.; Fox, M.E.; Tannian, B.E.; Ziph-Schatzberg, L.; Soletski, P. Compact Visible to Extended-SWIR Hyperspectral Sensor for Unmanned Aircraft Systems (UAS). In Proceedings of the Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXIV, Orlando, FL, USA, 17–19 April 2018; Messinger, D.W., Velez-Reyes, M., Eds.; SPIE: Bellingham, WA, USA, 2018; p. 52. [Google Scholar]
- Chi, J. High-Resolution Hyperspectral Images of Council, Alaska 2019; Arctic Data Center: Motown, Norway, 2021. [Google Scholar]
- EASA. Commission Implementing Regulation (EU) 2019/947 on the Rules and Procedures for the Operation of Unmanned Aircraft; EASA: Cologne, Germany, 2019.
- EASA European Union Safety Agency. Available online: https://www.easa.europa.eu/en/regulations/unmanned-aircraft-systems-uas (accessed on 18 January 2024).
- EASA. Commission Implementing Regulation (EU) 2020/746 of 4 June 2020 Amending Implementing Regulation (EU) 2019/947 as Regards Postponing Dates of Application of Certain Measures in the Context of the COVID-19 Pandemic; EASA: Cologne, Germany, 2020.
- ICAO International Civil Aviation Organization. Available online: https://www.icao.int/Pages/default.aspx (accessed on 18 January 2024).
- Arroyo-Mora, J.P.; Kalacska, M.; Inamdar, D.; Soffer, R.; Lucanus, O.; Gorman, J.; Naprstek, T.; Schaaf, E.S.; Ifimov, G.; Elmer, K.; et al. Implementation of a UAV–Hyperspectral Pushbroom Imager for Ecological Monitoring. Drones 2019, 3, 12. [Google Scholar] [CrossRef]
- Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P.J. Quantitative Remote Sensing at Ultra-High Resolution with UAV Spectroscopy: A Review of Sensor Technology, Measurement Procedures, and Data Correctionworkflows. Remote Sens. 2018, 10, 1091. [Google Scholar] [CrossRef]
- Schläpfer, D.; Trim, S. PARGE Version 4.0 Software releaser 2024, Software Release Notice. Available online: https://parge.com/parge-4-0-is-released/ (accessed on 4 April 2024).
- Kurz, T.H.; Buckley, S.J.; Howell, J.A.; Schneider, D. Close Range Hyperspectral and Lidar Data Integration for Geological Outcrop Analysis. In Proceedings of the 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Grenoble, France, 26–28 August 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 1–4. [Google Scholar]
- Sima, A.A.; Buckley, S.J.; Kurz, T.H.; Schneider, D. Semi-Automated Registration of Close-Range Hyperspectral Scans Using Oriented Digital Camera Imagery and a 3d Model. Photogramm. Rec. 2014, 29, 10–29. [Google Scholar] [CrossRef]
- Rosa, D.; Dewolfe, M.; Guarnieri, P.; Kolb, J.; LaFlamme, C.; Partin, C.; Salehi, S.; Sørensen, E.V.; Thaarup, S.; Thrane, K.; et al. Architecture and Mineral Potential of the Paleoproterozoic Karrat Group, West Greenland: Results of the 2016 Season; GEUS Rapport 2017/5; GEUS, Geological Survey of Denmark and Greenland: Copenhagen, Denmark, 2017. [Google Scholar]
- Kirsch, M.; Lorenz, S.; Zimmermann, R.; Tusa, L.; Möckel, R.; Hödl, P.; Booysen, R.; Khodadadzadeh, M.; Gloaguen, R. Integration of Terrestrial and Drone-Borne Hyperspectral and Photogrammetric Sensing Methods for Exploration Mapping and Mining Monitoring. Remote Sens. 2018, 10, 1366. [Google Scholar] [CrossRef]
- Salehi, S.; Lorenz, S.; Sørensen, E.V.; Zimmermann, R.; Fensholt, R.; Heincke, B.H.; Kirsch, M.; Gloaguen, R. Integration of Vessel-Based Hyperspectral Scanning and 3D-Photogrammetry for Mobile Mapping of Steep Coastal Cliffs in the Arctic. Remote Sens. 2018, 10, 175. [Google Scholar] [CrossRef]
- Thiele, S.T.; Lorenz, S.; Kirsch, M.; Gloaguen, R. A Novel and Open-Source Illumination Correction for Hyperspectral Digital Outcrop Models. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5511612. [Google Scholar] [CrossRef]
- Lorenz, S.; Salehi, S.; Kirsch, M.; Zimmermann, R.; Unger, G.; Sørensen, E.V.; Gloaguen, R. Radiometric Correction and 3D Integration of Long-Range Ground-Based Hyperspectral Imagery for Mineral Exploration of Vertical Outcrops. Remote Sens. 2018, 10, 176. [Google Scholar] [CrossRef]
- Schläpfer, D.; Richter, R.; Popp, C.; Nygren, P. DROACOR® Reflectance Retrieval for Hyperspectral Mineral Exploration Using a Ground-Based Rotating Platforms. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, XLIII-B3-2, 209–214. [Google Scholar] [CrossRef]
- Schläpfer, D.; Raebsamen, J.; Popp, C.; Richter, R.; Trim, S.A.; Vögtli, M. Droacor Topographic Correction Method with Adaptive Diffuse Irradiance Based Shadow Correction. In Proceedings of the IGARSS 2023—2023 IEEE International Geoscience and Remote Sensing Symposium, Pasadena, CA, USA, 16–21 July 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 7332–7335. [Google Scholar]
- Schläpfer, D.; Popp, C.; Richter, R. Drone Data Atmospheric Correction Concept for Multi- and Hyperspectral Imager—The DROACOR Model. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B3-2, 473–478. [Google Scholar] [CrossRef]
- Emde, C.; Buras-Schnell, R.; Kylling, A.; Mayer, B.; Gasteiger, J.; Hamann, U.; Kylling, J.; Richter, B.; Pause, C.; Dowling, T.; et al. The LibRadtran Software Package for Radiative Transfer Calculations (Version 2.0.1). Geosci. Model Dev. 2016, 9, 1647–1672. [Google Scholar] [CrossRef]
- Demetriades, A. Basic Considerations: Sampling, the Key for a Successful Applied Geochemical Survey for Mineral Exploration and Environmental Purposes. In Treatise on Geochemistry; Elsevier: Amsterdam, The Netherlands, 2014; pp. 1–31. [Google Scholar]
- Chan, M.; Mogk, D. Establishing an Ethic of Sampling for Future Generations of Geoscientists. GSA Today 2023, 33, 16–18. [Google Scholar] [CrossRef]
- Blumberg, A.; Schodlok, M.C. The Synergistic Use of Multi-Scale Remote Sensing Data for the Identification of Hydrothermal Alteration Patterns in Los Frailes, Spain. Int. J. Appl. Earth Obs. Geoinf. 2022, 114, 103034. [Google Scholar] [CrossRef]
- Asadzadeh, S.; de Souza Filho, C.R.; Nanni, M.R.; Batezelli, A. Multi-Scale Mapping of Oil-Sands in Anhembi (Brazil) Using Imaging Spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101894. [Google Scholar] [CrossRef]
- Kruse, F.A.; Bedell, R.L.; Taranik, J.V.; Peppin, W.A.; Weatherbee, O.; Calvin, W.M. Mapping Alteration Minerals at Prospect, Outcrop and Drill Core Scales Using Imaging Spectrometry. Int. J. Remote Sens. 2012, 33, 1780–1798. [Google Scholar] [CrossRef]
- Fridman, A.; Høye, G.; Løke, T. Resampling in Hyperspectral Cameras as an Alternative to Correcting Keystone in Hardware, with Focus on Benefits for Optical Design and Data Quality. Opt. Eng. 2014, 53, 053107. [Google Scholar] [CrossRef]
- Høye, G.; Løke, T.; Fridman, A. Method for Quantifying Image Quality in Push-Broom Hyperspectral Cameras. Opt. Eng. 2015, 54, 053102. [Google Scholar] [CrossRef]
- Parbhakar-Fox, A.; Baumgartner, R. Action Versus Reaction: How Geometallurgy Can Improve Mine Waste Management Across the Life-Of-Mine. Elements 2023, 19, 371–376. [Google Scholar] [CrossRef]
- Parbhakar-Fox, A. Reinventing the Wheel: The Environmental Geometallurgy Matrix and Its Supporting Tools. In Proceedings of the Procemin-GEOMET 2019, 15th International Mineral Processing Conference, 6th International Seminar on Geometallurgy, Santiago, Chile, 20–22 November 2019; p. 9. [Google Scholar]
- Kasmaeeyazdi, S.; Mandanici, E.; Balomenos, E.; Tinti, F.; Bonduà, S.; Bruno, R. Mapping of Aluminum Concentration in Bauxite Mining Residues Using Sentinel-2 Imagery. Remote Sens. 2021, 13, 1517. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Shen, Q. Spectral-Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network. Remote Sens. 2017, 9, 67. [Google Scholar] [CrossRef]
- Dalm, M.; Buxton, M.W.N.; Van Ruitenbeek, F.J.A.; Voncken, J.H.L. Application of Near-Infrared Spectroscopy to Sensor Based Sorting of a Porphyry Copper Ore. Miner. Eng. 2014, 58, 7–16. [Google Scholar] [CrossRef]
- Dalm, M.; Buxton, M.W.N.; van Ruitenbeek, F.J.A. Discriminating Ore and Waste in a Porphyry Copper Deposit Using Short-Wavelength Infrared (SWIR) Hyperspectral Imagery. Miner. Eng. 2017, 105, 10–18. [Google Scholar] [CrossRef]
- Lypaczewski, P.; Rivard, B. Estimating the Mg# and AlVI Content of Biotite and Chlorite from Shortwave Infrared Reflectance Spectroscopy: Predictive Equations and Recommendations for Their Use. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 116–126. [Google Scholar] [CrossRef]
- Cudahy, T. Mineral Mapping for Exploration: An Australian Journey of Evolving Spectral Sensing Technologies and Industry Collaboration. Geosciences 2016, 6, 52. [Google Scholar] [CrossRef]
- Salles, R.d.R.; de Souza Filho, C.R.; Cudahy, T.; Vicente, L.E.; Monteiro, L.V.S. Hyperspectral Remote Sensing Applied to Uranium Exploration: A Case Study at the Mary Kathleen Metamorphic-Hydrothermal U-REE Deposit, NW, Queensland, Australia. J. Geochem. Explor. 2017, 179, 36–50. [Google Scholar] [CrossRef]
- Haest, M.; Cudahy, T.; Laukamp, C.; Gregory, S. Quantitative Mineralogy from Infrared Spectroscopic Data. II. Three-Dimensional Mineralogical Characterization of the Rocklea Channel Iron Deposit, Western Australia. Econ. Geol. 2012, 107, 229–249. [Google Scholar] [CrossRef]
- Haest, M.; Cudahy, T.; Rodger, A.; Laukamp, C.; Martens, E.; Caccetta, M. Unmixing the Effects of Vegetation in Airborne Hyperspectral Mineral Maps over the Rocklea Dome Iron-Rich Palaeochannel System (Western Australia). Remote Sens. Environ. 2013, 129, 17–31. [Google Scholar] [CrossRef]
Name (Service Provider/Brand/Name of Instrument) | Wavelength Range | Type of Data Acquisition | Spectral Bands and Sampling | Source (Accessed on DD/MM/YY) |
---|---|---|---|---|
NEO/HySpex Mjolnir VS-620 | VNIR (400–1000 nm) SWIR (970–2500 nm) | Pushbroom | 200 bands @ 3 nm; 300 bands @ 5.1 nm | https://www.hyspex.com/hyspex-turnkey-solutions/uav/ (accessed on 1 March 2024) |
Headwall Nano HP | VNIR (400–1000 nm) | 340 bands @ 1.76 nm | https://headwallphotonics.com/products/remote-sensing/nano-hp-400-1000nm-hyperspectral-imaging-package/ (accessed on 1 March 2024) | |
Headwall Micro 640 | SWIR (900–2500 nm) | 267 bands @ 6 nm | https://headwallphotonics.com/products/remote-sensing/swir-640-900-2500nm-hyperspectral-imaging-package/ (accessed on 1 March 2024) | |
Headwall Co-Aligned HP | VNIR (400–1000 nm) SWIR (900–2500 nm | 340 bands @ 1.76 nm; 267 bands @ 6 nm | https://headwallphotonics.com/products/remote-sensing/co-aligned-hp-400-2500nm-hyperspectral-imaging-package/ (accessed on 1 March 2024) | |
Specim AFX10 | VNIR (400–1000 nm) | 224 bands @ 2.68 nm | https://www.specim.com/products/specim-afx10/ (accessed on 1 March 2024) | |
Specim AFX17 | VIS-NIR (400–1700 nm) | 224 bands @ 3.5 nm | https://www.specim.com/products/specim-afx17/ (accessed on 1 March 2024) | |
Resonon Pika L | VNIR (400–1000 nm) | 281 bands @ 2.7 nm | https://resonon.com/Pika-L (accessed on 1 March 2024) | |
Resonon Pika IR-L | NIR (925–1700 nm | 236 bands @ 5.9 nm | https://resonon.com/Pika-IR-L (accessed on 1 March 2024) | |
BaySpec OCI-UAV | VNIR (600–1000 nm) | Pushbroom and snapshot | 100 bands @ 5 nm | https://www.bayspec.com/news/bayspec-introduces-ultra-miniaturized-hyperspectral-imager/ (accessed on 1 March 2024) |
Senop Rikola | VNIR (500–900 nm) | Frame-based snapshot | 50 bands @ 8 nm | https://senop.fi/optics-imaging/hyperspectral-imaging/ (accessed on 1 March 2024) |
Senop HSC-2 | VNIR (500–900 nm) | up to 1000 freely selectable bands @ 6–18 nm, | https://senop.fi/optics-imaging/hyperspectral-imaging/ (accessed on 1 March 2024) | |
Cubert GmbH ULTRIS X20 | UV-VNIR (350–1000 nm) | Snapshot | 164 bands @ 4 nm | https://cubert-hyperspectral.com/en/ultris-x20/ (accessed on 1 March 2024) |
Telops Hyper-Cam Nano (announced April 2024) | VIS–NIR (400–1700 nm) | No information available | No information available | https://www.exosens.com/products/high-performance-fast-cameras (accessed on 1 March 2024) |
Haip Solutions—Black Bird 2 | VNIR (500–1000 nm) | Hovering Linescanner | 100 bands @ 5 nm | https://www.haip-solutions.com/hyperspectral-cameras/hyperspectral-camera-drone/ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koerting, F.; Asadzadeh, S.; Hildebrand, J.C.; Savinova, E.; Kouzeli, E.; Nikolakopoulos, K.; Lindblom, D.; Koellner, N.; Buckley, S.J.; Lehman, M.; et al. VNIR-SWIR Imaging Spectroscopy for Mining: Insights for Hyperspectral Drone Applications. Mining 2024, 4, 1013-1057. https://doi.org/10.3390/mining4040057
Koerting F, Asadzadeh S, Hildebrand JC, Savinova E, Kouzeli E, Nikolakopoulos K, Lindblom D, Koellner N, Buckley SJ, Lehman M, et al. VNIR-SWIR Imaging Spectroscopy for Mining: Insights for Hyperspectral Drone Applications. Mining. 2024; 4(4):1013-1057. https://doi.org/10.3390/mining4040057
Chicago/Turabian StyleKoerting, Friederike, Saeid Asadzadeh, Justus Constantin Hildebrand, Ekaterina Savinova, Evlampia Kouzeli, Konstantinos Nikolakopoulos, David Lindblom, Nicole Koellner, Simon J. Buckley, Miranda Lehman, and et al. 2024. "VNIR-SWIR Imaging Spectroscopy for Mining: Insights for Hyperspectral Drone Applications" Mining 4, no. 4: 1013-1057. https://doi.org/10.3390/mining4040057
APA StyleKoerting, F., Asadzadeh, S., Hildebrand, J. C., Savinova, E., Kouzeli, E., Nikolakopoulos, K., Lindblom, D., Koellner, N., Buckley, S. J., Lehman, M., Schläpfer, D., & Micklethwaite, S. (2024). VNIR-SWIR Imaging Spectroscopy for Mining: Insights for Hyperspectral Drone Applications. Mining, 4(4), 1013-1057. https://doi.org/10.3390/mining4040057