Kinetic Model Evaluation of Arsenic and Selenium Sources in Waste Rock of the Powder River Basin, USA
Abstract
:1. Introduction
1.1. Powder River Basin Waste Rock
1.2. Arsenic and Selenium Sources
1.3. Kinetic Modeling
2. Materials and Methods
2.1. Collection of Waste Rock for the Column Experiment
2.2. X-ray Analysis of Arsenic and Selenium Sources
2.3. Column Experiment
2.4. Particle Size and ζ Potential
2.5. Kinetic Models and Parameters
3. Results and Discussion
3.1. Arsenic and Selenium Source Identification
3.2. Waste Rock Column Arsenic and Selenium Release
3.3. Initial Arsenic Model vs. Column Experiment
3.4. Enhanced Arsenic Model vs. the Column Experiment
3.5. Initial Selenium Model vs. the Column Experiment
3.6. Enhanced Selenium Model vs. the Column Experiment
4. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koch, D.H. Predicting the Impact of Spoils on Ground-Water Quality. Ground. Monit. Remed. 1983, 3, 42–45. [Google Scholar] [CrossRef]
- Van Voast, W.A.; Reiten, J.C. Ground-Water Changes near Montana Coal Mines; Montana State University: Billings, MT, USA, 1990. [Google Scholar]
- McCullough, C.D.; Marchand, G.; Unseld, J. Mine Closure of Pit Lakes as Terminal Sinks: Best Available Practice When Options Are Limited? Mine Water Environ. 2013, 32, 302–313. [Google Scholar] [CrossRef]
- Petavratzi, E.; Kingman, S.; Lowndes, I. Particulates from Mining Operations: A Review of Sources, Effects and Regulations. Miner. Eng. 2005, 18, 1183–1199. [Google Scholar] [CrossRef]
- Molins, S.; Knabner, P. Multiscale Approaches in Reactive Transport Modeling. Rev. Mineral. Geochem. 2019, 85, 27–48. [Google Scholar] [CrossRef]
- Steefel, C.I. Reactive Transport at the Crossroads. In Reactive Transport in Natural and Engineered Systems; De Gruyter: Berlin, Germany, 2020; pp. 1–26. ISBN 978-1-5015-1200-1. [Google Scholar]
- Corona Sánchez, J.E.; González Chávez, M.C.A.; Carrillo González, R.; Scheckel, K.; Tapia Maruri, D.; García Cue, J.L. Metal(Loid) Bioaccessibility of Atmospheric Particulate Matter from Mine Tailings at Zimapan, Mexico. Environ. Sci. Pollut. Res. 2021, 28, 19458–19472. [Google Scholar] [CrossRef] [PubMed]
- Schindler, M.; Santosh, M.; Dotto, G.; Silva, L.F.O.; Hochella, M.F. A Review on Pb-Bearing Nanoparticles, Particulate Matter and Colloids Released from Mining and Smelting Activities. Gondwana Res. 2022, 110, 330–346. [Google Scholar] [CrossRef]
- Hoy, R.; Ogle, K.; Taylor, M. Evaluation of Water Quality Conditions in Coal Mine Backfill in the Powder River Basin of Wyoming. J. Am. Soc. Min. Reclam. 2003, 427–447. [Google Scholar] [CrossRef]
- Hochella, M.F., Jr.; Lower, S.K.; Maurice, P.A.; Penn, R.L.; Sahai, N.; Sparks, D.L.; Twining, B.S. Nanominerals, Mineral Nanoparticles, and Earth Systems. Science 2008, 319, 1631–1635. [Google Scholar] [CrossRef]
- Dosseto, A.; Turner, S.P.; Chappell, J. The Evolution of Weathering Profiles through Time: New Insights from Uranium-Series Isotopes. Earth Planet. Sci. Lett. 2008, 274, 359–371. [Google Scholar] [CrossRef]
- Kim, C.S.; Wilson, K.M.; Rytuba, J.J. Particle-Size Dependence on Metal(Loid) Distributions in Mine Wastes: Implications for Water Contamination and Human Exposure. Appl. Geochem. 2011, 26, 484–495. [Google Scholar] [CrossRef]
- Nordstrom, D.K. Sulfide Mineral Oxidation. In Encyclopedia of Geobiology; Reitner, J., Thiel, V., Eds.; Encyclopedia of Earth Sciences Series; Springer: Dordrecht, The Netherlands, 2011; pp. 856–858. ISBN 978-1-4020-9211-4. [Google Scholar]
- Hochella, M.F., Jr.; Mogk, D.W.; Ranville, J.; Allen, I.C.; Luther, G.W.; Marr, L.C.; McGrail, B.P.; Murayama, M.; Qafoku, N.P.; Rosso, K.M.; et al. Natural, Incidental, and Engineered Nanomaterials and Their Impacts on the Earth System. Science 2019, 363, aau8299. [Google Scholar] [CrossRef] [PubMed]
- Warrender, R.; Bowell, R.; Prestia, A.; Barnes, A.; Mansanares, W.; Miller, M. The Application of Predictive Geochemical Modelling to Determine Backfill Requirements at Turquoise Ridge Joint Venture, Nevada. Geochem. Explor. Environ. Anal. 2012, 12, 339–347. [Google Scholar] [CrossRef]
- Huisamen, A.; Wolkersdorfer, C. Modelling the Hydrogeochemical Evolution of Mine Water in a Decommissioned Opencast Coal Mine. Int. J. Coal Geol. 2016, 164, 3–12. [Google Scholar] [CrossRef]
- Qi, W.; Huang, Y.; He, H.; Zhang, J.; Li, J.; Qiao, M. Potential Pollution of Groundwater by Dissolution and Release of Contaminants Due to Using Gangue for Backfilling. Mine Water Environ. 2019, 38, 281–293. [Google Scholar] [CrossRef]
- Langman, J.B.; Moore, M.L.; Ptacek, C.J.; Smith, L.; Sego, D.; Blowes, D.W. Diavik Waste Rock Project: Evolution of Mineral Weathering, Element Release, and Acid Generation and Neutralization during a Five-Year Humidity Cell Experiment. Minerals 2014, 4, 257–278. [Google Scholar] [CrossRef]
- Hawkins, J.W. Predictability of Surface Mine Spoil Hydrologic Properties in the Appalachian Plateau. Groundwater 2004, 42, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.P.; Anderson, R.S.; Hinckley, E.-L.S.; Kelly, P.; Blum, A. Exploring Weathering and Regolith Transport Controls on Critical Zone Development with Models and Natural Experiments. Appl. Geochem. 2011, 26, S3–S5. [Google Scholar] [CrossRef]
- Ehlen, J. Above the Weathering Front: Contrasting Approaches to the Study and Classification of Weathered Mantle. Geomorphology 2005, 67, 7–21. [Google Scholar] [CrossRef]
- Wellen, C.C.; Shatilla, N.J.; Carey, S.K. Regional Scale Selenium Loading Associated with Surface Coal Mining, Elk Valley, British Columbia, Canada. Sci. Total Environ. 2015, 532, 791–802. [Google Scholar] [CrossRef]
- White, A.F.; Brantley, S.L. Chemical Weathering Rates of Silicate Minerals: An Overview. Rev. Mineral. Geochem. 1995, 31, 1–22. [Google Scholar]
- Yoo, K.; Mudd, S.M. Discrepancy between Mineral Residence Time and Soil Age: Implications for the Interpretation of Chemical Weathering Rates. Geology 2008, 36, 35–38. [Google Scholar] [CrossRef]
- Acero, P.; Ayora, C.; Carrera, J.; Saaltink, M.W.; Olivella, S. Multiphase Flow and Reactive Transport Model in Vadose Tailings. Appl. Geochem. 2009, 24, 1238–1250. [Google Scholar] [CrossRef]
- Woessner, W.W.; Andrews, C.B.; Osborne, T.J. The Impacts of Coal Strip Mining on the Hydrogeologic System of the Northern Great Plains: Case Study of Potential Impacts on the Northern Cheyenne Reservation. J. Hydrol. 1979, 43, 445–467. [Google Scholar] [CrossRef]
- St-Arnault, M.; Vriens, B.; Blaskovich, R.; Aranda, C.; Klein, B.; Ulrich Mayer, K.; Beckie, R.D. Geochemical and Mineralogical Assessment of Reactivity in a Full-Scale Heterogeneous Waste-Rock Pile. Miner. Eng. 2020, 145, 106089. [Google Scholar] [CrossRef]
- Langman, J.B.; Blowes, D.W.; Sinclair, S.A.; Krentz, A.; Amos, R.T.; Smith, L.J.D.; Pham, H.N.; Sego, D.C.; Smith, L. Early Evolution of Weathering and Sulfide Depletion of a Low-Sulfur, Granitic, Waste Rock in an Arctic Climate: A Laboratory and Field Site Comparison. J. Geochem. Explor. 2015, 156, 61–71. [Google Scholar] [CrossRef]
- Langman, J.; Torso, K.; Moberly, J. Seasonal and Basinal Influences on the Formation and Transport of Dissolved Trace Metal Forms in a Mining-Impacted Riverine Environment. Hydrology 2018, 5, 35. [Google Scholar] [CrossRef]
- Harrison, A.L.; Dipple, G.M.; Song, W.; Power, I.M.; Mayer, K.U.; Beinlich, A.; Sinton, D. Changes in Mineral Reactivity Driven by Pore Fluid Mobility in Partially Wetted Porous Media. Chem. Geol. 2017, 463, 1–11. [Google Scholar] [CrossRef]
- Martin, J.; Langman, J.B. Leachate Experiments to Evaluate Weathering of Waste Rock for Backfill Aquifers in Restored Coal Mine Pits, Powder River Basin, USA. Geosciences 2024, 14, 4. [Google Scholar] [CrossRef]
- Naftz, D.L.; Rice, J.A. Geochemical Processes Controlling Selenium in Ground Water after Mining, Powder River Basin, Wyoming, U.S.A. Appl. Geochem. 1989, 4, 565–575. [Google Scholar] [CrossRef]
- Fogg, J.L.; Martin, M.W.; Daddow, P.B. Geohydrology and Potential Effects of Coal Mining in 12 Coal-Lease Areas, Powder River Structural Basin, Northeastern Wyoming; U.S. Geological Survey: Reston, VA, USA, 1991. [Google Scholar]
- Lindner-Lunsford, J.B.; Wilson, J.F., Jr. Shallow Ground Water in the Powder River Basin, Northeastern Wyoming–Description of Selected Publications, 1950-91, and Indications for Further Study; Water-Resources Investigations Report 91–4067; U.S. Geological Survey: Reston, VA, USA, 1992. [Google Scholar]
- Dreher, G.B.; Finkelman, R.B. Selenium Mobilization in a Surface Coal Mine, Powder River Basin, Wyoming, U.S.A. Environ. Geol. Water Sci. 1992, 19, 155–167. [Google Scholar] [CrossRef]
- Patz, M.J.; Reddy, K.J.; Skinner, Q.D. Trace Elements in Coalbed Methane Produced Water Interacting with Semi-Arid Ephemeral Stream Channels. Water. Air. Soil Pollut. 2006, 170, 55–67. [Google Scholar] [CrossRef]
- Yuretich, R.F.; Hickey, L.J.; Gregson, B.P.; Hsia, Y.L. Lacustrine Deposits in the Paleocene Fort Union Formation, Northern Bighorn Basin, Montana. J. Sediment. Res. 1984, 54, 836–852. [Google Scholar] [CrossRef]
- Pocknall, D.T. Paleoenvironments and Age of the Wasatch Formation (Eocene), Powder River Basin, Wyoming. PALAIOS 1987, 2, 368–376. [Google Scholar] [CrossRef]
- Lorenz, J.C.; Nadon, G.C. Braided-River Deposits in A Muddy Depositional Setting: The Molina Member of the Wasatch Formation (Paleogene), West-Central Colorado, U.S.A. J. Sediment. Res. 2002, 72, 376–385. [Google Scholar] [CrossRef]
- Larson, L.R. Ground-Water Quality in Wyoming; Water-Resources Investigations Report 84–4034; U.S. Geological Survey: Reston, VA, USA, 1984. [Google Scholar]
- Martin, L.J.; Naftz, D.L.; Lowham, H.W.; Rankl, J.G. Cumulative Potential Hydrologic Impacts of Surface Coal Mining in the Eastern Powder River Structural Basin, Northeastern Wyoming; Water-Resources Investigations Report 88–4046; U.S. Geological Survey: Reston, VA, USA, 1988. [Google Scholar]
- Colman, S.M. Rock-Weathering Rates as Functions of Time. Quat. Res. 1981, 15, 250–264. [Google Scholar] [CrossRef]
- Drever, J.I.; Clow, D.W. Weathering Rates in Catchments. In Reviews in Mineralogy and Geochemistry; White, A.F., Brantley, S.L., Eds.; Mineralogical Society of America: Washington, DC, USA, 1995; Volume 31, pp. 463–483. [Google Scholar]
- Heffern, E.L.; Coates, D.A. Geologic History of Natural Coal-Bed Fires, Powder River Basin, USA. Int. J. Coal Geol. 2004, 59, 25–47. [Google Scholar] [CrossRef]
- Luppens, J.A. A Critical Review of Published Coal Quality Data from the Southwestern Part of the Powder River Basin, Wyoming; U.S. Geological Survey: Reston, VA, USA, 2011. [Google Scholar]
- McClurg, J.E. Peat Forming Wetlands and the Thick Powder River Basin Coals. In 39th Field Conference Guidebook; Eastern Powder River Basin-Black Hills; Wyoming Geological Association: Casper, WY, USA, 1988; pp. 29–236. [Google Scholar]
- Moore, T.A. The Effects of Clastic Sedimentation on Organic Facies Development within a Tertiary Subbituminous Coal Bed, Powder River Basin, Montana, U.S.A. Int. J. Coal Geol. 1991, 18, 187–209. [Google Scholar] [CrossRef]
- Ellis, M.S. Quality of Economically Extractable Coal Beds in the Gillette Coal Field as Compared with Other Tertiary Coal Beds in the Powder River Basin, Wyoming and Montana; Open-File Report; U.S. Geological Survey: Reston, VA, USA, 2002. [Google Scholar]
- See, R.B.; Reddy, K.J.; Vance, G.F.; Fadlelmawla, A.A.; Blaylock, M.J. Geochemical Processes and the Effects of Natural Organic Solutes on the Solubility of Selenium in Coal-Mine Backfill Samples from the Powder River Basin, Wyoming; Water-Resources Investigations Report 95–4200; U.S. Geological Survey: Reston, VA, USA, 1995. [Google Scholar]
- Reed, S.M.; Singh, R.N. Groundwater Recovery Problems Associated with Opencast Mine Backfills in the United Kingdom. Int. J. Mine Water 1986, 5, 47–73. [Google Scholar] [CrossRef]
- Reddy, K.J.; Zhang, Z.; Vance, G.F. Selenite and Selenate Determination in Surface Coal Mine Backfill Ground Water. In Proceedings of the 12th Annual National Meeting of the American Society for Surface Mining and Reclamation, Gillette, WY, USA, 3–8 June 1995; pp. 237–245. [Google Scholar]
- Vance, G.F.; See, R.B.; Reddy, K.J. Selenite Sorption by Coal Mine Backfill Materials in the Presence of Organic Solutes. In Environmental Chemistry of Selenium; Frankenberger, W.T., Engberg, R.A., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1998; pp. 259–280. ISBN 978-0-429-07812-5. [Google Scholar]
- White, A.F.; Peterson, M.L. Role of Reactive-Surface-Area Characterization in Geochemical Kinetic Models. In Chemical Modeling of Aqueous Systems II; American Chemical Society: Washington, DC, USA, 1990; Volume 416, pp. 461–475. ISBN 0-8412-1729-7. [Google Scholar]
- de Assis, T.A.; Aarão Reis, F.D.A. Dissolution of Minerals with Rough Surfaces. Geochim. Cosmochim. Acta 2018, 228, 27–41. [Google Scholar] [CrossRef]
- Filella, M.; Buffle, J. Factors Controlling the Stability of Submicron Colloids in Natural Waters. In Colloids in the Aquatic Environment; Tadros, T.F., Gregory, J., Eds.; Elsevier: Oxford, UK, 1993; pp. 255–273. ISBN 978-1-85861-038-2. [Google Scholar]
- Chorover, J.; Kretzschmar, R.; Garcia-Pichel, F.; Sparks, D.L. Soil Biogeochemical Processes within the Critical Zone. Elements 2007, 3, 321–326. [Google Scholar] [CrossRef]
- Gilbert, B.; Ono, R.K.; Ching, K.A.; Kim, C.S. The Effects of Nanoparticle Aggregation Processes on Aggregate Structure and Metal Uptake. J. Colloid Interface Sci. 2009, 339, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.; Kurganskaya, I.; Schäfer, T.; Lüttge, A. Variability of Crystal Surface Reactivity: What Do We Know? Appl. Geochem. 2014, 43, 132–157. [Google Scholar] [CrossRef]
- Kolker, A.; Palmer, C.A.; Bragg, L.J.; Bunnell, J.E. Arsenic in Coal; U.S. Geological Survey: Reston, VA, USA, 2005; p. 4. [Google Scholar]
- Reich, M.; Becker, U. First-Principles Calculations of the Thermodynamic Mixing Properties of Arsenic Incorporation into Pyrite and Marcasite. Chem. Geol. 2006, 225, 278–290. [Google Scholar] [CrossRef]
- Kipp, G.G.; Stone, J.J.; Stetler, L.D. Arsenic and Uranium Transport in Sediments near Abandoned Uranium Mines in Harding County, South Dakota. Appl. Geochem. 2009, 24, 2246–2255. [Google Scholar] [CrossRef]
- Corkhill, C.L.; Vaughan, D.J. Arsenopyrite Oxidation—A Review. Appl. Geochem. 2009, 24, 2342–2361. [Google Scholar] [CrossRef]
- Ribeiro, J.; Taffarel, S.R.; Sampaio, C.H.; Flores, D.; Silva, L.F.O. Mineral Speciation and Fate of Some Hazardous Contaminants in Coal Waste Pile from Anthracite Mining in Portugal. Int. J. Coal Geol. 2013, 109–110, 15–23. [Google Scholar] [CrossRef]
- Oliveira, M.L.S.; Da Boit, K.; Schneider, I.L.; Teixeira, E.C.; Crissien Borrero, T.J.; Silva, L.F.O. Study of Coal Cleaning Rejects by FIB and Sample Preparation for HR-TEM: Mineral Surface Chemistry and Nanoparticle-Aggregation Control for Health Studies. J. Clean. Prod. 2018, 188, 662–669. [Google Scholar] [CrossRef]
- Barringer, J.L.; Reilly, P.A. Arsenic in Groundwater: A Summary of Sources and the Biogeochemical and Hydrogeologic Factors Affecting Arsenic Occurrence and Mobility. In Current Perspectives in Contaminant Hydrology and Water Resources Sustainability; IntechOpen: Rijeka, Croatia, 2013; pp. 83–116. [Google Scholar] [CrossRef]
- Neil, C.W.; Jason Todd, M.; Jeffrey Yang, Y. Improving Arsenopyrite Oxidation Rate Laws: Implications for Arsenic Mobilization during Aquifer Storage and Recovery (ASR). Environ. Geochem. Health 2018, 40, 2453–2464. [Google Scholar] [CrossRef] [PubMed]
- Shamberger, R.J. Selenium in the Environment. Sci. Total Environ. 1981, 17, 59–74. [Google Scholar] [CrossRef]
- McNeal, J.M.; Balistrieri, L.S. Geochemistry and Occurrence of Selenium: An Overview. In Selenium in Agriculture and the Environment; John Wiley & Sons, Ltd.: London, UK, 1989; pp. 1–13. ISBN 978-0-89118-918-3. [Google Scholar]
- Yudovich, Y.E.; Ketris, M.P. Selenium in Coal: A Review. Int. J. Coal Geol. 2006, 67, 112–126. [Google Scholar] [CrossRef]
- Sharmasarkar, S.; Vance, G.F. Fractional Partitioning for Assessing Solid-Phase Speciation and Geochemical Transformations of Soil Selenium. Soil Sci. 1995, 160, 43. [Google Scholar] [CrossRef]
- Elrashidi, M.A.; Adriano, D.C.; Workman, S.M.; Lindsay, W.L. Chemical Equilibria of Selenium in Soils: A Theoretical Development. Soil Sci. 1987, 144, 141. [Google Scholar] [CrossRef]
- Torres, J.; Pintos, V.; Domínguez, S.; Kremer, C.; Kremer, E. Selenite and Selenate Speciation in Natural Waters: Interaction with Divalent Metal Ions. J. Solut. Chem. 2010, 39, 1–10. [Google Scholar] [CrossRef]
- Torres, J.; Pintos, V.; Gonzatto, L.; Domínguez, S.; Kremer, C.; Kremer, E. Selenium Chemical Speciation in Natural Waters: Protonation and Complexation Behavior of Selenite and Selenate in the Presence of Environmentally Relevant Cations. Chem. Geol. 2011, 288, 32–38. [Google Scholar] [CrossRef]
- Paydary, P.; Schellenger, A.E.P.; Teli, M.; Jaisi, D.P.; Onnis-Hayden, A.; Larese-Casanova, P. Chemical Oxidation of Selenite to Selenate: Evaluation of Reactive Oxygen Species and O Transfer Pathways. Chem. Geol. 2021, 575, 120229. [Google Scholar] [CrossRef]
- Lee, R.W. Geochemistry of Water in the Fort Union Formation of the Northern Powder River Basin, Southeastern Montana; Open-File Report 80–336; U.S. Geological Survey: Reston, VA, USA, 1980. [Google Scholar]
- Huggins, F.E.; Huffman, G.P.; Lin, M.C. Observations on Low-Temperature Oxidation of Minerals in Bituminous Coals. Int. J. Coal Geol. 1983, 3, 157–182. [Google Scholar] [CrossRef]
- Healy, R.W.; Rice, C.A.; Bartos, T.T.; McKinley, M.P. Infiltration from an Impoundment for Coal-Bed Natural Gas, Powder River Basin, Wyoming: Evolution of Water and Sediment Chemistry. Water Resour. Res. 2008, 44, W06424. [Google Scholar] [CrossRef]
- Rice, C.A.; Flores, R.M.; Stricker, G.D.; Ellis, M.S. Chemical and Stable Isotopic Evidence for Water/Rock Interaction and Biogenic Origin of Coalbed Methane, Fort Union Formation, Powder River Basin, Wyoming and Montana U.S.A. Int. J. Coal Geol. 2008, 76, 76–85. [Google Scholar] [CrossRef]
- American Society for Testing and Materials. Practice for Sampling Aggregates; ASTM International: West Conshohocken, PA, USA, 2019; p. 7. [Google Scholar]
- American Society for Testing and Materials. Practice for Probability Sampling of Materials; ASTM International: West Conshohocken, PA, USA, 2016; p. 4. [Google Scholar]
- Lapakko, K.A. Developments in Humidity-Cell Tests and Their Application. In Environmental Aspects of Mine Wastes; Mineralogical Association of Canada Short Course Series; Jambor, J.L., Blowes, D.W., Ritchie, A.I.M., Eds.; Economic Geology Publishing Company: New Haven, CT, USA, 2003; pp. 147–164. [Google Scholar]
- Lapakko, K.A.; White, W.W. Modification of the ASTM 5744-96 Kinetic Test. In Proceedings of the Fifth International Conference on Acid Rock Drainage, Littleton, CO, USA, 20–26 May 2000; pp. 631–639. [Google Scholar]
- American Society for Testing and Materials. Test Method for Laboratory Weathering of Solid Materials Using a Humidity Cell, ASTM D5744-18; ASTM International: West Conshohocken, PA, USA, 2018; p. 24. [Google Scholar]
- American Society for Testing and Materials. Standard Guide for Interpretation of Standard Humidity Cell Test Results, ASTM D8187-18; ASTM International: West Conshohocken, PA, USA, 2018; p. 24. [Google Scholar]
- Hunter, R.J. The Calculation of Zeta Potential. In Zeta Potential in Colloid Science; Academic Press: New York, NY, USA, 1981; pp. 59–124. ISBN 978-0-12-361961-7. [Google Scholar]
- Williamson, M.A.; Rimstidt, J.D. The Kinetics and Electrochemical Rate-Determining Step of Aqueous Pyrite Oxidation. Geochim. Cosmochim. Acta 1994, 58, 5443–5454. [Google Scholar] [CrossRef]
- Lapakko, K.A. Preoperational Assessment of Solute Release from Waste Rock at Proposed Mining Operations. Appl. Geochem. 2015, 57, 106–124. [Google Scholar] [CrossRef]
- Lebedev, A.L. Kinetics of Gypsum Dissolution in Water. Geochem. Int. 2015, 53, 811–824. [Google Scholar] [CrossRef]
- Drever, J.I.; Murphy, J.W.; Surdam, R.C. The Distribution of As, Be, Cd, Cu, Hg, Mo, Pb, and U Associated with the Wyodak Coal Seam, Powder River Basin, Wyoming. Rocky Mt. Geol. 1977, 15, 93–101. [Google Scholar]
- Levenspiel, O. Experimental Search for a Simple Rate Equation to Describe Deactivating Porous Catalyst Particles. J. Catal. 1972, 25, 265–272. [Google Scholar] [CrossRef]
- Davis, G.B.; Ritchie, A.I.M. A Model of Oxidation in Pyritic Mine Wastes: Part 1 Equations and Approximate Solution. Appl. Math. Model. 1986, 10, 314–322. [Google Scholar] [CrossRef]
- Wunderly, M.D.; Blowes, D.W.; Frind, E.O.; Ptacek, C.J. Sulfide Mineral Oxidation and Subsequent Reactive Transport of Oxidation Products in Mine Tailings Impoundments: A Numerical Model. Water Resour. Res. 1996, 32, 3173–3187. [Google Scholar] [CrossRef]
- Wilson, D.; Amos, R.T.; Blowes, D.W.; Langman, J.B.; Smith, L.; Sego, D.C. Diavik Waste Rock Project: Scale-Up of a Reactive Transport Model for Temperature and Sulfide-Content Dependent Geochemical Evolution of Waste Rock. Appl. Geochem. 2018, 96, 177–190. [Google Scholar] [CrossRef]
- Wilson, D.; Amos, R.T.; Blowes, D.W.; Langman, J.B.; Ptacek, C.J.; Smith, L.; Sego, D.C. Diavik Waste Rock Project: A Conceptual Model for Temperature and Sulfide-Content Dependent Geochemical Evolution of Waste Rock—Laboratory Scale. Appl. Geochem. 2018, 89, 160–172. [Google Scholar] [CrossRef]
- Hu, G.; Dam-Johansen, K.; Wedel, S.; Hansen, J.P. Decomposition and Oxidation of Pyrite. Prog. Energy Combust. Sci. 2006, 32, 295–314. [Google Scholar] [CrossRef]
- Silva, J.C.M.; Santos, E.C.D.; Heine, T.; Abreu, H.A.D.; Duarte, H.A. Oxidation Mechanism of Arsenopyrite in the Presence of Water. J. Phys. Chem. C 2017, 121, 26887–26894. [Google Scholar] [CrossRef]
- Cen, L.; Cheng, H.; Liu, Q.; Wang, S.; Wang, X. Arsenic Release from Arsenopyrite Weathering in Acid Mine Drainage: Kinetics, Transformation, and Effect of Biochar. Environ. Int. 2022, 170, 107558. [Google Scholar] [CrossRef]
- Tabelin, C.B.; Corpuz, R.D.; Igarashi, T.; Villacorte-Tabelin, M.; Alorro, R.D.; Yoo, K.; Raval, S.; Ito, M.; Hiroyoshi, N. Acid Mine Drainage Formation and Arsenic Mobility under Strongly Acidic Conditions: Importance of Soluble Phases, Iron Oxyhydroxides/Oxides and Nature of Oxidation Layer on Pyrite. J. Hazard. Mater. 2020, 399, 122844. [Google Scholar] [CrossRef] [PubMed]
- Bisone, S.; Chatain, V.; Blanc, D.; Gautier, M.; Bayard, R.; Sanchez, F.; Gourdon, R. Geochemical Characterization and Modeling of Arsenic Behavior in a Highly Contaminated Mining Soil. Environ. Earth Sci. 2016, 75, 306. [Google Scholar] [CrossRef]
- Waychunas, G.A.; Kim, C.S.; Banfield, J.F. Nanoparticulate Iron Oxide Minerals in Soils and Sediments: Unique Properties and Contaminant Scavenging Mechanisms. J. Nanopart. Res. 2005, 7, 409–433. [Google Scholar] [CrossRef]
- Navrotsky, A.; Mazeina, L.; Majzlan, J. Size-Driven Structural and Thermodynamic Complexity in Iron Oxides. Science 2008, 319, 1635–1638. [Google Scholar] [CrossRef] [PubMed]
- Plathe, K.L.; von der Kammer, F.; Hassellöv, M.; Moore, J.N.; Murayama, M.; Hofmann, T.; Hochella, M.F., Jr. The Role of Nanominerals and Mineral Nanoparticles in the Transport of Toxic Trace Metals: Field-Flow Fractionation and Analytical TEM Analyses after Nanoparticle Isolation and Density Separation. Geochim. Cosmochim. Acta 2013, 102, 213–225. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langman, J.B. Kinetic Model Evaluation of Arsenic and Selenium Sources in Waste Rock of the Powder River Basin, USA. Mining 2024, 4, 469-488. https://doi.org/10.3390/mining4030027
Langman JB. Kinetic Model Evaluation of Arsenic and Selenium Sources in Waste Rock of the Powder River Basin, USA. Mining. 2024; 4(3):469-488. https://doi.org/10.3390/mining4030027
Chicago/Turabian StyleLangman, Jeff B. 2024. "Kinetic Model Evaluation of Arsenic and Selenium Sources in Waste Rock of the Powder River Basin, USA" Mining 4, no. 3: 469-488. https://doi.org/10.3390/mining4030027
APA StyleLangman, J. B. (2024). Kinetic Model Evaluation of Arsenic and Selenium Sources in Waste Rock of the Powder River Basin, USA. Mining, 4(3), 469-488. https://doi.org/10.3390/mining4030027