Multi-Sensor Satellite Remote-Sensing Data for Exploring Carbonate-Hosted Pb-Zn Mineralization: Akhlamad Area, Razavi Khorasan, North East Iran
Abstract
:1. Introduction
2. Geological Setting
3. Materials and Methods
3.1. Remote-Sensing Data Characteristics
3.2. Methods
3.2.1. False Color Composites (FCCs)
3.2.2. Band Ratio (BR)
3.2.3. Principal Component Analysis (PCA)
3.2.4. Spectral Angle Mapping
3.2.5. Lineament Extraction
3.2.6. Fuzzy Gamma Methods
4. Results and Discussion
4.1. Lithological and Alteration Mineral Mapping
4.2. Structural Mapping
4.3. Generating Prospectivity Map
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Craw, D.; Upton, P.; Mackenzie, D.J. Hydrothermal Alteration Styles in Ancient and Modern Orogenic Gold Deposits, New Zealand. N. Z. J. Geol. Geophys. 2009, 52, 11–26. [Google Scholar] [CrossRef]
- Clark, D.A. Magnetic Effects of Hydrothermal Alteration in Porphyry Copper and Iron-Oxide Copper–Gold Systems: A Review. Tectonophysics 2014, 624–625, 46–65. [Google Scholar] [CrossRef]
- Mshiu, E.E.; Gläßer, C.; Borg, G. Identification of Hydrothermal Paleofluid Pathways, the Pathfinders in the Exploration of Mineral Deposits: A Case Study from the Sukumaland Greenstone Belt, Lake Victoria Gold Field, Tanzania. Adv. Space Res. 2015, 55, 1117–1133. [Google Scholar] [CrossRef]
- Maleki, M.; Niroomand, S.; Rajabpour, S.; Beiranvand Pour, A.; Ebrahimpour, S. Targeting Local Orogenic Gold Mineralisation Zones Using Data-Driven Evidential Belief Functions: The Godarsorkh Area, Central Iran. All Earth 2022, 34, 259–278. [Google Scholar] [CrossRef]
- Peyghambari, S.; Zhang, Y. Hyperspectral Remote Sensing in Lithological Mapping, Mineral Exploration, and Environmental Geology: An Updated Review. J. Appl. Remote Sens. 2021, 15, 031501. [Google Scholar] [CrossRef]
- Rajan Girija, R.; Mayappan, S. Mapping of Mineral Resources and Lithological Units: A Review of Remote Sensing Techniques. Int. J. Image Data Fusion 2019, 10, 79–106. [Google Scholar] [CrossRef]
- Kakavand, M.; Bonyadi, Z. Evaluation of Alteration Zones around Parmagasu Copper Indication, Kuh Zar, Damghan, Iran, Using ASTER Satellite Data. Geocarto Int. 2022, 37, 16827–16845. [Google Scholar] [CrossRef]
- Adiri, Z.; Lhissou, R.; El Harti, A.; Jellouli, A.; Chakouri, M. Recent Advances in the Use of Public Domain Satellite Imagery for Mineral Exploration: A Review of Landsat-8 and Sentinel-2 Applications. Ore Geol. Rev. 2020, 117, 103332. [Google Scholar] [CrossRef]
- Jain, R.; Sharma, R.U. Airborne Hyperspectral Data for Mineral Mapping in Southeastern Rajasthan, India. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 137–145. [Google Scholar] [CrossRef]
- Shirmard, H.; Farahbakhsh, E.; Heidari, E.; Pour, A.; Pradhan, B.; Müller, D.; Chandra, R. A Comparative Study of Convolutional Neural Networks and Conventional Machine Learning Models for Lithological Mapping Using Remote Sensing Data. Remote Sens. 2022, 14, 819. [Google Scholar] [CrossRef]
- Ezzati, A.R.M. and K.A. Detection of Hydrothermal Potential Zones Using Remote Sensing Satellite Data in Ramand Region, Qazvin Province, Iran. J. Tethys 2014, 2, 093–100. [Google Scholar]
- Honarmand, M.; Shahriari, H.; Zadeh, M.H.; Ghorbani, A. Enhancing Zn-bearing gossans from GeoEye-1 and Landsat 8 OLI data for non-sulphide Zn deposit exploration. Egypt. J. Remote Sens. Space Sci. 2024, 27, 93–107. [Google Scholar] [CrossRef]
- Ghorbani, A.; Honarmand, M.; Shahriari, H.; Hassani, M.J. Regional scale prospecting for non-sulphide zinc deposits using ASTER data and different spectral processing methods. Int. J. Remote Sens. 2019, 40, 8647–8667. [Google Scholar] [CrossRef]
- Sekandari, M.; Masoumi, I.; Beiranvand Pour, A.; M Muslim, A.; Rahmani, O.; Hashim, M.; Zoheir, B.; Pradhan, B.; Misra, A.; Aminpour, S.M. Application of Landsat-8, Sentinel-2, ASTER and WorldView-3 Spectral Imagery for Exploration of Carbonate-Hosted Pb-Zn Deposits in the Central Iranian Terrane (CIT). Remote Sens. 2020, 12, 1239. [Google Scholar] [CrossRef]
- Traore, M.; Wambo, J.D.T.; Ndepete, C.P.; Tekin, S.; Pour, A.B.; Muslim, A.M. Lithological and Alteration Mineral Mapping for Alluvial Gold Exploration in the South East of Birao Area, Central African Republic Using Landsat-8 Operational Land Imager (OLI) Data. J. Afr. Earth Sci. 2020, 170, 103933. [Google Scholar] [CrossRef]
- Fossi, D.H.; Dadjo Djomo, H.; Takodjou Wambo, J.D.; Ganno, S.; Pour, A.B.; Kankeu, B.; Nzenti, J.P. Structural Lineament Mapping in a Sub-Tropical Region Using Landsat-8/SRTM Data: A Case Study of Deng-Deng Area in Eastern Cameroon. Arab. J. Geosci. 2021, 14, 2651. [Google Scholar] [CrossRef]
- Mbianya, G.N.; Ngnotue, T.; Wambo, J.D.T.; Ganno, S.; Pour, A.B.; Kenne, P.A.; Fossi, D.H.; Wolf, I.D. Remote Sensing Satellite-Based Structural/Alteration Mapping for Gold Exploration in the Ketté Goldfield, Eastern Cameroon. J. Afr. Earth Sci. 2021, 184, 104386. [Google Scholar] [CrossRef]
- Zadeh, M.H.; Khoransanipour, M.; Honarmand, M. Mapping mining waste and identification of acid mine drainage within an active mining area through sub-pixel analysis on OLI and Sentinel-2. Earth Sci. Inform. 2023, 16, 3449–3467. [Google Scholar]
- Skakni, O.; Hlila, R.; Pour, A.B.; Martin, M.; Maate, A.; Maate, S.; Muslim, A.M.; Hossain, M.S. Integrating Remote Sensing, GIS and in-Situ Data for Structural Mapping over a Part of the NW Rif Belt, Morocco. Geocarto Int. 2022, 37, 3265–3292. [Google Scholar] [CrossRef]
- Aisabokhae, J.; Alimi, S.; Adeoye, M.; Oresajo, B. Geological Structure and Hydrothermal Alteration Mapping for Mineral Deposit Prospectivity Using Airborne Geomagnetic and Multispectral Data in Zuru Province, Northwestern Nigeria. Egypt. J. Remote Sens. Space Sci. 2023, 26, 231–244. [Google Scholar] [CrossRef]
- Abrams, M.; Yamaguchi, Y. Twenty Years of ASTER Contributions to Lithologic Mapping and Mineral Exploration. Remote Sens. 2019, 11, 1394. [Google Scholar] [CrossRef]
- Pacheco, A.d.P.; Junior, J.A.d.S.; Ruiz-Armenteros, A.M.; Henriques, R.F.F. Assessment of K-Nearest Neighbor and Random Forest Classifiers for Mapping Forest Fire Areas in Central Portugal Using Landsat-8, Sentinel-2, and Terra Imagery. Remote Sens. 2021, 13, 1345. [Google Scholar] [CrossRef]
- Torres Gil, L.K.; Valdelamar Martínez, D.; Saba, M. The Widespread Use of Remote Sensing in Asbestos, Vegetation, Oil and Gas, and Geology Applications. Atmosphere 2023, 14, 172. [Google Scholar] [CrossRef]
- Anaba Fotze, Q.M.; Bikoro Bi-Alou, M.; Ndougsa-Mbarga, T.; Bailly, L.; Bernard, J.; Penaye, J.; Sep Nlomngan, J.P.; Djieto Lordon, A.E.; Ketchaya, Y.B.; Moussango Ibohn, P.A. Integrating Aster 07XT, Landsat 8, and Aeromagnetic Data for the Delineation of Potential Mineralization Sites in North Cameroon. Geol. J. 2022, 57, 3949–3971. [Google Scholar] [CrossRef]
- Ahmadirouhani, R.; Karimpour, M.H.; Rahimi, B.; Malekzadeh-Shafaroudi, A.; Pour, A.B.; Pradhan, B. Integration of SPOT-5 and ASTER Satellite Data for Structural Tracing and Hydrothermal Alteration Mineral Mapping: Implications for Cu–Au Prospecting. Int. J. Image Data Fusion 2018, 9, 237–262. [Google Scholar] [CrossRef]
- Molan, Y.E.; and Behnia, P. Prospectivity Mapping of Pb–Zn SEDEX Mineralization Using Remote-Sensing Data in the Behabad Area, Central Iran. Int. J. Remote Sens. 2013, 34, 1164–1179. [Google Scholar] [CrossRef]
- Yusoff, I.N.; Mohamad Ismail, M.A.; Tobe, H.; Date, K.; Yokota, Y. Quantitative Granitic Weathering Assessment for Rock Mass Classification Optimization of Tunnel Face Using Image Analysis Technique. Ain Shams Eng. J. 2023, 14, 101814. [Google Scholar] [CrossRef]
- Pour, A.B.; Hashim, M. The Application of ASTER Remote Sensing Data to Porphyry Copper and Epithermal Gold Deposits. Ore Geol. Rev. 2012, 44, 1–9. [Google Scholar] [CrossRef]
- Pour, A.B.; Park, Y.; Park, T.-Y.S.; Hong, J.K.; Hashim, M.; Woo, J.; Ayoobi, I. Regional Geology Mapping Using Satellite-Based Remote Sensing Approach in Northern Victoria Land, Antarctica. Polar Sci. 2018, 16, 23–46. [Google Scholar] [CrossRef]
- Noori, L.; Pour, A.; Askari, G.; Taghipour, N.; Pradhan, B.; Lee, C.-W.; Honarmand, M. Comparison of Different Algorithms to Map Hydrothermal Alteration Zones Using ASTER Remote Sensing Data for Polymetallic Vein-Type Ore Exploration: Toroud–Chahshirin Magmatic Belt (TCMB), North Iran. Remote Sens. 2019, 11, 495. [Google Scholar] [CrossRef]
- Bolouki, S.M.; Ramazi, H.R.; Maghsoudi, A.; Beiranvand Pour, A.; Sohrabi, G. A Remote Sensing-Based Application of Bayesian Networks for Epithermal Gold Potential Mapping in Ahar-Arasbaran Area, NW Iran. Remote Sens. 2019, 12, 105. [Google Scholar] [CrossRef]
- Rezaei, A.; Hassani, H.; Moarefvand, P.; Golmohammadi, A. Lithological Mapping in Sangan Region in Northeast Iran Using ASTER Satellite Data and Image Processing Methods. Geol. Ecol. Landsc. 2020, 4, 59–70. [Google Scholar] [CrossRef]
- Asadzadeh, S.; de Souza Filho, C.R. Characterization of Microseepage-Induced Diagenetic Changes in the Upper-Red Formation, Qom Region, Iran. Part I: Outcrop, Geochemical, and Remote Sensing Studies. Mar. Pet. Geol. 2019, 117, 104149. [Google Scholar] [CrossRef]
- Abd El-Wahed, M.; Zoheir, B.; Pour, A.B.; Kamh, S. Shear-Related Gold Ores in the Wadi Hodein Shear Belt, South Eastern Desert of Egypt: Analysis of Remote Sensing, Field and Structural Data. Minerals 2021, 11, 474. [Google Scholar] [CrossRef]
- Yousefi, M.; Tabatabaei, S.H.; Rikhtehgaran, R.; Pour, A.B.; Pradhan, B. Application of Dirichlet Process and Support Vector Machine Techniques for Mapping Alteration Zones Associated with Porphyry Copper Deposit Using Aster Remote Sensing Imagery. Minerals 2021, 11, 1235. [Google Scholar] [CrossRef]
- Pour, A.B.; Rahmani, O.; Parsa, M. Editorial for the Special Issue: “Multispectral Remote Sensing Satellite Data for Mineral and Hydrocarbon Exploration: Big Data Processing and Deep Fusion Learning Techniques. ” Minerals 2023, 13, 193. [Google Scholar] [CrossRef]
- Soydan, H.; Koz, A.; Düzgün, H.Ş. Secondary Iron Mineral Detection via Hyperspectral Unmixing Analysis with Sentinel-2 Imagery. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102343. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, Z.; Zhou, J.; Zhu, R.; Xia, J.; Sun, T.; Zhao, X.; Chao, J. ASTER and GF-5 Satellite Data for Mapping Hydrothermal Alteration Minerals in the Longtoushan Pb-Zn Deposit, SW China. Remote Sens. 2022, 14, 1253. [Google Scholar] [CrossRef]
- Sekandari, M.; Masoumi, I.; Pour, A.B.; Muslim, A.M.; Hossain, M.S.; Misra, A. ASTER and WorldView-3 Satellite Data for Mapping Lithology and Alteration Minerals Associated with Pb-Zn Mineralization. Geocarto Int. 2022, 37, 1782–1812. [Google Scholar] [CrossRef]
- Malainine, C.-E.; Raji, O.; Ouabid, M.; Bodinier, J.-L.; El Messbahi, H. Prospectivity Mapping of Carbonatite-Associated Iron Oxide Deposits Using an Integration Process of ASTER and Sentinel-2A Multispectral Data. Int. J. Remote Sens. 2022, 43, 4951–4983. [Google Scholar] [CrossRef]
- Moghtaderi, A.; Moore, F.; Ranjbar, H. Testing ASTER and Sentinel-2 MSI Images to Discriminate Igneous and Metamorphic Rock Units in the Chadormalu Paleocrater, Central Iran. Can. J. Remote Sens. 2022, 48, 214–238. [Google Scholar] [CrossRef]
- Maasoumi, I.; Ranjbar, H. Enhancement of Hydrothermal Alteration in ASTER Images of Sar Cheshmeh Area, Using Logical Operators. J. Aalytical. Numer. Methods Min. Eng. 2018, 7, 61–71. [Google Scholar] [CrossRef]
- Yang, M.; Kang, L.; Chen, H.; Zhou, M.; Zhang, J. Lithological Mapping of East Tianshan Area Using Integrated Data Fused by Chinese GF-1 PAN and ASTER Multi-Spectral Data. Open Geosci. 2018, 10, 532–543. [Google Scholar] [CrossRef]
- Mehdipour Ghazi, J.; Hamdollahi, M.; Moazzen, M. Geotourism of Mining Sites in Iran: An Opportunity for Sustainable Rural Development. Int. J. Geoheritage Park. 2021, 9, 129–142. [Google Scholar] [CrossRef]
- Movahednia, M.; Maghfouri, S.; Fazli, N.; Rastad, E.; Ghaderi, M.; González, F.J. Metallogeny of Manto-Type Stratabound Cu-(Ag) Mineralization in Iran: Relationship with NeoTethyan Evolution and Implications for Future Exploration. Ore Geol. Rev. 2022, 149, 105064. [Google Scholar] [CrossRef]
- Stöcklin, G. Bromine-77 and Iodine-123 Radiopharmaceuticals. Int. J. Appl. Radiat. Isot. 1977, 28, 131–148. [Google Scholar] [CrossRef] [PubMed]
- Alavi, M. The Virani Ophiolite Complex and Surrounding Rocks. Geol. Rundsch. 1979, 68, 334–341. [Google Scholar] [CrossRef]
- Alavi, M. Sedimentary and Structural Characteristics of the Paleo-Tethys Remnants in Northeastern Iran. Geol. Soc. Am. Bull. 1991, 103, 983–992. [Google Scholar] [CrossRef]
- Chu, Y.; Wan, B.; Allen, M.B.; Chen, L.; Lin, W.; Talebian, M.; Xin, G. Detrital Zircon Age Constraints on the Evolution of Paleo-Tethys in NE Iran: Implications for Subduction and Collision Tectonics. Tectonics 2021, 40, e2020TC006680. [Google Scholar] [CrossRef]
- Shabanian, E.; Bellier, O.; Siame, L.; Abbassi, M.R.; Bourles, D.; Braucher, R.; Frbod, Y. The Binalud Mountains: A key piece for the geodynamic puzzle of NE Iran. Tectonics 2012, 31, TC6003. [Google Scholar] [CrossRef]
- Bazargani-Guilani, K.; Tak, N.M.A.; Farmarzi, M. Pb–Zn deposits in Cretaceous carbonate host rocks, northeast Shahmirzad, central Alborz, Iran. Aust. J. Earth Sci. 2011, 58, 297–307. [Google Scholar] [CrossRef]
- Cooley, T.; Anderson, G.P.; Felde, G.W.; Hoke, M.L.; Ratkowski, A.J.; Chetwynd, J.H.; Gardner, J.A.; Adler-Golden, S.M.; Matthew, M.W.; Berk, A.; et al. FLAASH, a MODTRAN4-Based Atmospheric Correction Algorithm, Its Application and Validation. Proc. IEEE Int. Geosci. Remote Sens. Symp. 2002, 3, 1414–1418. [Google Scholar]
- Di Tommaso, I.; Rubinstein, N. Hydrothermal Alteration Mapping Using ASTER Data in the Infiernillo Porphyry Deposit, Argentina. Ore Geol. Rev. 2007, 32, 275–290. [Google Scholar] [CrossRef]
- Crosta, A.P.; Moore, J.M. Enhancement of Landsat Thematic Mapper Imagery for Residual Soil Mapping in SW Minais Gerais State, Brazil: A Prospecting Case History in Greenstone Belt Terrain. In Proceedings of the 7th Thematic Conference on Remote Sensing for Exploration Geology, Calgary, AB, Canada, 2–6 October 1989; pp. 1173–1187. [Google Scholar]
- Hajibapir, G.; Lotfi, M.; Zarifi, A.Z.; Nezafati, N. Application of Different Image Processing Techniques on ASTER and ETM+ Images for Exploration of Hydrothermal Alteration Associated with Copper Mineralizations Mapping Kehdolan Area (EASTERn Azarbaijan Province-Iran). Open J. Geol. 2014, 4, 582. [Google Scholar] [CrossRef]
- Goetz, A.F.H.; Rock, B.N.; Rowan, L.C. Remote Sensing for Exploration; an Overview. Econ. Geol. 1983, 78, 573–590. [Google Scholar] [CrossRef]
- Mars, J.C.; Rowan, L.C. ASTER Spectral Analysis and Lithologic Mapping of the Khanneshin Carbonatite Volcano, Afghanistan. Geosphere 2011, 7, 276–289. [Google Scholar] [CrossRef]
- Testa, F.J.; Villanueva, C.; Cooke, D.R.; Zhang, L. Lithological and Hydrothermal Alteration Mapping of Epithermal, Porphyry and Tourmaline Breccia Districts in the Argentine Andes Using ASTER Imagery. Remote Sens. 2018, 10, 203. [Google Scholar] [CrossRef]
- Sheikhrahimi, A.; Pour, A.B.; Pradhan, B.; Zoheir, B. Mapping Hydrothermal Alteration Zones and Lineaments Associated with Orogenic Gold Mineralization Using ASTER Data: A Case Study from the Sanandaj-Sirjan Zone, Iran. Adv. Space Res. 2019, 63, 3315–3332. [Google Scholar] [CrossRef]
- Frutuoso, R.; Lima, A.; Teodoro, A.C. Application of Remote Sensing Data in Gold Exploration: Targeting Hydrothermal Alteration Using Landsat 8 Imagery in Northern Portugal. Arab. J. Geosci. 2021, 14, 459. [Google Scholar] [CrossRef]
- Nafigin, I.O.; Ishmukhametova, V.T.; Ustinov, S.A.; Minaev, V.A.; Petrov, V.A. Geological and Mineralogical Mapping Based on Statistical Methods of Remote Sensing Data Processing of Landsat-8: A Case Study in the Southeastern Transbaikalia, Russia. Sustainability 2022, 14, 9242. [Google Scholar] [CrossRef]
- Aali, A.A.; Shirazy, A.; Shirazi, A.; Pour, A.B.; Hezarkhani, A.; Maghsoudi, A.; Hashim, M.; Khakmardan, S. Fusion of Remote Sensing, Magnetometric, and Geological Data to Identify Polymetallic Mineral Potential Zones in Chakchak Region, Yazd, Iran. Remote Sens. 2022, 14, 6018. [Google Scholar] [CrossRef]
- Mars, J.C.; Rowan, L.C. Regional Mapping of Phyllic- and Argillic-Altered Rocks in the Zagros Magmatic Arc, Iran, Using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Data and Logical Operator Algorithms. Geosphere 2006, 2, 161–186. [Google Scholar] [CrossRef]
- Wambo, J.D.T.; Pour, A.B.; Ganno, S.; Asimow, P.D.; Zoheir, B.; Salles, R.d.R.; Nzenti, J.P.; Pradhan, B.; Muslim, A.M. Identifying High Potential Zones of Gold Mineralization in a Sub-Tropical Region Using Landsat-8 and ASTER Remote Sensing Data: A Case Study of the Ngoura-Colomines Goldfield, Eastern Cameroon. Ore Geol. Rev. 2020, 122, 103530. [Google Scholar] [CrossRef]
- Hunt, G.R. Near-Infrared (1.3–2.4 Micrometre) Spectra of Alteration Minerals—Potential for Use in Remote Sensing. Geophysics 1979, 44, 1974–1986. [Google Scholar] [CrossRef]
- Clark, R.N. Spectroscopy of Rocks and Minerals and Principles of Spectroscopy; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 1999. [Google Scholar]
- Mars, J.C.; Rowan, L.C. Spectral Assessment of New ASTER SWIR Surface Reflectance Data Products for Spectroscopic Mapping of Rocks and Minerals. Remote Sens. Environ. 2010, 114, 2011–2025. [Google Scholar] [CrossRef]
- Leask, E.K.; Ehlmann, B.L.; Greenberger, R.N.; Pinet, P.; Daydou, Y.; Ceuleneer, G.; Kelemen, P. Tracing Carbonate Formation, Serpentinization, and Biological Materials With Micro-/Meso-Scale Infrared Imaging Spectroscopy in a Mars Analog System, Samail Ophiolite, Oman. Earth Space Sci. 2021, 8, e2021EA001637. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
- Cŕosta, A.P.; De Souza Filho, C.R.; Azevedo, F.; Brodie, C. Targeting Key Alteration Minerals in Epithermal Deposits in Patagonia, Argentina, Using ASTER Imagery and Principal Component Analysis. Int. J. Remote Sens. 2003, 24, 4233–4240. [Google Scholar] [CrossRef]
- Gupta, R.P.; Tiwari, R.K.; Saini, V.; Srivastava, N. A Simplified Approach for Interpreting Principal Component Images. Adv. Remote Sens. 2013, 2, 111–119. [Google Scholar] [CrossRef]
- Yetkin, E. Alteration Mapping by Remote Sensing: Application to Hasandağ—Melendiz Volcanic Complex; METU: Ankara, Turkey, 2003. [Google Scholar]
- Zoheir, B.; El-Wahed, M.A.; Pour, A.B.; Abdelnasser, A. Orogenic Gold in Transpression and Transtension Zones: Field and Remote Sensing Studies of the Barramiya-Mueilha Sector, Egypt. Remote Sens. 2019, 11, 2122. [Google Scholar] [CrossRef]
- Liu, D.; Li, J.; Yuan, Q. A Spectral Grouping and Attention-Driven Residual Dense Network for Hyperspectral Image Super-Resolution. IEEE Trans. Geosci. Remote Sens. 2021, 59, 7711–7725. [Google Scholar] [CrossRef]
- He, J.; Li, J.; Yuan, Q.; Shen, H.; Zhang, L. Spectral Response Function-Guided Deep Optimization-Driven Network for Spectral Super-Resolution. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 4213–4227. [Google Scholar] [CrossRef]
- Kruse, F.A.; Lefkoff, A.B.; Boardman, J.W.; Heidebrecht, K.B.; Shapiro, A.T.; Barloon, P.J.; Goetz, A.F.H. The Spectral Image Processing System (SIPS)-Interactive Visualization and Analysis of Imaging Spectrometer Data. Remote Sens. Environ. 1993, 44, 145–163. [Google Scholar] [CrossRef]
- Sahinoglu, Z.; Gezici, S.; Güvenc, I. Ultra-Wideband Positioning Systems: Theoretical Limits, Ranging Algorithms, and Protocols; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Ranjbari, A.; Abedini, M.; Mokhtari, D.; Valizadeh Kamran, K. Identification and Extraction of Faults Based on RS & GIS and Geomorphic Evidence of Their Activity in the Ghoshadagh Fault Zone in Northwest Iran. Sci. J. Geogr. Plan. 2021, 24, 89–101. (In Persian) [Google Scholar] [CrossRef]
- Javhar, A.; Chen, X.; Bao, A.; Jamshed, A.; Yunus, M.; Jovid, A.; Latipa, T. Comparison of Multi-Resolution Optical Landsat-8, Sentinel-2 and Radar Sentinel-1 Data for Automatic Lineament Extraction: A Case Study of Alichur Area, SE Pamir. Remote Sens. 2019, 11, 778. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy Sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Novák, V.; Perfilieva, I.; Mockor, J. Mathematical Principles of Fuzzy Logic; Springer Science+Business Media: Berlin, Germany, 1999; Volume 517. [Google Scholar]
- Zhang, H.; Yang, T.; Hou, Z.; Song, Y.; Liu, Y.; Yang, Z.; Tian, S. Structural Controls on Carbonate-Hosted Pb–Zn Mineralization in the Dongmozhazhua Deposit, Central Tibet. Ore Geol. Rev. 2017, 90, 863–876. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Choe, K.-U.; Ri, R.-K. Application of Fuzzy Logic and Geometric Average: A Cu Sulfide Deposits Potential Mapping Case Study from Kapsan Basin, DPR Korea. Ore Geol. Rev. 2019, 107, 239–247. [Google Scholar] [CrossRef]
- Carranza, E.J.M. Geochemical Anomaly and Mineral Prospectivity Mapping in GIS; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
ASTER | Landsat 8 | Sentinel 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Band | Spectrum Covered | Wave Length (μm) | Resolution (m) | Band | Spectrum Covered | Wave Length (μm) | Resolution (m) | Band | Spectrum Covered | Wave Length (μm) | Resolution (m) |
1 | VNIR | 0.520–0.600 | 15 | 1 | Ultra-Blue (Coastal/Aerosol) | 0.433–0.453 | 30 | 1 | Coastal aerosol | 0.443 | 60 |
2 | VNIR | 0.630–0.690 | 15 | 2 | Blue | 0.450–0.515 | 30 | 2 | Blue | 0.490 | 10 |
3N | VNIR | 0.760–0.86 | 15 | 3 | Green | 0.525–0.600 | 30 | 3 | Green | 0.560 | 10 |
3 | VNIR | 0.760–0.86 | 15 | 4 | Red | 0.630–0.680 | 30 | 4 | Red | 0.665 | 10 |
4 | SWIR | 1.600–1.700 | 30 | 5 | NIR | 0.845–0.885 | 30 | 5 | Vegetation red edge | 0.705 | 20 |
5 | SWIR | 2.145–2.185 | 30 | 6 | SWIR | 1.560–1.660 | 30 | 6 | Vegetation red edge | 0.740 | 20 |
6 | SWIR | 2.185–2.225 | 30 | 7 | SWIR | 2.100–2.300 | 30 | 7 | Vegetation red edge | 0.783 | 20 |
7 | SWIR | 2.235–2.285 | 30 | 8 | Panchromatic | 0.500–0.680 | 15 | 8 | NIR | 0.842 | 10 |
8 | SWIR | 2.295–2.365 | 30 | 9 | Cirrus | 1.360–1.390 | 30 | 8a | Vegetation red edge | 0.865 | 20 |
9 | SWIR | 2.360–2.430 | 30 | 10 | TIR | 10.60–11.20 | 100 | 9 | Water vapor | 0.945 | 60 |
10 | TIR | 8.125–8.475 | 90 | 11 | TIR | 11.50–12.50 | 100 | 10 | SWIR–Cirrus | 1.375 | 60 |
11 | TIR | 8.475–8.825 | 90 | 11 | SWIR | 1.610 | 20 | ||||
12 | TIR | 8.925–9.275 | 90 | 12 | SWIR | 2.190 | 20 | ||||
13 | TIR | 10.25–10.95 | 90 | ||||||||
14 | TIR | 10.95–11.65 | 90 |
Eigenvectors | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | Band 7 |
---|---|---|---|---|---|---|---|
PC 1 | 0.22 | 0.24 | 0.30 | 0.39 | 0.42 | 0.52 | 0.45 |
PC 2 | 0.08 | 0.08 | 0.06 | −0.01 | 0.78 | −0.28 | −0.54 |
PC 3 | −0.48 | −0.46 | −0.38 | −0.27 | 0.37 | 0.44 | 0.12 |
PC 4 | 0.47 | 0.25 | −0.09 | −0.80 | 0.10 | 0.04 | 0.24 |
PC 5 | 0.12 | 0.16 | 0.06 | −0.09 | −0.25 | 0.68 | −0.66 |
PC 6 | −0.47 | 0.01 | 0.81 | −0.36 | −0.01 | −0.02 | 0.03 |
PC 7 | 0.51 | −0.80 | 0.31 | 0.00 | −0.02 | 0.03 | −0.04 |
Eigenvectors | Band 2 | Band 3 | Band 4 | Band 8 | Band 11 | Band 12 |
---|---|---|---|---|---|---|
PC 1 | −0.22 | −0.29 | −0.41 | −0.39 | −0.54 | −0.51 |
PC 2 | −0.12 | −0.13 | −0.02 | −0.82 | 0.29 | 0.46 |
PC 3 | 0.46 | 0.45 | 0.49 | −0.36 | −0.45 | −0.09 |
PC 4 | −0.53 | −0.28 | 0.51 | 0.15 | −0.47 | 0.37 |
PC 5 | 0.30 | 0.08 | −0.54 | 0.14 | −0.45 | 0.63 |
PC 6 | 0.59 | −0.78 | 0.20 | 0.03 | 0.01 | −0.01 |
Eigenvectors | Band 1 | Band 2 | Band 3 | Band 4 | Band 5 | Band 6 | Band 7 | Band 8 | Band 9 |
---|---|---|---|---|---|---|---|---|---|
PC 1 | 0.41 | 0.43 | 0.26 | 0.33 | 0.31 | 0.34 | 0.30 | 0.30 | 0.28 |
PC 2 | −0.51 | −0.40 | −0.40 | 0.29 | 0.30 | 0.35 | 0.19 | 0.17 | 0.24 |
PC 3 | 0.28 | 0.37 | −0.86 | −0.19 | −0.05 | −0.04 | 0.03 | 0.11 | 0.02 |
PC 4 | 0.04 | 0.20 | −0.12 | 0.46 | 0.15 | 0.26 | −0.46 | −0.65 | −0.08 |
PC 5 | 0.65 | −0.64 | −0.13 | 0.29 | 0.00 | −0.20 | 0.09 | −0.07 | 0.03 |
PC 6 | −0.23 | 0.22 | −0.04 | 0.52 | −0.33 | −0.58 | 0.11 | −0.01 | 0.40 |
PC 7 | −0.09 | 0.10 | −0.06 | 0.40 | −0.05 | −0.05 | 0.29 | 0.20 | −0.83 |
PC 8 | 0.06 | −0.07 | −0.00 | 0.09 | −0.82 | 0.55 | 0.03 | 0.04 | 0.07 |
PC 9 | 0.04 | −0.05 | 0.01 | 0.19 | 0.00 | −0.04 | −0.75 | 0.63 | −0.03 |
N–S: 0° | ||||||
---|---|---|---|---|---|---|
−1.000000 | −1.000000 | −1.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 |
−1.000000 | −1.000000 | −1.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 |
−1.000000 | −1.000000 | −1.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 |
−1.000000 | −1.000000 | −1.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 |
−1.000000 | −1.000000 | −1.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 |
−1.000000 | −1.000000 | −1.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 |
−1.000000 | −1.000000 | −1.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 |
NE–SW: 45° | ||||||
−1.414214 | −1.414214 | −1.414214 | −0.707107 | 0.000000 | 0.000000 | 0.000000 |
−1.414214 | −1.414214 | −1.414214 | −0.707107 | 0.000000 | 0.000000 | 0.000000 |
−1.414214 | −1.414214 | −1.414214 | −0.707107 | 0.000000 | 0.000000 | 0.000000 |
−0.707107 | −0.707107 | −0.707107 | 0.000000 | 0.707107 | 0.707107 | 0.707107 |
0.000000 | 0.000000 | 0.000000 | 0.707107 | 1.414214 | 1.414214 | 1.414214 |
0.000000 | 0.000000 | 0.000000 | 0.707107 | 1.414214 | 1.414214 | 1.414214 |
0.000000 | 0.000000 | 0.000000 | 0.707107 | 1.414214 | 1.414214 | 1.414214 |
E–W: 90° | ||||||
−1.000000 | −1.000000 | −1.000000 | −1.000000 | −1.000000 | −1.000000 | −1.000000 |
−1.000000 | −1.000000 | −1.000000 | −1.000000 | −1.000000 | −1.000000 | −1.000000 |
−1.000000 | −1.000000 | −1.000000 | −1.000000 | −1.000000 | −1.000000 | −1.000000 |
0.000000 | 0.000000 | 0.000000 | 0.000000 | −0.000000 | −0.000000 | −0.000000 |
1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
NW–SE: 135° | ||||||
0.000000 | 0.000000 | 0.000000 | −0.707107 | −1.414214 | −1.414214 | −1.414214 |
0.000000 | 0.000000 | 0.000000 | −0.707107 | −1.414214 | −1.414214 | −1.414214 |
0.000000 | 0.000000 | 0.000000 | −0.707107 | −1.414214 | −1.414214 | −1.414214 |
0.707107 | 0.707107 | 0.707107 | 0.000000 | −0.707107 | −0.707107 | −0.707107 |
1.414214 | 1.414214 | 1.414214 | 0.707107 | 0.000000 | 0.000000 | 0.000000 |
1.414214 | 1.414214 | 1.414214 | 0.707107 | 0.000000 | 0.000000 | 0.000000 |
1.414214 | 1.414214 | 1.414214 | 0.707107 | 0.000000 | 0.000000 | 0.000000 |
Data Origin | Input Layer | Detection | Membership Type | Fuzzy Operator |
---|---|---|---|---|
LANDSAT-8 | PC4 PC5 | Iron Oxides OH-minerals and Carbonates | Linear | 0.8 |
SENTINEL-2 | PC4 PC5 | Iron Oxides OH-minerals | Linear | 0.8 |
ASTER | PC4 PC5 PC6 SAM | Mg-Fe-OH/CO3-bearing minerals Iron oxide/hydroxides Al-OH-bearing minerals Hematite, kaolinite, calcite, and dolomite | Linear | 0.8 |
FAULTS AND LINEAMENTS | The intersection point of Faults and Lineaments | Faults and lineaments | Linear | 0.95 |
XRD Results | Lithological Units |
---|---|
Hematite, limonite, illite, and jarosite | Jmd, J1, Ec, E1, and J11 |
Quartz, muscovite, chlorite, and kaolinite | Qt, J1, and J11 |
Calcite, dolomite, pyrite, galena, and sphalerite | Jmd |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseini, S.; Gholamzadeh, M.; Pour, A.B.; Ahmadirouhani, R.; Sekandari, M.; Bagheri, M. Multi-Sensor Satellite Remote-Sensing Data for Exploring Carbonate-Hosted Pb-Zn Mineralization: Akhlamad Area, Razavi Khorasan, North East Iran. Mining 2024, 4, 367-388. https://doi.org/10.3390/mining4020021
Hosseini S, Gholamzadeh M, Pour AB, Ahmadirouhani R, Sekandari M, Bagheri M. Multi-Sensor Satellite Remote-Sensing Data for Exploring Carbonate-Hosted Pb-Zn Mineralization: Akhlamad Area, Razavi Khorasan, North East Iran. Mining. 2024; 4(2):367-388. https://doi.org/10.3390/mining4020021
Chicago/Turabian StyleHosseini, Saeedeh, Maryam Gholamzadeh, Amin Beiranvand Pour, Reyhaneh Ahmadirouhani, Milad Sekandari, and Milad Bagheri. 2024. "Multi-Sensor Satellite Remote-Sensing Data for Exploring Carbonate-Hosted Pb-Zn Mineralization: Akhlamad Area, Razavi Khorasan, North East Iran" Mining 4, no. 2: 367-388. https://doi.org/10.3390/mining4020021
APA StyleHosseini, S., Gholamzadeh, M., Pour, A. B., Ahmadirouhani, R., Sekandari, M., & Bagheri, M. (2024). Multi-Sensor Satellite Remote-Sensing Data for Exploring Carbonate-Hosted Pb-Zn Mineralization: Akhlamad Area, Razavi Khorasan, North East Iran. Mining, 4(2), 367-388. https://doi.org/10.3390/mining4020021