Incorporating Environmental Impacts into Short-Term Mine Planning: A Literature Survey
Abstract
:1. Introduction
2. The Research Tools
2.1. Life Cycle Assessment (LCA)
- (1)
- Deficiency and uncertainty of data: LCA is a data-intensive framework and is dependent on the geography, data quality, and data availability [17]. Data collection can be assumed to be the main challenge in implementing LCA [18]. In LCA, data and methods are subject to uncertainty, and estimations are always susceptible to underestimating the actual case. The availability of databases with sophisticated LCI is crucial for extending and expanding studies on the environmental impact of mining activities. LCA studies in the mining sector are limited by the availability and reliability of data [19]. For instance, LCA studies in the mining and minerals sector overlook processing stages due to scarcity of data [20].
- (2)
- Lack of a unique systematic information exchange process [21].
- (3)
- The ambiguity in producing multiple metals at a single mine site causes challenges in precisely determining the environmental impacts based on unit functions.
- (4)
- Arbitrariness in selection of functional unit and boundaries: Variations in choosing the functional unit, weighting factors, and boundaries in different studies can lead to methodological inconsistencies in LCA [22].
- (5)
- Ambiguity of results and interpretations: It is possible for the results of LCA to differ depending on the methodology used to evaluate the environmental impact.
- (6)
- Limited awareness of LCA methodology [23].
- (7)
- Lack of expertise and resources.
- (8)
- Lack of usefulness in dynamic and complex activities [24].
2.2. Short-Term Mine Planning
2.3. Multi-Objective Optimization
Application of MOO with Environmental Concern in Other Industries
3. Framework for Incorporating Environmental Impacts into Mine Planning
4. Discussion
5. Conclusions and Future Studies
Author Contributions
Funding
Conflicts of Interest
Abbreviations
STMP | Short-Term Mine Planning |
GHG | Greenhouse Gas |
GDP | Gross Domestic Product |
MAC | Mining Association of Canada |
EIA | Environmental Impact Assessments |
UNFCCC | United Nations Framework Convention on Climate Change |
LCA | Life Cycle Assessment |
LCI | Life Cycle Inventory |
LCIA | Life Cycle Impact Assessment |
ANN | Artificial Neural Network |
MOO | Multi-Objective Optimization Tool |
LP | Linear Programming |
NLP | Non-Linear Programming |
MIP | Mixed-Integer Programming |
GA | Genetic Algorithms |
PSO | Particle Swarm Optimization |
ANO | Ant Colony Optimization |
BPEO | Best Practicable Environmental Option |
FMS | Flexible Manufacturing System |
AGV | Automated Guided Vehicle |
NBT | Noise Barrier Tunnels |
HVAC | Heating, Ventilation, and Air Conditioning |
OEMs | Original Equipment Manufacturers |
MCDM | Multi-Criteria Decision Making |
NPV | Net Present Value |
PM | Particulate Matter |
CAT | Carbon Price Taxes |
EEO | Energy Efficiency Opportunity |
References
- Marshall, B. Facts & Figures 2021. The State of Canada’s Mining Industry. 2023. Available online: https://mining.ca/resources/reports/facts-figures-2021 (accessed on 20 January 2023).
- Thurtell, D.; Andrew Nash, M.G. Resources and Energy Quarterly. 2021. Available online: https://web.archive.org.au/awa/20211213162312mp_/https://publications.industry.gov.au/publications/resourcesandenergyquarterlyseptember2021/documents/Resources-and-Energy-Quarterly-September-2021.pdf (accessed on 27 January 2023).
- U.S. Geological Survey. Mineral Commodity Summaries 2020; U.S. Geological Survey: Reston, VA, USA, 6 February 2020. Available online: https://pubs.er.usgs.gov/publication/mcs2020 (accessed on 20 January 2023).
- Adoption of the Paris Agreement. 2015. Available online: https://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (accessed on 25 January 2023).
- Kuyper, J.; Schroeder, H.; Linnér, B.O. The Evolution of the UNFCCC. Annu. Rev. Environ. Resour. 2018, 43, 343–368. [Google Scholar] [CrossRef]
- Caravaggio, N.; Caravella, S.; Ishizaka, A.; Resce, G. Beyond CO2: A multi-criteria analysis of air pollution in Europe. J. Clean. Prod. 2019, 219, 576–586. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Zang, L.; Li, Z.; Qin, J. Discussion on the model of mining circular economy. Energy Procedia 2012, 16, 438–443. [Google Scholar] [CrossRef] [Green Version]
- Tayebi-Khorami, M.; Edraki, M.; Corder, G.; Golev, A. Re-thinking mining waste through an integrative approach led by circular economy aspirations. Minerals 2019, 9, 286. [Google Scholar] [CrossRef] [Green Version]
- Kinnunen, P.; Karhu, M.; Yli-Rantala, E.; Kivikytö-Reponen, P.; Mäkinen, J. A review of circular economy strategies for mine tailings. Clean. Eng. Technol. 2022, 8, 100499. [Google Scholar] [CrossRef]
- Gan, Y.; Griffin, W.M. Analysis of life-cycle GHG emissions for iron ore mining and processing in China—Uncertainty and trends. Resour. Policy 2018, 58, 90–96. [Google Scholar] [CrossRef]
- Holmberg, K.; Kivikytö-Reponen, P.; Härkisaari, P.; Valtonen, K.; Erdemir, A. Global energy consumption due to friction and wear in the mining industry. Tribol. Int. 2017, 115, 116–139. [Google Scholar] [CrossRef]
- Azadi, M.; Northey, S.A.; Ali, S.H.; Edraki, M. Transparency on greenhouse gas emissions from mining to enable climate change mitigation. Nat. Geosci. 2020, 13, 100–104. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. ISO: Geneva, Switzerland, 2006; pp. 235–248.
- ISO 14044:2006; Environmental Management: Life Cycle Assessment; Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- Tan, R.B.; Khoo, H.H. An LCA study of a primary aluminum supply chain. J. Clean. Prod. 2005, 13, 607–618. [Google Scholar] [CrossRef]
- Norgate, T.; Haque, N. Using life cycle assessment to evaluate some environmental impacts of gold production. J. Clean. Prod. 2012, 29, 53–63. [Google Scholar] [CrossRef]
- Farjana, S.H.; Mahmud, M.P.; Huda, N. Life Cycle Assessment for Sustainable Mining; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Yao, K.A.F.; Yao, B.K.; Belcourt, O.; Salze, D.; Lasm, T.; Lopez-Ferber, M.; Junqua, G. Mining impacts assessment using the LCA methodology: Case study of Afema gold mine in ivory coast. Integr. Environ. Assess. Manag. 2021, 17, 465–479. [Google Scholar] [CrossRef] [PubMed]
- Farjana, S.H.; Huda, N.; Mahmud, M.P. Life-Cycle environmental impact assessment of mineral industries. IOP Conf. Ser. Mater. Sci. Eng. 2018, 351, 012016. [Google Scholar] [CrossRef] [Green Version]
- Norgate, T.; Haque, N. Energy and greenhouse gas impacts of mining and mineral processing operations. J. Clean. Prod. 2010, 18, 266–274. [Google Scholar] [CrossRef]
- Mostavi, E.; Asadi, S.; Boussaa, D. Development of a new methodology to optimize building life cycle cost, environmental impacts, and occupant satisfaction. Energy 2017, 121, 606–615. [Google Scholar] [CrossRef]
- Lelek, L.; Kulczycka, J. Life cycle assessment of opencast lignite mining. Int. J. Coal Sci. Technol. 2021, 8, 1272–1287. [Google Scholar] [CrossRef]
- Roychoudhury, S.; Khanda, D. Application of Life Cycle Assessment (LCA) in coal mining. In Proceedings of the 6th Asian Mining Congress, Kolkata, India, 23–26 February 2016; pp. 23–26. [Google Scholar]
- Miller, S.A.; Moysey, S.; Sharp, B.; Alfaro, J. A stochastic approach to model dynamic systems in life cycle assessment. J. Ind. Ecol. 2013, 17, 352–362. [Google Scholar] [CrossRef]
- Otto, T.; Lindeque, G. Improving productivity at an open-pit mine through enhanced short-term mine planning. J. South. Afr. Inst. Min. Metall. 2021, 121, 589–598. [Google Scholar] [CrossRef]
- Katta, A.K.; Davis, M.; Kumar, A. Assessment of greenhouse gas mitigation options for the iron, gold, and potash mining sectors. J. Clean. Prod. 2020, 245, 118718. [Google Scholar] [CrossRef]
- Golbasi, O.; Kina, E. Haul truck fuel consumption modeling under random operating conditions: A case study. Transp. Res. Part D Transp. Environ. 2022, 102, 103135. [Google Scholar] [CrossRef]
- Liu, L.y.; Ji, H.g.; Lü, X.f.; Wang, T.; Zhi, S.; Pei, F.; Quan, D.l. Mitigation of greenhouse gases released from mining activities: A review. Int. J. Miner. Metall. Mater. 2021, 28, 513–521. [Google Scholar] [CrossRef]
- Sahoo, L.K.; Bandyopadhyay, S.; Banerjee, R. Benchmarking energy consumption for dump trucks in mines. Appl. Energy 2014, 113, 1382–1396. [Google Scholar] [CrossRef] [Green Version]
- Gopalan, R.K.R.; Anis Mankada, O.v.d.E. Advanced Analytics Can Help Achieve 5–10 Percent Hauling Fuel Optimization in Open-Pit Mining. 2022. Available online: https://www.mckinsey.com (accessed on 20 November 2022).
- Soofastaei, A.; Fouladgar, M. Energy Efficiency Improvement in Surface Mining. In Energy Recovery; IntechOpen: London, UK, 2022. [Google Scholar]
- Azapagic, A.; Clift, R. Life cycle assessment and multiobjective optimisation. J. Clean. Prod. 1999, 7, 135–143. [Google Scholar] [CrossRef]
- Barak, S.; Moghdani, R.; Maghsoudlou, H. Energy-efficient multi-objective flexible manufacturing scheduling. J. Clean. Prod. 2021, 283, 124610. [Google Scholar] [CrossRef]
- Ding, T.; Steubing, B.; Achten, W.M. Coupling optimization with territorial LCA to support agricultural land-use planning. J. Environ. Manag. 2023, 328, 116946. [Google Scholar] [CrossRef] [PubMed]
- Capitanescu, F.; Marvuglia, A.; Gutiérrez, T.N.; Benetto, E. Multi-stage farm management optimization under environmental and crop rotation constraints. J. Clean. Prod. 2017, 147, 197–205. [Google Scholar] [CrossRef]
- Roghanian, E.; Cheraghalipour, A. Addressing a set of meta-heuristics to solve a multi-objective model for closed-loop citrus supply chain considering CO2 emissions. J. Clean. Prod. 2019, 239, 118081. [Google Scholar] [CrossRef]
- Galán-Martín, Á.; Vaskan, P.; Antón, A.; Esteller, L.J.; Guillén-Gosálbez, G. Multi-objective optimization of rainfed and irrigated agricultural areas considering production and environmental criteria: A case study of wheat production in Spain. J. Clean. Prod. 2017, 140, 816–830. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.A. Design optimization of noise barrier tunnels through component reuse: Minimization of costs and CO2 emissions using multi-objective genetic algorithm. J. Clean. Prod. 2021, 298, 126697. [Google Scholar] [CrossRef]
- Hong, T.; Kim, J.; Lee, M. A multi-objective optimization model for determining the building design and occupant behaviors based on energy, economic, and environmental performance. Energy 2019, 174, 823–834. [Google Scholar] [CrossRef]
- Lee, M.G.; An, J.H.; Bae, S.G.; Oh, H.S.; Choi, J.; Yun, D.Y.; Hong, T.; Lee, D.E.; Park, H.S. Multi-objective sustainable design model for integrating CO2 emissions and costs for slabs in office buildings. Struct. Infrastruct. Eng. 2020, 16, 1096–1105. [Google Scholar] [CrossRef]
- Hamdy, M.; Hasan, A.; Siren, K. Applying a multi-objective optimization approach for design of low-emission cost-effective dwellings. Build. Environ. 2011, 46, 109–123. [Google Scholar] [CrossRef]
- Azari, R.; Garshasbi, S.; Amini, P.; Rashed-Ali, H.; Mohammadi, Y. Multi-objective optimization of building envelope design for life cycle environmental performance. Energy Build. 2016, 126, 524–534. [Google Scholar] [CrossRef]
- Ibrahim, N.; Cox, S.; Mills, R.; Aftelak, A.; Shah, H. Multi-objective decision-making methods for optimising CO2 decisions in the automotive industry. J. Clean. Prod. 2021, 314, 128037. [Google Scholar] [CrossRef]
- Al-Mayyahi, M.A.T. Multi-Objective Optimization of CO2 Emissions from Refinery Operations. Ph.D. Thesis, Monash University, Melbourne, Australia, 2013. [Google Scholar]
- Azadeh, A.; Shafiee, F.; Yazdanparast, R.; Heydari, J.; Fathabad, A.M. Evolutionary multi-objective optimization of environmental indicators of integrated crude oil supply chain under uncertainty. J. Clean. Prod. 2017, 152, 295–311. [Google Scholar] [CrossRef]
- Rodrigues, H.; Mackay, E.; Arnold, D. Multi-objective Optimization of CO2 Recycling Operations for CCUS in a Brazilian Pre-Salt Benchmark Model. In Proceedings of the 15th Greenhouse Gas Control Technologies Conference, Abu Dhabi, United Arab Emirates, 15–18 March 2021; pp. 15–18. [Google Scholar]
- Blom, M.; Pearce, A.R.; Stuckey, P.J. Short-term planning for open pit mines: A review. Int. J. Min. Reclam. Environ. 2019, 33, 318–339. [Google Scholar] [CrossRef]
- Azapagic, A.; Pettit, C.; Sinclair, P. A life cycle methodology for mapping the flows of pollutants in the urban environment. Clean Technol. Environ. Policy 2007, 9, 199–214. [Google Scholar] [CrossRef]
- Mahmud, M.P.; Huda, N.; Farjana, S.H.; Lang, C. A strategic impact assessment of hydropower plants in alpine and non-alpine areas of Europe. Appl. Energy 2019, 250, 198–214. [Google Scholar] [CrossRef]
- Noh, S.; Son, Y.; Park, J. Life cycle carbon dioxide emissions for fill dams. J. Clean. Prod. 2018, 201, 820–829. [Google Scholar] [CrossRef]
- EPA Center for Corporate Climate Leadership. GHG Emission Factors Hub. 2022. Available online: https://www.epa.gov/climateleadership/ghg-emission-factors-hub (accessed on 25 January 2023).
- Emission Factors and Reference Values: Canada’s Greenhouse Gas Offset Credit System. 2022. Available online: https://publications.gc.ca/site/eng/9.911206/publication.html (accessed on 27 January 2023).
- Asian Development Bank. Guidelines for Estimating Greenhouse Gas Emissions of Asian Development Bank Projects: Additional Guidance for Clean Energy Projects; Asian Development Bank: Metro Manila, Philippines, 2017. [Google Scholar]
- Paraskevas, D.; Kellens, K.; Van de Voorde, A.; Dewulf, W.; Duflou, J.R. Environmental impact analysis of primary aluminium production at country level. Procedia CIRP 2016, 40, 209–213. [Google Scholar] [CrossRef] [Green Version]
- Van Genderen, E.; Wildnauer, M.; Santero, N.; Sidi, N. A global life cycle assessment for primary zinc production. Int. J. Life Cycle Assess. 2016, 21, 1580–1593. [Google Scholar] [CrossRef] [Green Version]
- Mutchek, M.; Cooney, G.; Pickenpaugh, G.; Marriott, J.; Skone, T. Understanding the contribution of mining and transportation to the total life cycle impacts of coal exported from the United States. Energies 2016, 9, 559. [Google Scholar] [CrossRef] [Green Version]
- Adiansyah, J.S.; Haque, N.; Rosano, M.; Biswas, W. Application of a life cycle assessment to compare environmental performance in coal mine tailings management. J. Environ. Manag. 2017, 199, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Haque, N.; Norgate, T. The greenhouse gas footprint of in-situ leaching of uranium, gold and copper in Australia. J. Clean. Prod. 2014, 84, 382–390. [Google Scholar] [CrossRef]
- Nayeri, S.; Torabi, S.A.; Tavakoli, M.; Sazvar, Z. A multi-objective fuzzy robust stochastic model for designing a sustainable-resilient-responsive supply chain network. J. Clean. Prod. 2021, 311, 127691. [Google Scholar] [CrossRef]
- Huang, D.; Dinga, C.D.; Tao, Y.; Wen, Z.; Wang, Y. Multi-objective optimization of energy conservation and emission reduction in China’s iron and steel industry based on dimensionality reduction. J. Clean. Prod. 2022, 368, 133131. [Google Scholar] [CrossRef]
- Ulrich, S.; Trench, A.; Hagemann, S. Gold mining greenhouse gas emissions, abatement measures, and the impact of a carbon price. J. Clean. Prod. 2022, 340, 130851. [Google Scholar] [CrossRef]
- Vergara-Zambrano, J.; Kracht, W.; Díaz-Alvarado, F.A. Integration of renewable energy into the copper mining industry: A multi-objective approach. J. Clean. Prod. 2022, 372, 133419. [Google Scholar] [CrossRef]
- Cox, B.; Innis, S.; Kunz, N.; Steen, J. The Mining Industry as a net beneficiary of a global tax on carbon emissions. Commun. Earth Environ. 2022, 3, 17. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahnema, M.; Amirmoeini, B.; Moradi Afrapoli, A. Incorporating Environmental Impacts into Short-Term Mine Planning: A Literature Survey. Mining 2023, 3, 163-175. https://doi.org/10.3390/mining3010010
Rahnema M, Amirmoeini B, Moradi Afrapoli A. Incorporating Environmental Impacts into Short-Term Mine Planning: A Literature Survey. Mining. 2023; 3(1):163-175. https://doi.org/10.3390/mining3010010
Chicago/Turabian StyleRahnema, Milad, Bahar Amirmoeini, and Ali Moradi Afrapoli. 2023. "Incorporating Environmental Impacts into Short-Term Mine Planning: A Literature Survey" Mining 3, no. 1: 163-175. https://doi.org/10.3390/mining3010010
APA StyleRahnema, M., Amirmoeini, B., & Moradi Afrapoli, A. (2023). Incorporating Environmental Impacts into Short-Term Mine Planning: A Literature Survey. Mining, 3(1), 163-175. https://doi.org/10.3390/mining3010010