Environmental Aspects of Potash Mining: A Case Study of the Verkhnekamskoe Potash Deposit
Abstract
:1. Introduction
2. Characteristics of the Verkhnekamskoe Potash Deposit
3. Potash Production Waste
4. Environmental Consequences of Potash Mining
4.1. Ground Subsidence
4.2. The Impact of Potash Mines on the Chemical Composition of the Atmosphere
4.3. The Impact of Potash Waste on the Chemical Composition of Surface Water
4.4. The Impact of Potash Waste on the Chemical Composition of Groundwater
4.5. The Impact of Potash Waste on the Chemical Composition of Soils
4.6. The Impact of Potash Waste on the Vegetation
4.7. Radiation Situation at the Verkhnekamskoe Potash Deposit
5. Environmental Impact Minimization
6. Abandoned Potash Mine Ecological Resource Development
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, P.P.; Yadav, V.; Rajput, A.; Kulshrestha, V. Synthesis of Chloride-Free Potash Fertilized by Ionic Metathesis Using Four-Compartment Electrodialysis Salt Engineering. ACS Omega 2018, 3, 6895–6902. [Google Scholar] [CrossRef] [PubMed]
- Türk, T.; Üçerler, Z.; Burat, F.; Bulut, G.; Kangal, M.O. Extraction of Potassium from Feldspar by Roasting with CaCl2 Obtained from the Acidic Leaching of Wollastonite-Calcite Ore. Minerals 2021, 11, 1369. [Google Scholar] [CrossRef]
- Ali, M.M.E.; Petropoulos, S.A.; Selim, D.A.F.H.; Elbagory, M.; Othman, M.M.; Omara, A.E.-D.; Mohamed, M.H. Plant Growth, Yield and Quality of Potato Crop in Relation to Potassium Fertilization. Agronomy 2021, 11, 675. [Google Scholar] [CrossRef]
- Chen, W.; Geng, Y.; Hong, J.; Yang, D.; Ma, X. Life cycle assessment of potash fertilizer production in China. Resour. Conserv. Recycl. 2018, 138, 238–245. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries 2021; U.S. Geological Survey: Reston, VA, USA, 2021. [CrossRef]
- Wang, X.; Miller, J.D.; Cheng, F.; Cheng, H. Potash flotation practice for carnallite resources in the Qinghai Province, PRC. Miner. Eng. 2014, 66–68, 33–39. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Mineral Commodity Summaries 2022; U.S. Geological Survey: Reston, VA, USA, 2022. [CrossRef]
- Ciceri, D.; Manning, D.; Allanore, A. Historical and Technical Developments of Potassium Resources. Sci. Total Environ. 2015, 502, 590–601. [Google Scholar] [CrossRef]
- Andreiko, S.; Baryakh, A.; Lobanov, S.; Fedoseev, A. Geo mechanical Estimation of Danger of Gas-Dynamic Failure During Potash Deposits Mining. Procedia Eng. 2017, 191, 954–961. [Google Scholar] [CrossRef]
- Mamaev, Y.A.; Vlasov, A.N.; Mnushkin, M.G.; Stolnikova, P.V. Changing structure of deformation area of undermined rock layer upon one-layer multichamber mining of salt deposit. Geoecol. Eng. Geol. Hydrogeol. Geocryol. 2021, 12, 32–38. (In Russian) [Google Scholar] [CrossRef]
- Sokol, D.G.; Le Quang Phuc; Than Van Duy. Safety improvement in recycle development headings in potash mines: Current problems and prospects. MIAB. Mining Inf. Anal. Bull. 2020, 12, 33–43. (In Russian) [Google Scholar] [CrossRef]
- Broughton, P.L. Economic geology of southern Saskatchewan potash mines. Ore Geol. Rev. 2019, 113, 103117. [Google Scholar] [CrossRef]
- Pichat, A. Stratigraphy, Paleogeography and Depositional Setting of the K–Mg Salts in the Zechstein Group of Netherlands—Implications for the Development of Salt Caverns. Minerals 2022, 12, 486. [Google Scholar] [CrossRef]
- Lavrenko, S.A.; Shishlyannikov, D.I. Performance Evaluation of Heading-and-Winning Machines in the Conditions of Potash Mines. Appl. Sci. 2021, 11, 3444. [Google Scholar] [CrossRef]
- Seifi, C.; Schulze, M.; Zimmermann, J. Solution procedures for block selection and sequencing in flat-bedded potash underground mines. OR Spectrum 2021, 43, 409–440. [Google Scholar] [CrossRef]
- Lanzerstorfer, C. Potential of industrial de-dusting residues as a source of potassium for fertilizer production—A mini review. Resour. Conserv. Recycl. 2019, 143, 68–76. [Google Scholar] [CrossRef]
- Santos, S.; Casagrande, P.; Nader, P.; Oliveira, M.; Henriques, A. Technical feasibility study of the exploitation of seabed potassium salts by solution mining. J. Mater. Res. Technol. 2022, 16, 433–441. [Google Scholar] [CrossRef]
- Zelek, S.M.; Stadnicka, K.M.; Toboła, T.; Natkaniec-Nowak, L. Lattice deformation of blue halite from Zechstein evaporite basin: Kłodawa Salt Mine, Central Poland. Miner. Petrol. 2014, 108, 619–631. [Google Scholar] [CrossRef] [Green Version]
- Liskova, M.Y. Geoecology with modern construction enterprises on extraction and enrichment of potassium and magnesium salts. News Tula State Univ. Sci. Earth 2016, 4, 39–49. (In Russian) [Google Scholar]
- Royer, J.J.; Litaudon, J.; Filippov, L.O.; Lyubimova, T.; Maximovich, N. 3D geostatistical modelling for identifying sinkhole disaster potential zones around the Verkhnekamskoye potash deposit (Russia). J. Phys. Conf. Ser. 2017, 879, 12018. [Google Scholar] [CrossRef] [Green Version]
- Prakash, S.; Verma, J.P. Global perspective of potash for fertilizer production. In Potassium Solubilizing Microorganisms for Sustainable Agriculture; Meena, V.S., Maurya, B.R., Verma, J.P., Meena, R.S., Eds.; Springer: New Delhi, India, 2016; pp. 327–331. [Google Scholar] [CrossRef]
- Kemp, S.J.; Smith, F.W.; Wagner, D.; Mounteney, I.; Bell, C.P.; Milne, C.J.; Gowing, C.J.B.; Pottas, T.L. An improved approach to characterize potash-bearing evaporite deposits, evidenced in North Yorkshire, United Kingdom. Econ. Geol. 2016, 111, 719–742. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; Siritongkham, N. The characteristics, formation and exploration progress of the potash deposits on the Khorat Plateau, Thailand and Laos, Southeast Asia. China Geol. 2020, 3, 67–82. [Google Scholar] [CrossRef]
- Orris, G.J.; Cocker, M.D.; Dunlap, P.; Wynn, J.; Spanski, G.T.; Briggs, D.A.; Gass, L. A Global Overview of Evaporate-Related Potash Resources, Including Spatial Data-Bases of Deposits, Occurrences, and Permissive Tracts; Scientific Investigations Report, 2010-5090-S; U.S. Geological Survey: Reston, VA, USA, 2014. [CrossRef]
- Shen, L.; Wang, L.; Liu, C. Age of the Mengyejing potash deposit in the Simao Basin, southwest China: Constraints from detrital zircon U-Pb ages. Ore Geol. Rev. 2022, 149, 105097. [Google Scholar] [CrossRef]
- Titkov, S.N. Role of VNII Galurgy in developing of domestic mining-and-chemical industry. Gorn. Zhurnal 2016, 4, 5–10. (In Russian) [Google Scholar] [CrossRef]
- Golovatyy, I.I. JSC “Belaruskali”—The world’s largest producer of potash fertilizers. Gornyi Zhurnal 2018, 8, 4–9. (In Russian) [Google Scholar]
- Zemskov, A.N.; Maksimovich, N.G.; Meshcheryakova, O.Y. Modern trends in the development of the potash industry in the world. News Tula State Univ. Sci. Earth 2022, 3, 369–382. (In Russian) [Google Scholar]
- Maksimovich, N.G.; Meshcheryakova, O.Y. Karst Features of the Garlyk Potash Deposit Area, Turkmenistan. Bull. Perm Univ. Geol. 2016, 2, 64–71. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Moloshtanova, N.E.; Isaeva, G.A. Use of Geochemical Indicators to Determine the Genesis of Sylvinite of the Tubegatan Deposit. Bull. Perm Univ. Geol. 2015, 2, 55–62. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Baryakh, A.A.; Smirnov, E.V.; Kvitkin, S.Y.; Tenison, L.O. Russian potash industry: Issues of rational and safe mining. Russ. Min. Ind. 2022, 1, 41–50. (In Russian) [Google Scholar] [CrossRef]
- Vishnyakov, A.K.; Moscovskiy, G.A.; Goncharenko, O.P.; Vafina, M.S.; Vershinin, D.S.; Sopivnik, I.V. Mineral composition of halogenous rocks of the Nivensky hollow of the Kaliningrad-Gdansk saliferous basin and condition of their formation. Litosfera 2016, 4, 102–113. (In Russian) [Google Scholar]
- Cañedo-Argüelles, M.; Brucet, S.; Carrasco, S.; Flor-Arnau, N.; Ordeix, M.; Ponsa, S.; Coring, E. Effects of potash mining on river ecosystems: An experimental study. Environ. Pollut. 2017, 224, 759–770. [Google Scholar] [CrossRef]
- Roesel, L.K. Effects of less impermeable sealings for mine piles, Ecological. Engineering 2022, 176, 106515. [Google Scholar] [CrossRef]
- Sommer, V.; Karsten, U.; Glaser, K. Halophilic Algal Communities in Biological Soil Crusts Isolated from Potash Tailings Pile Areas. Front. Ecol. Evol. 2020, 8, 46. [Google Scholar] [CrossRef] [Green Version]
- Sidki-Rius, N.; Sanmiquel, L.; Bascompta, M.; Parcerisa, D. Subsidence Management and Prediction System: A Case Study in Potash Mining. Minerals 2022, 12, 1155. [Google Scholar] [CrossRef]
- Vendrell-Puigmitja, L.; Llenas, L.; Proia, L.; Ponsa, S.; Espinosa, C.; Morin, S.; Abril, M. Effects of an hypersaline effluent from an abandoned potash mine on freshwater biofilm and diatom communities. Aquat. Toxicol. 2021, 230, 105707. [Google Scholar] [CrossRef]
- Bäthe, J.; Coring, E. Biological effects of anthropogenic salt-load on the aquatic Fauna: A synthesis of 17 years of biological survey on the rivers Werra and Weser. Limnologica 2011, 41, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Gorostiza, S.; Sauri, D. Naturalizing pollution: A critical social science view on the link between potash mining and salinization in the Llobregat river basin, northeast Spain. Phil. Trans. R. Soc. B. 2018, 374, 20180006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ziemann, H.; Schulz, C.-J. Methods for biological assessment of salt-loaded running waters—Fundamentals, current positions and perspectives. Limnologica 2011, 41, 90–95. [Google Scholar] [CrossRef] [Green Version]
- Schulz, C.-J.; Cañedo-Argüelles, M. Lost in translation: The German literature on freshwater salinization. Phil. Trans. R. Soc. B 2019, 374, 20180007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khayrulina, E.A. Environmental management in the development of potassium salt deposits. Reg. Environ. Issues 2015, 4, 140–145. (In Russian) [Google Scholar]
- Pyankova, A.A.; Usanina, D.I.; Aleev, V.S.; Blinov, S.M.; Plotnikova, E.G. Characteristics of bacteria isolated from the miner of the Verkhnekamsky salt deposit (Perm krai). Bull. Perm Univ. Biol. 2020, 4, 312–320. (In Russian) [Google Scholar] [CrossRef]
- Karavaeva, T.; Menshikova, E.; Belkin, P.; Zhdakaev, V. Features of Arsenic Distribution in the Soils of Potash Mines. Minerals 2022, 12, 1029. [Google Scholar] [CrossRef]
- Trapeznikov, D.E. Salt deposits of the Ufimian Formation in the Solikamsk depression. Litosfera 2018, 18, 223–234. (In Russian) [Google Scholar] [CrossRef]
- Kudryashov, A.I. Verkhnekamskoe Salt Deposit, 2nd ed.; Epsilon Plyus: Moscow, Russia, 2013; 386p. (In Russian) [Google Scholar]
- Sidorova, I.T. Formation of chemical industry in Verchnekamye by the example of Bereznikichemical plants. Bull. Mosc. Reg. State Univ. Ser. Hist. Political Sci. 2010, 2, 80–83. (In Russian) [Google Scholar]
- 85 Years Since the Discovery of the Verkhnekamsk Salt Deposit. Official site of the Russian Agency for Subsoil Use. Available online: https://www.rosnedra.gov.ru/article/3604.html (accessed on 15 December 2022).
- Levchenko, T.P.; Konstantinov, I.S. Potash fertilizers production in Russia. Gorn. Zhurnal 2016, 4, 10–14. (In Russian) [Google Scholar] [CrossRef]
- Liskova, M.Y. Negative impact on the environment caused by companies that mine and process potassium and magnesium salts. Bull. PNRPU Geology. Oil Gas Eng. Min. 2017, 16, 82–88. (In Russian) [Google Scholar] [CrossRef]
- Boyarko, G.Y.; Khatkov, V.Y. Current state of the Russian salt industry. Bull. Tomsk. Polytech. Univ. Geo Assets Eng. 2021, 332, 179–190. [Google Scholar]
- Bayandina, E. Study of Geological Conditions and Results of Selective Attrition of the Sylvinite Core during Exploration of the Verkhnekamskoye Field. Ph.D. Thesis, Sergo Ordzhonikidze Russian State University for Geological Prospecting, Moscow, Russia, 2017. (In Russian). [Google Scholar]
- Kovalev, O.V.; Mozer, S.P. Some approaches to secure mining of potash deposits. J. Min. Inst. 2014, 207, 55–59. (In Russian) [Google Scholar]
- Samsonov, S.; Baryakh, A. Estimation of Deformation Intensity above a Flooded Potash Mine Near Berezniki (Perm Krai, Russia) with SAR Interferometry. Remote Sens. 2020, 12, 3215. [Google Scholar] [CrossRef]
- Konstantinova, S.A.; Aptukov, V.N. Some Problems in the Mechanics of Deformation and Fracture of Salt Rocks; Nauka: Novosibirsk, Russia, 2013; 190p. (In Russian) [Google Scholar]
- Chaikovskiy, I.I.; Korotchenkova, O.V.; Trapeznikov, D.E. New genetic type of leaching zones in the salts of the Verkhnekamskoe salt deposit: Hydrochemical, mineralogical and structural indicators. Litol. I Polezn. Iskopayemyye 2019, 4, 337–350. [Google Scholar] [CrossRef]
- Chaikovskiy, I.I. Evolution of the Chemical Composition of Primary Salts of the Verkhnekamskoe deposit. Uchenye Zap. Kazan. Univ. Seriya Estestv. Nauk. 2020, 162, 290–301. [Google Scholar] [CrossRef]
- Maksimovich, N.G.; Pervova, M.S. Influence of the mineralized water crossflows of the Upper-Kama potash-magnesium salt deposit on the subsurface hydrosphere. Eng. Surv. 2012, 1, 22–28. [Google Scholar]
- Chaikovskiy, I.I.; Utkina, T.A.; Isaeva, G.A. Evolution of mineral composition of insoluble salt residue from the verkhnekamskoe deposit. Mountain Echo 2021, 4, 17–20. [Google Scholar] [CrossRef]
- Tallin, J.E.; Pufahl, D.E.; Barbour, S.L. Waste management schemes of potash mines in Saskatchewan. Can. J. Civ. Eng. 2011, 17, 528–542. [Google Scholar] [CrossRef]
- Li, D.; Wang, X.; Cheng, F.; Li, E. Removal of Insoluble Slimes from Potash Ore Using Flotation. Tenside Surfactants Deterg. 2017, 54, 479–485. [Google Scholar] [CrossRef]
- Bilibio, C.; Retz, S.; Schellert, C.; Hensel, O. Drainage properties of technosols made of municipal solid waste incineration bottom ash and coal combustion residues on potash-tailings piles: A lysimeter study. J. Clean. Prod. 2021, 279, 123442. [Google Scholar] [CrossRef]
- Savon, D.Y.; Shevchuk, S.V.; Shevchuk, P.V. Reducing the impact of waste potash industry on the environment. MIAB. Mining Inf. Anal. Bull. 2016, 8, 360–368. (In Russian) [Google Scholar]
- Ermolovich, E.A.; Ivannikov, A.L.; Khayrutdinov, M.M.; Kongar-Syuryun, C.B.; Tyulyaeva, Y.S. Creation of a Nanomodified Backfill Based on the Waste from Enrichment of Water-Soluble Ores. Materials 2022, 15, 3689. [Google Scholar] [CrossRef]
- Bacurin, B.A.; Baboshko, A.Y. Ecological and geochemical characteristics of potash waste. Gorn. Zhurnal 2008, 10, 88–91. (In Russian) [Google Scholar]
- Ladrera, R.; Cañedo-Argüelles, M.; Prat, N. Impact of potash mining in streams: The Llobregat basin (northeast Spain) as a case study. J. Limn. 2016, 76, 1525. [Google Scholar] [CrossRef] [Green Version]
- Petrova, T.A.; Astapenka, T.S.; Kologrivko, A.A.; Dolgih, A.S. Analysis of the impact of potash waste storage facilities on the environment and approaches to choosing a rational way to store them. Eurasian Sci. J. 2022, 14, 11NZVN322. (In Russian) [Google Scholar]
- Ahmad, N.; Baddour, R.E. A review of sources, effects, disposal methods, and regulations of brine into marine environments. Ocean. Coast Manag. 2014, 87, 1–7. [Google Scholar] [CrossRef]
- Knyazev, V.V.; Komarov, Y.A. Environmental aspects of the combined storage of halite wastes and clay-salt slimes. Gorn. Zhurnal 2016, 4, 97–101. (In Russian) [Google Scholar] [CrossRef]
- Cañedo-Argüelles, M. A review of recent advances and future challenges in freshwater salinization. Limnetica 2020, 39, 185–211. [Google Scholar] [CrossRef]
- Gorostiza, S.; March, H.; Conde, M.; Sauri, D. Corrosive flows, faulty materialities: Building the brine collector in the Llobregat River Basin, Catalonia. Environ. Plan. E Nat. Space 2022, 25148486221105875. [Google Scholar] [CrossRef]
- Payler, S.J.; Biddle, J.F.; Sherwood Lollar, B.; Fox-Powell, M.G.; Edwards, T.; Ngwenya, B.T.; Paling, S.M.; Cockell, C.S. An Ionic Limit to Life in the Deep Subsurface. Front. Microbiol. 2019, 10, 426. [Google Scholar] [CrossRef] [Green Version]
- Yubero, M.T.; Olivella, S.; Gens, A.; Bonet, E.; Lloret, A.; Alfonso, P. Analysis of the process of compaction movements of deposits of crushed salt tailings. Eng. Geol. 2021, 293, 106290. [Google Scholar] [CrossRef]
- Vysotskaya, N.A.; Piskun, E.V. The Main Factors of Adverse Environmental Impact of Potash Production and Methods of Environmental Protection. Min. Sci. Technol. 2019, 4, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Knyazev, V.V.; Komarov, Y.A. Method of sludge storage placement on the territory of the future halite waste pile. MIAB. Min. Inf. Anal. Bull. 2015, 5, 394–397. (In Russian) [Google Scholar]
- Pinkse, T.; Quensel, R.; Lack, D.; Zimmermann, R.; Fliss, T.; Scherzberg, H.; Marx, H.; Niessing, S.; Deppe, S.; Eichholtz, M.; et al. Introducing a New Approach for the Stowage of Waste Brines from Potash Mines of the Werra District in Germany as a Measure to Ensure the Safe and Sustainable Continuation of Potash Extraction and Processing. In Proceedings of the International Mine Water Association 2019 Conference, Perm, Russia, 15–19 July 2019; Available online: https://www.researchgate.net/publication/339177447_Introducing_a_New_Approach_for_the_Stowage_of_Waste_Brines_from_Potash_Mines_of_the_Werra_District_in_Germany_as_a_Measure_to_Ensure_the_Safe_and_Sustainable_Continuation_of_Potash_Extraction_and_Proc (accessed on 15 November 2022).
- Bilibio, C.; Schellert, C.; Retz, S.; Hensel, O.; Schmeisky, H.; Uteau, D.; Peth, S. Water balance assessment of different substrates on potash tailings piles using non-weighable lysimeters. J. Environ. Manag. 2017, 196, 633–643. [Google Scholar] [CrossRef]
- Gorostiza, S. Potash extraction and historical environmental conflict in the Bages region (Spain). Investig. Geogr. 2014, 61, 5–16. [Google Scholar] [CrossRef] [Green Version]
- Pumjan, S.; Long, T.T.; Loc, H.H.; Park, E. Deep well injection for the waste brine disposal solution of potash mining in Northeastern Thailand. J. Environ. Manag. 2022, 311, 114821. [Google Scholar] [CrossRef]
- Kongar-Syuryun, C.B.; Faradzhov, V.V.; Tyulyaeva, Y.S.; Khayrutdinov, A.M. Investigation of the influence of activation treatment on halite waste of enrichment when preparing stopping mixture. MIAB. Mining Inf. Anal. Bull. 2021, 1, 43–57. (In Russian) [Google Scholar] [CrossRef]
- Belkin, P.A.; Kataev, V.N. Regularities of the chemical composition of technogenic transformation which groundwater undergoes in the areas of the potash deposits development. News Ural. State Min. Univ. 2018, 2, 55–64. (In Russian) [Google Scholar] [CrossRef]
- Bachurin, B.A.; Smetannikov, A.F.; Khokhryakova, E.S. Geochemical transformation of potash production wastes under conditions of hypergenesis. In Proceedings of the Modern Problems of Geochemistry, Geology and Prospecting for Mineral Deposits, Minsk, Belarus, 23–25 May 2017; Available online: https://elib.bsu.by/handle/123456789/186040 (accessed on 25 November 2022). (In Russian).
- Khayrulina, E.; Maksimovich, N. Influence of Drainage with High Levels of Water-Soluble Salts on the Environment in the Verhnekamskoe Potash Deposit, Russia. Mine Water Environ. 2018, 37, 595–603. [Google Scholar] [CrossRef]
- Zairov, S.S.; Karimov, Y.L.; Latipov, Z.Y. Study of the chemical process of fixing salt waste in the mining complex of the Dehkanabad potash fertilizer plant. Probl. Subsoil Use 2021, 3, 40–53. (In Russian) [Google Scholar] [CrossRef]
- Khairulina, E.A.; Khomich, V.S.; Liskova, M.Y. Environmental issues of potash deposit development. News Tula State Univ. Sci. Earth 2018, 2, 112–126. (In Russian) [Google Scholar]
- Smetannikov, A.F.; Onosov, D.V. Peculiarities of Technogenic Mineralization of Halurgical and Flotation Slurries; Mining Echo: Toronto, ON, Canada, 2020; Volume 3, pp. 18–26. (In Russian) [Google Scholar]
- Kalashnikova, M.S.; Seimova, G.V. The study of disperse composition of dust emitted during storage of wastes of potassium production. In Bulletin of Volgograd State University of Architecture and Civil Engineering Series: Civil Engineering and Architecture; Volgograd, Russia, 2015; Volume 41, pp. 63–73. Available online: https://vgasu.ru/upload/files/science/sa-41(60)-2015.pdf (accessed on 25 November 2022). (In Russian)
- Shilov, A.M.; Rusakov, M.I. Experience and prospects of clayey-salt slurry placement in salt dumps at potassium mines. MIAB. Mining Inf. Anal. Bull. 2017, 10, 212–218. [Google Scholar] [CrossRef]
- Eremchenko, O.Z.; Pakhorukov, I.V.; Shestakov, I.E. Development of the solonchak process in soils of small river valleys in the taiga-forest zone in relation to the production of potassium salts. Eurasian Soil Sci. 2020, 4, 483–494. [Google Scholar] [CrossRef]
- Khayrulina, E.; Mitrakova, N.; Poroshina, N.; Menshikova, E.; Perminova, A. Formation of Solonchak in the Area of the Discharged Ancient Brine Wells (Perm Krai, Russia). Front. Environ. Sci. 2022, 10, 858742. [Google Scholar] [CrossRef]
- Kasperov, G.I.; Levkevich, V.E.; Pastukhov, S.M.; Mikanovich, D.S. Sludge depositories technical state as the main factor of their safety. Proc. BSTU 2015, 2, 285–289. (In Russian) [Google Scholar]
- Khayrulina, E.A. Influence of slurry storage facility with salt-bearing wastes on the surface and groundwaters. Geogr. Bull. 2018, 2, 145–155. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Anikin, V.V. Determination of safe parameters of large section chambers for placing clay-salt sludge at the mines of the Verkhnekamskoye deposit. Gorn. Ekho 2019, 1, 45–49. (In Russian) [Google Scholar] [CrossRef]
- Paul, B.; Dynes, J.J.; Chang, W. Modified zeolite adsorbents for the remediation of potash brine-impacted groundwater: Built-in dual functions for desalination and pH neutralization. Desalination 2017, 419, 141–151. [Google Scholar] [CrossRef]
- Barbour, S.L.; Yang, N. A review of the influence of clay–brine interactions on the geotechnical properties of Ca-montmorillonitic clayey soils from western Canada. Can. Geotech. J. 2011, 30, 920–934. [Google Scholar] [CrossRef]
- Akhmadiev, M.V.; Slyusar, N.N. The main functional areas and properties of geosynthetic materials used in the construction and reclamation of solid waste landfills. In Bulletin of PNRPU. Transport. Transport facilities. Ecology; PNRPU: Perm Krai, Russia, 2010; Volume 2, pp. 17–22. Available online: https://vestnik.pstu.ru/obgtrans/archives/?id=&folder_id=259 (accessed on 20 December 2022). (In Russian)
- Khayrulina, E.; Bogush, A.; Novoselova, L.; Mitrakova, N. Properties of Alluvial Soils of Taiga Forest under Anthropogenic Salinisation. Forests 2021, 12, 321. [Google Scholar] [CrossRef]
- Lucas, Y.; Schmitt, A.D.; Chabaux, F.; Clément, A.; Fritz, B.; Elsass, P.; Durand, S. Geochemical tracing and hydrogeochemical modelling of water-rock interactions during salinization of alluvial groundwater (Upper Rhine Valley, France). Appl. Geochem. 2010, 25, 1644–1663. [Google Scholar] [CrossRef]
- Arle, J.; Wagner, F. Effects of anthropogenic salinisation on the ecological status of macroinvertebrate assemblages in the Werra River (Thuringia, Germany). Hydrobiologia 2013, 701, 129–148. [Google Scholar] [CrossRef]
- Sommer, V.; Palm, A.; Schink, A.; Leinweber, P.; Gose, N.; Karsten, U.; Glaser, K. Artificial biocrust establishment on materials of potash tailings piles along a salinity gradient. J. Appl. Phycol. 2022, 34, 405–421. [Google Scholar] [CrossRef]
- Karfidova, Е.А.; Sizov, A.P. Consideration of technogenesis influence in the project of the specially protected natural territory of landscape type of local value (by the example of Solikamsk municipal district). Geoecol. Eng. Geol. Hydrogeol. Geocryol. 2020, 1, 22–27. (In Russian) [Google Scholar] [CrossRef]
- Tatarkin, A.V. Prediction procedure for sinkholes in terms of the Upper Kama potassium–magnesium salt deposit. MIAB. Min. Inf. Anal. Bull. 2020, 1, 121–132. (In Russian) [Google Scholar] [CrossRef]
- Baryakh, A.A.; Gubanova, E.A. On flood protection measures for potash mines. J. Min. Inst. 2019, 240, 613–620. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Kovalskii, E.R.; Gromtsev, K.V. Development of the technology of stowing the developed space during mining. J. Min. Inst. 2022, 254, 202–209. [Google Scholar] [CrossRef]
- Gnutzmann, H.; Kowalewski, O.; Śpiewanowski, P. Market Structure and Resilience: Evidence from Potash Mine Disasters. Am. J. Agr. Econ. 2019, 102, 41. [Google Scholar] [CrossRef]
- Baryakh, A.A.; Samodelkina, N.A. Geomechanical Estimation of Deformation Intensity above the Flooded Potash Mine. J. Min. Sci. 2018, 53, 630–642. [Google Scholar] [CrossRef]
- Ashrafianfar, N.; Hebel, H.P.; Busch, W. Monitoring of mining induced land subsidence—Differential SAR Interferometry (DInSAR) and Persistent Scatterer Interferometry (PSI) using TerraSAR-X data in comparison with ENVISAT data. In Proceedings of the TerraSAR-X Science Team Meeting, Oberpfaffenhofen, Germany, 14–16 February 2011; Available online: https://www.semanticscholar.org/paper/MONITORING-OF-MINING-INDUCED-LAND-SUBSIDENCE-SAR-IN-Ashrafianfar-Hebel/8771a34cd7d6b79b3cd59c389e75db20b15a24d2 (accessed on 20 December 2022).
- Baryakh, A.A.; Devyatkov, S.Y.; Samodelkina, N.A. Theoretical explanation of conditions for sinkholes after emergency flooding of potash mines. J. Min. Sci. 2016, 1, 50–61. [Google Scholar] [CrossRef]
- Filimonchikov, A.A.; Tatarkin, A.V. Risk evaluation of geotechnical conditions changes on underworked areas. MIAB. Min. Inf. Anal. Bull. 2014, 4, 123–128. Available online: https://www.giab-online.ru/files/Data/2014/04/Filimonchikov.pdf (accessed on 20 December 2022). (In Russian).
- Tsvetkov, R.V.; Glot, I.O.; Epin, V.V.; Shardakov, I.N.; Shestakov, A.P. Forecast of the Surface Tilt Based on the Monitoring Data of Settlement of a Group of Buildings. J. Phys. Conf. Ser. 2021, 1945, 12060. (In Russian) [Google Scholar] [CrossRef]
- Gusev, G.N.; Epin, V.V.; Tsvetkov, R.V. The results of long-term observations of uneven settlements of buildings located on the territory of the Verkhnekamskoye potash deposit in Berezniki. News Ural. State Min. Univ. 2022, 3, 80–89. (In Russian) [Google Scholar]
- Uralkali Official Website. Available online: https://www.uralkali.com/ru/ (accessed on 20 February 2022).
- Zubov, V.P.; Kovalski, E.R.; Antonov, S.V.; Pachgin, V.V. Improving the safety of mines in developing Verkhnekamsk potassium and magnesium salts. MIAB. Mining Inf. Anal. Bull. 2019, 5, 22–33. (In Russian) [Google Scholar] [CrossRef]
- Mamaev, Y.A.; Yastrebov, A.A. Formation and structure of hypergenesis zone in the above-salt layer of the Verkhnekamskoe potassium salt deposit, Perm Krai, Russia. Geoecol. Eng. Geol. Hydrogeol. Geocryol. 2019, 2, 30–37. (In Russian) [Google Scholar] [CrossRef]
- Zhang, G.; Wang, Z.; Wang, L.; Chen, Y.; Wu, Y.; Ma, D.; Zhang, K. Mechanism of collapse sinkholes induced by solution mining of salt formations and measures for prediction and prevention. Bull. Eng. Geol. Environ. 2019, 78, 1401–1415. [Google Scholar] [CrossRef]
- Modeste, G.; Doubre, C.; Masson, F. Time evolution of mining-related residual subsidence monitored over a 24-year period using InSAR in southern Alsace, France. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102392. [Google Scholar] [CrossRef]
- Dubois, C.; Jänichen, J.; Wolsza, M.; Salepci, N.; Schmullius, C. 20 Years SAR Interferometry for Monitoring Ground Deformation over the former Potash-Mine “Glückauf” in Thuringia. Tag. Geomonit. 2020, S, 29–45. [Google Scholar] [CrossRef]
- Sanmiquel, L.; Bascompta, M.; Vintró, C.; Yubero, T. Subsidence Management System for Underground Mining. Minerals 2018, 8, 243. [Google Scholar] [CrossRef] [Green Version]
- Chugaev, A.V. Results of monitoring of a potentially hazardous area of the Verkhnekamskoye potassium salt deposit using the method of multichannel analysis of surface waves. Gorn. Ekho 2021, 3, 68–73. (In Russian) [Google Scholar] [CrossRef]
- Menshikova, E. Formation of Natural and Technical Systems of Mining Territories. Ph.D. Thesis, Perm National Research Polytechnic University, Perm, Russia, 2022. Available online: https://vak.minobrnauki.gov.ru/advert_independent/91881901002 (accessed on 15 December 2022). (In Russian).
- Grennfelt, P.; Engleryd, A.; Forsius, M.; Hov, Ø.; Rodhe, H.; Cowling, E. Acid rain and air pollution: 50 years of progress in environmental science and policy. Ambio 2020, 49, 849–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nawrot, A.; Migała, K.; Luks, B.; Pakszys, P.; Głowacki, P. Chemistry of snow cover and acidic snowfall during a season with a high level of air pollution on the Hans Glacier, Spitsbergen. Polar Sci. 2016, 10, 149–261. [Google Scholar] [CrossRef]
- Vega, C.P.; Björkman, M.P.; Pohjola, V.A.; Isaksson, E.; Pettersson, R.; Martma, T.; Marca, A.; Kaiser, J. Nitrate stable isotopes in snow and ice samples from four Svalbard sites. Polar Res. 2015, 34, 23246. [Google Scholar] [CrossRef] [Green Version]
- Pulawska, A.; Manecki, M.; Flasza, M.; Styszko, K. Origin, distribution, and perspective health benefits of particulate matter in the air of underground salt mine: A case study from Bochnia, Poland. Env. Geochem. Health 2021, 43, 3533–3556. [Google Scholar] [CrossRef]
- Isaevich, A.G.; Semin, M.A.; Fainburg, G.Z.; Aleksandrova, M.A. On the inefficiency of the forced ventilation method in solving the problem of normalizing dust environment in the dead-end face of the potash mine. Occup. Saf. Ind. 2022, 6, 52–59. (In Russian) [Google Scholar] [CrossRef]
- Bralewska, K.; Rogula-Kozłowska, W.; Mucha, D.; Badyda, A.J.; Kostrzon, M.; Bralewski, A.; Biedugnis, S. Properties of Particulate Matter in the Air of the Wieliczka Salt Mine and Related Health Benefits for Tourists. Int. J. Environ. Res. Public Health 2022, 19, 826. [Google Scholar] [CrossRef]
- Ushakova, E.S.; Puzik, A.Y.; Karavaeva, T.I. Microelement composition of the snow cover in the Berezniki urban district (Perm region). Geogr. Bull. 2020, 2, 130–140. [Google Scholar] [CrossRef]
- Blinov, S.; Menshikova, E.; Baturin, E.; Ushakova, E.; Zolotarev, L. On a snow cover composition in the vicinity of the Verkhnekamsky Salt Deposit. Ice Snow 2015, 129, 121–128. (In Russian) [Google Scholar] [CrossRef]
- Khayrulina, E.A.; Ushakova, E.S. Particularities of the development of the macro component composition of the snow cover in a large center of the potash industry, the city of Berezniki. Reg. Environ. Issues 2020, 3, 28–38. (In Russian) [Google Scholar] [CrossRef]
- Khayrulina, Е.А.; Baklanov, M.A. Environmental monitoring in areas of waste storage with a high content of water-soluble salts. In Proceedings of the Sergeyevskiye Chteniya, Moscow, Russia, 22 March 2018; Available online: https://elibrary.ru/item.asp?id=32796856 (accessed on 20 December 2022). (In Russian).
- Martynenko, N.A.; Pozdeeva, I.V.; Baklanov, M.A. Algaecenoses structure of the Permskiy Krai rivers under anthropogenic salinization of potassium production wastes. Bull. Perm Univ. Biol. 2017, 3, 347–354. (In Russian) [Google Scholar]
- Fetisova, N.F.; Fetisov, V.V.; De Maio, M.; Zektser, I.S. Groundwater vulnerability assessment based on calculation of chloride travel time through the unsaturated zone on the area of the Upper Kama potassium salt deposit. Environ. Earth Sci. 2016, 75, 681. [Google Scholar] [CrossRef]
- Belkin, P.A. Chemical composition of spring discharge in the area of mining waste storage and potassium salt enrichment. Bull. Perm Univ. Geol. 2020, 19, 232–240. (In Russian) [Google Scholar] [CrossRef]
- Belkin, P. Transformation of the Chemical Composition of Groundwater in the Zone of Influence of Potassium Salt Mining Waste Storage Facilities (by the Example of the Verkhnekamskoye Deposit). Ph.D. Thesis, Sergo Ordzhonikidze Russian State University for Geological Prospecting, Moscow, Russia, 2019. Available online: https://vak.minobrnauki.gov.ru/advert/100040662 (accessed on 15 December 2022). (In Russian).
- Belkin, P.A.; Menshikova, E.A.; Kataev, V.N. Influence of ion exchange processes on the composition of the groundwater from the Upper Kama potash salt deposit. In Proceedings of the 16th International Multidisciplinary Scientific Geoconference SGEM 2016, Vienna, Austria, 2–5 November 2016. [Google Scholar]
- Siefert, B.; Büchel, G.; Lebküchner-Neugebauer, J. Potash mining waste pile Sollstedt (Thuringia): Investigations of the spreading of waste solutes in the Roethian Karst [Kalirückstandshalde Sollstedt (Thüringen): Untersuchungen zur ausbreitung der haldenlösung im Rötkarst]. Grundwasser 2006, 11, 99–110. [Google Scholar] [CrossRef]
- World reference base for soil resources 2014, update 2015. In International soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015.
- Pakhorukov, I.; Chetina, O.; Eremchenko, O. Accumulation of technogenic salts in alluvial soil and plants in the conditions of the south taiga subzone. Russ. J. Ecosyst. Ecol. 2022, 7, 25–34. (In Russian) [Google Scholar] [CrossRef]
- Chervan, A.N.; Romanenko, S.S. Spatial mapping of soil resistance to anthropogenic salinization in Soligorsk mining district based on soil combinations. Soil Sci. 2019, 8, 993–1003. [Google Scholar] [CrossRef]
- Khomich, V.S.; Zhumar, P.V.; Korobeinikov, B.I.; Tishchikov, G.M. Degradation of Natural Environment in the Zone of Influence of Potash Industry; Natural Environment of Belarus; Loginova, V.F., Ed.; SE «BIP-S»: Minsk, Belarus, 2002; pp. 332–347.
- Sardinha, M.; Müller, T.; Schmeisky, H.; Joergensen, R.G. Microbial Performance in Soils along a Salinity Gradient under Acidic Conditions. Appl. Soil Ecol. 2003, 23, 237–244. [Google Scholar] [CrossRef]
- Eremchenko, O.Z.; Chetina, O.A.; Kusakina, M.G.; Shestakov, I.E. Technogenic Surface Formations of Salt Piles and Adaptation of Plants to Them; Perm State National Research University: Perm, Russia, 2013; 148p. (In Russian) [Google Scholar]
- Shishkonakova, Е.А. Anthropogenic vegetation in the area of the enterprise “Uralkaliy” (Perm region, Russia). Environ. Hum. Ecol. Stud. 2017, 3, 65–79. (In Russian) [Google Scholar]
- Khayrulina, Е.А.; Novoselova, L.V.; Poroshina, N.V. Natural and anthropogenic sources of soluble salts on the territory of the Upper Kama potash deposit. Geogr. Bull. 2017, 1, 93–101. (In Russian) [Google Scholar] [CrossRef] [Green Version]
- Perevoshchikov, R.D. Natural radionuclides (40K, 226Ra, 232Th) in depositing media (Verkhnekamskoye potassium-magnesium salt deposit area). Proc. Tomsk. Polytech. Univ. Eng. Georesour. 2022, 333, 29–38. (In Russian) [Google Scholar] [CrossRef]
- Perevoshchikov, R.; Perminova, A.; Menshikova, E. Natural Radionuclides in Soils of Natural-Technogenic Landscapes in the Impact Zone of Potassium Salt Mining. Minerals 2022, 12, 1352. [Google Scholar] [CrossRef]
- Menshikova, E.; Perevoshchikov, R.; Belkin, P.; Blinov, S. Concentrations of Natural Radionuclides (40K, 226Ra, 232Th) at the Potash Salts Deposit. J. Ecol. Eng. 2021, 22, 179–187. [Google Scholar] [CrossRef]
- Beretka, J.; Mathew, P.J. Natural radioactivity of Australian building materials, industrial wastes and by-products. Health Phys. 1985, 48, 87–95. [Google Scholar] [CrossRef]
- Menshikova, E.A.; Blinov, S.M.; Belyshev, D.A.; Perevoschikov, R.D. Radiation studies of Kizelovsky coal basin dumps. News Ural. State Min. Univ. 2019, 4, 81–89. (In Russian) [Google Scholar]
- Kozlowska, B.; Walencik, A.; Dorda, J.; Zipper, W. Radioactivity of dumps in mining areas of the Upper Silesian Coal Basin in Poland. EPJ Web Conf. 2012, 24, 5006. [Google Scholar] [CrossRef] [Green Version]
- SanPiN 2.6.1.2523-09; Normy Radiatsionnoy Bezopasnosti [Sanitary Rules and Regulations 2.6.1.2523-09. Radiation Safety Standards]. Federal Center for Hygiene and Epidemiology of Rospotrebnadzor: Moscow, Russia, 2009.
- UNSCEAR. Sources, Effects and Risks of Ionizing Radiation. Report to the General Assembly, with Annexes; United Nations Publication: New York, NY, USA, 2000; 659p. [Google Scholar]
- Amin, R.A. Radioactivity Levels in Some Sediments and Water Samples from Qarun Lake by Low–Level Gamma Spectrometry. Int. J. Sci. Res. 2015, 4, 619–625. Available online: https://www.researchgate.net/publication/275952367_Radioactivity_Levels_in_Some_Sediments_and_Water_Samples_from_Qarun_Lake_by_Low-Level_Gamma_Spectrometry/citation/download (accessed on 20 December 2022).
- Radiation Situation on the Territory of Russia and Neighbouring States in 2019; Scientific and Production Association “Typhoon”: Obninsk, Russia, 2020; 343p. (In Russian)
- GOST R 55100-2012; Resources Saving. Best Available Techniques for the Management of Tailings and Waste-Rock in Mining Activities. Aspects of Good Practice. Standartinform: Moscow, Russia, 2019. Available online: https://docs.cntd.ru/document/1200100297?section=text (accessed on 20 December 2022).
- Khayrutdinov, M.M.; Kongar-Syuryun, C.B.; Tyulyaeva, Y.S.; Khayrutdinov, A.M. Cementless backfill mixtures based on water-soluble manmade waste. Bull. Tomsk. Polytech. Univ. Geo Аssets Eng. 2020, 331, 30–36. (In Russian) [Google Scholar] [CrossRef]
- Shkuratsky, D.N.; Rusakov, M.I. Use of potash fertilizer production wastes in rock mixtures for goaf backfilling. News Tula State Univ. Sci. Earth 2015, 3, 87–97. (In Russian) [Google Scholar]
- State Annual Report “Condition and Protection of the Environment of Perm Krai” for 2021; Ministry of Natural Resources, Forestry and Environment of Perm Krai: Perm, Russia, 2022; 295p, Available online: https://priroda.permkrai.ru/dokumenty/264140/ (accessed on 20 December 2022). (In Russian)
- Kudryashova, O.S.; Elokhov, A.M.; Khayrulina, E.A.; Bogush, A.A. Composition for rock grouting based on insoluble calcium salts for groundwater protection. Environ. Earth Sci. 2021, 80, 205. [Google Scholar] [CrossRef]
- Baryah, A.A.; Evseev, A.V. Closure of potash and salt mines: Review and analysis of the problem. MIAB. Min. Inf. Anal. Bull. 2019, 5, 29. (In Russian) [Google Scholar] [CrossRef]
- Danileva, N.A.; Danilev, S.M.; Bolshakova, N.V. Allocation of a deep-lying brine aquifer in the rocks of a chemogenic section based on the data of geophysical well logging and 2D seismic exploration. J. Min. Inst. 2021, 250, 501–511. [Google Scholar] [CrossRef]
- Böhme, D. Evaluation of brine discharge to rivers and streams: Methodology of rapid impact assessment. Limnologica 2011, 41, 80–89. [Google Scholar] [CrossRef] [Green Version]
- Kinnunen, P.; Karhu, M.; Yli-Rantala, E.; Kivikytö-Reponen, P.; Mäkinen, J. A review of circular economy strategies for mine tailings. Clean. Eng. Technol. 2022, 8, 100499. [Google Scholar] [CrossRef]
- ÖzarsIan, A.; Martens, P.N.; Olbrich, T.; Röhrlich, M. Underground Disposal of Hazardous Wastes in German Mines. In Proceedings of the 17th International Mining Congress and Exhibition of Turkey, Ankara, Turkey, 19–22 June 2001; Available online: https://www.maden.org.tr/resimler/ekler/ac48664b7886cf4_ek.pdf (accessed on 20 December 2022).
- Callao, C.; Latorre, M.P.; Martinez-Núñez, M. Understanding Hazardous Waste Exports for Disposal in Europe: A Contribution to Sustainable Development. Sustainability 2021, 13, 8905. [Google Scholar] [CrossRef]
- Du, K.; Xie, J.; Khandelwal, M.; Zhou, J. Utilization Methods and Practice of Abandoned Mines and Related Rock Mechanics under the Ecological and Double Carbon Strategy in China—A Comprehensive Review. Minerals 2022, 12, 1065. [Google Scholar] [CrossRef]
- Poborska-Młynarska, K. Assessment of the geological environment in respect of waste disposal in salt mine workings. Geol. Geophys. Environ. 2013, 39, 223–231. [Google Scholar] [CrossRef] [Green Version]
- Czapowski, G.; Tomassi-Morawiec, H.; Handke, B.; Wachowiak, J.; Peryt, T.M. Trace Elements and Mineralogy of Upper Permian (Zechstein) Potash Deposits in Poland. Appl. Sci. 2022, 12, 7183. [Google Scholar] [CrossRef]
- Zhang, Y.; Krause, M.; Mutti, M. The Formation and Structure Evolution of Zechstein (Upper Permian) Salt in Northeast German Basin: A Review. OJG 2013, 3, 411–426. [Google Scholar] [CrossRef] [Green Version]
- Smetannikov, A.F.; Onosov, D.V. On the possibility of concentration of minerals of containing scandes from waste of potassium industry. Problems of mineralogy, petrography and metallogeny, scientific. Reading in memory of P.N. Chirvinsky 2019, 22, 353–358. (In Russian) [Google Scholar]
- Smetannikov, A.F.; Onosov, D.V.; Sinegribov, V.A.; Novikov, P.Y. Noble metal extraction from K–Mg ore processing waste. MIAB. Min. Inf. Anal. Bull. 2013, S4, 216–231. (In Russian) [Google Scholar]
- Talens Peiró, L.; Villalba Méndez, G.; Ayres, R.U. Lithium: Sources, Production, Uses, and Recovery Outlook. JOM 2013, 65, 986–996. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Liu, C.; Jiao, P.; Wang, J. The tempo-spatial characteristics and forming mechanism of Lithium-rich brines in China. China Geol. 2018, 1, 72–83. [Google Scholar] [CrossRef]
- Blinov, S.M.; Menshikova, E.A. Utilisation the industrial wastes in Perm region. Bull. Perm Univ. Geol. 2019, 2, 179–191. (In Russian) [Google Scholar] [CrossRef]
- Frączek, K.; Górny, R.L.; Ropek, D. Bioaerosols of subterraneotherapy chambers at salt mine health resort. Aerobiologia 2013, 29, 481–493. [Google Scholar] [CrossRef] [Green Version]
- Rogula-Kozłowska, W.; Badyda, A.; Rachwał, M.; Rogula-Kopiec, P.; Majder-Łopatka, M.; Kostrzon, M.; Mathews, B. Graduation Towers Impact on the Concentration and Chemical Composition of Ambient Aerosol: A Case Study from Wieliczka Salt Mine in Poland. Atmosphere 2022, 13, 1576. [Google Scholar] [CrossRef]
Mine Production | Reserves | ||
---|---|---|---|
2011 | 2021 * | ||
Belarus | 5500 | 8000 | 750,000 |
Brazil | 454 | 210 | 2300 |
Canada | 11,000 | 14,000 | 1,100,000 |
Chile | 980 | 900 | 100,000 |
China | 3700 | 6000 | 350,000 |
Germany | 3010 | 2300 | 150,000 |
Israel | 1960 | 2300 | ** Large |
Jordan | 1380 | 1600 | ** Large |
Laos | - | 300 | 75,000 |
Russia | 6500 | 9000 | 400,000 |
Spain | 420 | 400 | 68,000 |
United States | 1000 | 480 | 220,000 |
Other countries | - | 370 | 300,000 |
World total (rounded) | 36,400 | 46,000 | >3,500,000 |
Type of Waste | Disposal Method | Countries | References |
---|---|---|---|
Halite waste | Tailings pile | All potash mines | [72,73,74] |
Clay-salt waste | Tailings slurry | ||
Brines | Tailings slurry | Verkhnekamskoe Deposit, Russia | [75] |
Rivers | Werra River, Germany | [76] | |
Weser River, Germany | [38] | ||
Sea or an ocean | Boulby, England | [69] | |
Sergipe, Brazil | [77] | ||
Catalonia, Spain | [78] | ||
Deep well injection for the waste brine disposal | Saskatchewan, Canada | [12] | |
Northeast Thailand | [79] |
Parameter | Unit | Potash Mines | Functional Zones of Berezniki | |||
---|---|---|---|---|---|---|
On the Territory | At the SPZ Border | Transport | Residential | Recreational | ||
pH | - | 5.27 | 6.18 | 7.04 | 6.82 | 6.21 |
HCO3− | mg/L | 4.01 | 21.97 | 2.19 | 9.31 | 3.42 |
SO42− | 1.31 | 0.96 | 0.59 | 1.15 | 0.83 | |
Cl− | 7.35 | 6.59 | 2.94 | 1.67 | 0.65 | |
NO3− | 1.97 | 1.57 | 0.45 | 1.64 | 1.29 | |
Ca2+ | 0.95 | 0.99 | 6.64 | 2.68 | 0.89 | |
Mg2+ | 0.26 | <0.25 | 0.40 | <0.25 | <0.25 | |
Na+ | 2.68 | 1.78 | 1.40 | 1.32 | 0.52 | |
K+ | 2.78 | 3.94 | 1.19 | 0.96 | 0.60 | |
TDS | 19.77 | 34.50 | 42.95 | 39.20 | 16.70 |
No. | Lyonva River | Distance from Sampling Point to the River Mouth, km | pH | HCO3− | SO42− | Cl− | Ca2+ | Mg2+ | Na+ | K+ | TDS |
---|---|---|---|---|---|---|---|---|---|---|---|
g/L | |||||||||||
1 | Upstream | 16.6 | 7.4 | 0.19 | 0.06 | 3.64 | 1.07 | 0.21 | 1.26 | 1.05 | 12.1 |
2 | Midstream | 10.2 | 7.1 | 0.18 | 0.23 | 12.06 | 1.00 | 0.20 | 3.17 | 1.20 | 14.1 |
3 | Downstream | 1.7 | 7.2 | 0.13 | 0.11 | 8.31 | 1.21 | 0.27 | 2.57 | 1.87 | 18.4 |
B | Telepayevka River (background concentrations) | 6.8 | 0.18 | 0.01 | 0.15 | 0.09 | 0.02 | 0.01 | <MDL * | 0.4 |
Spring No. | Ionic Composition Formula | Hydrochemical Facies | Variations in TDS, g/L (Seasonal Average) | |||
---|---|---|---|---|---|---|
Winter Low Flow | Spring Flood | Summer– Autumn Low Flow | Autumn Floods | |||
S1 | Cl−-Na+ | 12.7 | 14.9 | 23.7 | 13.1 | |
S2 | Cl−-Na+-Ca2+ | 3.8 | 3.4 | 4.8 | 2.7 | |
S3 | Cl−-Na+-Ca2+ | 6.5 | 6.3 | 10.1 | 5.3 | |
S4 | Cl−-Na+-Ca2+ | 2.3 | 2.3 | 2.7 | 2.4 |
Parameter | Sampling Point 1 | Sampling Point 2 | Sampling Point 3 |
---|---|---|---|
Soil Type | |||
Technosols Loamic | Podzols | Chloridic Gleyic Fluvic Solonchak | |
SAR, % | 0.5–1.0 | 1.00 | 3.0–16.0 |
Cl−, g/kg | 0.125–0.135 | 0.011–0.138 | 30.1–193.0 |
Na+, g/kg | 0.025–0.210 | 0.05–0.035 | 9.5–46.4 |
SO42−, g/kg | 0.011–0.027 | 0.004–0.027 | 1.03–7.8 |
Specific Activity | Activity Value, Bq/kg | ||||
---|---|---|---|---|---|
A226Ra | A232Th | A40K | Aeff | References | |
Soils | |||||
Natural radionuclide activity at the Verkhnekamskoe Potash Deposit (average value for 75 samples) | 2.67–36.12 (17.4) | 0.55–28.08 (10.9) | 19.9–562 (297.7) | 19.0–108.35 (50.6) | This study |
SanPiN 2.6.1.2523-09. Radiation safety standards | – | – | – | 740 | [151] |
World averages (average value) | 16–116 (33) | 7–50 (45) | 100–700 (420) | – | [152] |
Bottom sediments | |||||
Natural radionuclide activity at the Verkhnekamskoe Potash Deposit (average value for 6 fine fraction samples) | 2.39–12.6 (7.52) | 6.08–16.8 (9.98) | 131.2–314.0 (236.67) | 21.51–61.3 (41.12) | This study |
Generalized data on the content in Qarun Lake sediments | 6.2–22.4 | 5.2–26.6 | 410–1426 | – | [153] |
Average 2019 values for sediments in Moscow | 15 | 20 | 279 | 66 | [154] |
Rock | Sampling Interval, m | Activity Concentration (Bq/kg) | |||
---|---|---|---|---|---|
40K | 232Th | 226Ra | Aeff | ||
Loam | 3.5–4.0 | 333 ± 55 | 15.3 ± 5 | 17.3 ± 3 | 67.16 ± 14.45 |
Mergel | 13.0–13.5 | 177 ± 37 | 7.5 ± 4 | 4.9 ± 3 | 30.58 ± 11.53 |
Clay Mergel | 26.2–26.4 | 382 ± 60 | 12.9 ± 5 | 7.3 ± 3 | 58.45 ± 14.90 |
Clay Mergel | 29.4–29.5 | 346 ± 56 | 17.3 ± 5 | 7 ± 3 | 60.63 ± 14.54 |
Clay Mergel | 151.9–152.1 | 359 ± 57 | 20.9 ± 5 | 4.6 ± 3 | 64.08 ± 14.63 |
Mergel-gypsum rock | 173.4–173.8 | 927 ± 195 | 22.2 ± 6.26 | 6.26 ± 4.89 | 118.55 ± 30.58 |
Rock salt | 197.0–197.3 | 3 ± 0 | 3.2 ± 3 | 3 ± 0 | 7.43 ± 3.9 |
Carnallite | 226.7–227.0 | 2896 ± 330 | 19.8 ± 5 | 3 ± 0 | 289.38 ± 36.2 |
Carnallite | 245.5–245.9 | 3031 ± 340 | 17.8 ± 5 | 3 ± 0 | 298.93 ± 37.1 |
Carnallite | 272.8–273.2 | 2824 ± 320 | 16.7 ± 5 | 3 ± 0 | 278.87 ± 35.3 |
Variegated sylvinite | 282.6–283.0 | 4967 ± 540 | 38.3 ± 8 | 3 ± 0 | 499.82 ± 59.00 |
Striated sylvinite | 284.9–285.4 | 3393 ± 380 | 41 ± 8 | 3 ± 0 | 361.67 ± 44.60 |
Red sylvinite | 296.5–297.1 | 2055 ± 240 | 16.4 ± 5 | 3 ± 0 | 209.27 ± 28.10 |
Striated sylvinite | 304.0–304.55 | 4542 ± 470 | 24.9 ± 6 | 3 ± 0 | 418.05 ± 50.10 |
Rock salt | 348.3–348.9 | 3 ± 0 | 3 ± 0 | 3 ± 0 | 7.17 ± 0.00 |
Milled ore | |||||
Sylvinite ground | – | 4510 ± 730 | <8 | 14.5 ± 4.2 | 398 ± 66 |
Sylvinite ground | – | 4612 ± 742 | <8 | <8 | 418 ± 67 |
Halite waste | – | 283 ± 70 | <8 | <8 | 24 ± 6 |
Halite waste | – | 297 ± 66 | <8 | <8 | 27 ± 7 |
Generalized data on salts from the Khewera Mines, Pakistan [153] | – | 36 ± 20 | – | – | – |
Generalized data on rocks [154] Sedimentary rocks Continental crust | – | <300–900 850 | <8–50 44 | – – | – – |
Year | Waste Generation Volume, Thousand Tons | Waste Usage for Preparation of NaCl Solution for Soda Ash Production, Thousand Tons | Hydraulic Backfilling with Halite Waste and Clay–Salt Slurry, Thousand Tons | Total Use of Generated Waste, % |
---|---|---|---|---|
2021 | 32,925 | - | 22,994 | 68.84 |
2020 | 30,521 | - | 20,935 | 68.59 |
2019 | 30,213 | - | 1176 | 3.9 |
2018 | 32,386 | 2185 | 16,624 | 58.08 |
2017 | 32,697 | 990 | 13,480 | 44.25 |
2016 | 30,153 | 910 | 11,306 | 40.52 |
2015 | 31,272 | 910 | 9560 | 33.48 |
2014 | 34,767 | 857 | 6010 | 19.75 |
2013 | 28,145 | 842 | 10,000 | 38.52 |
2012 | 26,705 | 10,200 | 38.20 | |
2011 | 30,059 | 400 | 8300 | 28.94 |
Year | Perm Krai | Potash Plants in Perm Krai | ||
---|---|---|---|---|
Freshwater Abstractions, Million m3 | Water Reuse & Recycling, Million m3 | Discharge of Untreated Wastewater, Million m3 | Discharge of Polluted Wastewater, Thousand Tons | |
2021 | 1307 | 2099 | 160 | 150 |
2020 | 1158 | 1986 | 194 | 162 |
2019 | 1309 | 1992 | 209 | 215 |
2018 | 1532 | 2091 | 211 | 187 |
2017 | 1661 | 1868 | 317 | 169 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ushakova, E.; Perevoshchikova, A.; Menshikova, E.; Khayrulina, E.; Perevoshchikov, R.; Belkin, P. Environmental Aspects of Potash Mining: A Case Study of the Verkhnekamskoe Potash Deposit. Mining 2023, 3, 176-204. https://doi.org/10.3390/mining3020011
Ushakova E, Perevoshchikova A, Menshikova E, Khayrulina E, Perevoshchikov R, Belkin P. Environmental Aspects of Potash Mining: A Case Study of the Verkhnekamskoe Potash Deposit. Mining. 2023; 3(2):176-204. https://doi.org/10.3390/mining3020011
Chicago/Turabian StyleUshakova, Evgeniya, Anna Perevoshchikova, Elena Menshikova, Elena Khayrulina, Roman Perevoshchikov, and Pavel Belkin. 2023. "Environmental Aspects of Potash Mining: A Case Study of the Verkhnekamskoe Potash Deposit" Mining 3, no. 2: 176-204. https://doi.org/10.3390/mining3020011
APA StyleUshakova, E., Perevoshchikova, A., Menshikova, E., Khayrulina, E., Perevoshchikov, R., & Belkin, P. (2023). Environmental Aspects of Potash Mining: A Case Study of the Verkhnekamskoe Potash Deposit. Mining, 3(2), 176-204. https://doi.org/10.3390/mining3020011