Environmental Characteristics of the Mining Area of Ni–Cu–Fe Paleoproterozoic PGE Monchepluton Intrusion (NE Scandinavia)
Abstract
:1. Introduction
2. Study Area Localization
3. Characteristics of the Carried-Out Mining Operational Work
4. Materials and Methods
5. Geology of the Monchepluton
6. Results
6.1. Characteristics and Present Stage of Recultivation Process
6.2. Results’ Analysis of Soils and Water Samples
6.3. Result of the Analysis of the Plant Samples
7. Discussion
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bayanova, T.B. Age of Benchmark Geological Complexes of the Kola Region and Magmatism Processes Action; Nauka: St. Petersburg, Russia, 2004; p. 174. (In Russian) [Google Scholar]
- Glebovitsky, V.A. Early Precambrian of the Baltic Shield; Nauka: St. Petersburg, Russia, 2005; p. 710. (In Russian) [Google Scholar]
- Huber, M. Evolution of the Kola-Lapland Mobile Belt in PGE-Bearning Paleoproterozoic Layered Intrussion of Monchepluton; Maria Curie-Sklodowska University Press: Lublin, Poland, 2021; p. 234. [Google Scholar]
- Pozhilienko, V.I.; Gavrilenko, B.V.; Zhirov, C.V.; Zhabin, S.V. Geology of mineral areas of the Murmansk Region. Apatity Russ. Acad. Sci. 2002, 360. [Google Scholar]
- Sharkov, E.V. Formation of Layered Intrusions and Related Mineralization; Scientific World: Moscow, Russia, 2006; p. 364. [Google Scholar]
- Mitrofanov, F.P. Geological characteristics of Kola Peninsula. Apatity Russ. Acad. Sci. 2000, 166. [Google Scholar]
- Hanski, E.; Huhma, H.; Smolkin, V.F.; Vaasjoki, M. The age of the ferropicritic volcanics and comagmatic Ni-bearing intrusions at Pechenga, Kola Peninsula, USSR. Bull. Geol. Soc. Finl. 1990, 62, 123–133. [Google Scholar] [CrossRef]
- Mitrofanov, F.P. Metallogeny of the Kola-Karelian Region, Baltic Shield. In Fundamental Geological Problems of Mineral Deposits Metallogeny; IGEM RAS: Moscow, Russia, 2010; p. 257. [Google Scholar]
- Lubnina, N.V.; Pasenko, A.M.; Novikova, M.A.; Bubnov, A.Y. The East European Craton at the End of the Paleoproterozoic: A New Paleomagnetic Pole of 1.79–1.75 Ga. Mosc. Univ. Geol. Bull. 2016, 71, 8–17. [Google Scholar] [CrossRef]
- Lubnina, N.V.; Slabunov, A.I. Reconstruction of the Kenorland Supercontinent in the Neoarchean Based on Paleomagnetic and Geological Data. Mosc. Univ. Geol. Bull. 2011, 66, 242–249. [Google Scholar] [CrossRef]
- Bozhko, N.A. Supercontinental Cyclicity in the Earth’s Evolution. Mosc. Univ. Geol. Bull. 2009, 64, 75–91. [Google Scholar] [CrossRef]
- Bozhko, N.A. Intraplate Basic–Ultrabasic Magmatism Through Time in Terms of Supercontinental Cyclicity. Mosc. Univ. Geol. Bull. 2010, 65, 161–176. [Google Scholar] [CrossRef]
- Bozhko, N.A. On Two Types of Supercontinental Cyclicity. Mosc. Univ. Geol. Bull. 2011, 66, 313–322. [Google Scholar] [CrossRef]
- Ernst, R.; Bleeker, W. Large igneous provinces (LIPs), giant dyke swarms, and mantle plumes, significance for breakup events within Canada and adjacent regions from 2.5 Ga to the Present. Can. J. Earth Sci. 2010, 47, 695–739. [Google Scholar] [CrossRef]
- Ernst, R.E.; Srivastava, R.K. India’s place in the Proterozoic world, constraints from the large igneous provinces (LIP) record. In Indian Dyke Geochemistry, Geophysics, and Geochronology; Srivastava, R.K., Sivaji, C., Rao, N.V.C., Eds.; Narosa Publishing House Pvt. Ltd.: New Delhi, India, 2008; pp. 41–56. [Google Scholar]
- Evans, D.A.D.; Li, Z.X.; Murphy, J.B. Four-dimensional context of Earth’s supercontinent. Geol. Soc. Lond. Spec. Publ. 2016, 424, 1–14. [Google Scholar] [CrossRef]
- Baluev, A.S.; Zhuravlev, V.A.; Przhiyalgovskii, E.S. New Data on the Structure of the Central Part of the White Sea Paleorift System. Doklady Earth Sci. 2009, 427A, 891–896. [Google Scholar] [CrossRef]
- Bayanova, T.B.; Kunakkuzin, E.L.; Serov, P.A.; Fedotov, D.A.; Borisenko, E.S.; Elizarov, D.V.; Larionov, A.V. Precise U-Pb (Id-Tims) and SHRIMP-II ages on single zircon and Nd-Sr signatures from Achaean TTG and high aluminum gneiss on the Fennoscandian Shield. In Proceedings of the 32nd Nordic Geological Winter Meeting, Helsinki, Finland, 13–15 January 2018; p. 172. [Google Scholar]
- Huber, M.; Halas, S.; Piestrzyński, A. Petrology of gabroides and isotope signature of sulfide mineralization from Fedorov-Pansky layered mafic intrusion, Kola Peninsula, Russia. Geochronometria 2009, 33, 19–22. [Google Scholar] [CrossRef]
- Huber, M.; Hałas, S.; Serov, P.A.; Ekimova, N.A.; Bayanova, T.B. Stable isotope geochemistry and Sm-Nd, U-Pb dating of sulphides from layered intrusions in the northern part of Baltic Shield. Cent. Eur. Geol. 2013, 56, 134–135. [Google Scholar]
- Bayanova, T.; Korchagin, A.; Mitrofanov, A.; Serov, P.; Ekimova, N.; Nitkina, E.; Kamensky, I.; Elizarov, D.; Huber, M. Long-Lived Mantle Plume and Polyphase Evolution of Palaeoproterozoic PGE Intrusions in the Fennoscandian Shield. Minerals 2019, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Kudryshov, N.M.; Mokrushin, A.V. Mesoarchean gabbroanorthosite magmatism of the Kola region: Petrochemical, geochronological, and isotope-geochemical data. J. Petrol. 2011, 19, 167–182. [Google Scholar] [CrossRef]
- Mitrofanov, F.P.; Smolkin, V.F. Stratified Intrusions of the Monchegorsk ore Region: Petrology, Mineralization, Isotopes, Deep Structure, 2nd ed.; Kola Scientific Center, Russian Academy of Sciences: Apatity, Russia, 2004; p. 344. [Google Scholar]
- Korsakova, O.P. Pleistocene marine deposits in the coastal areas of the Kola Peninsula (Russia). Quat. Int. 2009, 206, 3–15. [Google Scholar] [CrossRef]
- Møer, J.J.; Yevzerov, V.Y.; Kolka, V.V.; Corner, G.D. Holocene raised-beach ridges and sea-ice-pushed boulders on the Kola Peninsula, northwest Russia: Indicators of climatic change. Holocene 2001, 12, 169–176. [Google Scholar] [CrossRef]
- Aune, S.; Hofgaard, A.; Söderström, L. Contrasting climate- and land-use-driven tree encroachment patterns of subarctic tundra in northern Norway and the Kola Peninsula. Can. J. For. Res. 2011, 41, 437–449. [Google Scholar] [CrossRef]
- Caritat, P.; Reimann, C.; Äyräs, M.; Niskavaara, H.; Chekushin, V.A.; Paclov, V.A. Stream water geochemistry from selected catchments on the Kola Peninsula (NW Russia) and in neighbouring areas of Finland and Norway: 1. Elements levels and sources. Aquati. Geochem. 1996, 2, 149–168. [Google Scholar] [CrossRef]
- Aamlid, D.; Venn, K. Methods of monitoring the effects of air pollution on forest and vegetation of eastern Finnmark, Norway, Norw. J. Agr. Sci. 1993, 7, 71–87. [Google Scholar]
- Yadav, A.; Patel, K.S.; Lata, L.; Huber, M.; Li, P.; Allen, J.; Corn, W. Contamination of water, soil and plant with arsenic and heavy metals. In Environmental Arsenic in a Changing World; Yong-Guan, Z., Huaming, G., Prosun, B., Jochen, B., Arslan, A., Ravi, N., Eds.; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2019; pp. 386–387. [Google Scholar] [CrossRef]
- Patel, K.S.; Yadav, A.; Sahu, Y.; Sahu, P.K.; Lata, L.; Huber, M.; Corns, W.T.; Martín-Ramos, P. Tree Bark as a Bioindicator for Arsenic and Heavy Metal Air Pollution in Rajnandgaon District, Chhattisgarh, India. J. Hazard. Toxic Radioact. Waste 2020, 24, 05019006. [Google Scholar] [CrossRef]
- Konstantinov, A.S.; Koryakin, O.A.; Makarova, V.V. Red Book of the Murmansk Region, 2nd ed.; Asia-Print: Kemerovo, Russia, 2014; p. 584. (In Russian) [Google Scholar]
- Konstantinova, N.A. Flora and Vegetation of Murmansk Region; Kola Science Centre, Rusian Academy of Sciences: Apatity, Russia, 1999; p. 175. (In Russian) [Google Scholar]
- Koroleva, N.E. Phytosociological survey of the tundra vegetation of the Kola Peninsula. J. Veget. Sci. 1994, 5, 803–812. [Google Scholar] [CrossRef]
- Trutnev, Y.P.; Kamelin, R.V. Red Book of the Russian Federation (Plants and Mushrooms); Partnership of scientific publications KMK; Nauka: Moscow, Russia, 2008; p. 855. (In Russian) [Google Scholar]
- Elizarova, I.R.; Bayanova, T.B. Mass-spectrometric REE analysis in sulphide minerals. J. Biol. Earth Sci. 2012, 2, E45–E49. [Google Scholar]
- Huber, M.; Hałas, S.; Lata, L.; Mitrofanov, F.P.; Neryadovski, Y.N.; Bayanova, T.B. Table isotope results of sulfides from old mafic intrusions in the Kola Peninsula (N Russia). J. Biol. Earth Sci. 2014, 4, 27–28. [Google Scholar]
- Huber, M.; Hałas, S.; Neradovski, Y.; Bayanova, T.; Mokrushin, A.; Lata, L. Stable isotope geochemistry of sulfides from intrusion in Monchegorsk, Northern part of Baltic Shield. Geochronometria 2016, 43, 96–101. [Google Scholar] [CrossRef]
- Smolkin, V.F.; Mokrushin, A.V.; Bayanova, T.B.; Serov, P.A.; Ariskin, A.A. Magma feeding paleochannel in the Monchegorsk ore region: Geochemistry, isotope U-Pb and Sm-Nd analysis (Kola region, Russia). J. Min. Inst. 2022, 255, 405–418. [Google Scholar] [CrossRef]
- Bayanova, T.B.; Ludden, J.; Mitrofanov, F.P. Timing and duration of Palaeoproterozoic events producing ore-bearing layered intrusions of the Baltic Shield: Metallogenic, petrological and geodynamic implications. Palaeoproterozoic Supercontinents Glob. Evol. 2009, 323, 165–198. [Google Scholar] [CrossRef] [Green Version]
- Borisenko, E.S.; Bayanova, T.B.; Nerovich, L.I.; Kunakkuzin, E.L. The Paleoproterozoic Monchetundra Mafic Massif (Kola Peninsula): New Geological and Geochronological Data. Dokl. Earth Sci. 2015, 465, 1107–1111. [Google Scholar] [CrossRef]
- Grebnev, R.A.; Rundkvist, T.V.; Pripachkin, P.V. Geochemistry of Mafic Rocks of the PGE -Bearing Vurechuaivench Massif (Monchegorsk Complex, Kola Region). Geochem. Int. 2014, 52, 726–739. [Google Scholar] [CrossRef]
- Grokhovskaya, T.L.; Ivanchenko, V.N.; Karimova, O.V. Geology, mineralogy, and genesis of PGE mineralization in the South Sopcha Massif, Monchegorsk Complex, Russia. Geol. Ore Depos. 2012, 54, 347–369. [Google Scholar] [CrossRef]
- Mokrushin, A.V.; Kudyrashov, V.M.; Huber, M. First Discovery of sperrylite in archean patchemvarek gabroanorthosite (Kola region, Russia). In Proceedings of the 12th International Platinum Symposium, Yekaterinburg, Russia, 11–14 August 2014; pp. 307–308. [Google Scholar]
- Huber, M.; Zhigunova, G.; Menshakova, M.; Iakovleva, O.; Karimova, M. Geoheritage of the Monchegorsk Igneous Layered Paleoproterozoic Intrusion (Kola Peninsula, Arctic Russia): Evaluation and Geotourism Opportunities. Heritage 2021, 4, 198. [Google Scholar] [CrossRef]
- Johansson, P.; Lauri, L.S.; Voytekhovsky, Y.L. Barents Tour for Geotourists; Kolarctic, Rovaniemi Finland Publishing House: Rovaniemi, Finland, 2014. [Google Scholar]
- Murmansk Visitor Center. Available online: https://visitmurmansk.info/en/ (accessed on 2 July 2022).
- Tourist Potential of Murmansk Region. Available online: www.gov-murman.ru (accessed on 5 July 2022).
- Arzamastsev, A.A.; Mitrofanov, F.P. Paleozoic Plume–Lithospheric Processes in Northeastern Fennoscandia: Evaluation of the Composition of the Parental Mantle Melts and Magma Generation Conditions. Petrology 2009, 17, 300–313. [Google Scholar] [CrossRef]
- Kizilkaya, R.; Askin, T.A.; Bayrakli, B.; Saglam, M. Microbiological characteristics of soils contaminated with heavy metals. Eur. J. Soil Biol. 2004, 40, 95–102. [Google Scholar] [CrossRef]
- Colin, V.L.; Villegas, L.B.; Abate, C.M. Indigenous microorganisms as potential bioremediators for environments contaminated with heavy metals. International Biodeterioration et Biodegradation 2012, 69, 28–37. [Google Scholar] [CrossRef]
- Hseu, Z.Y. Evaluating heavy metal contents in nine composts using four digestion methods. Bioresour. Technol. 2004, 95, 53–59. [Google Scholar] [CrossRef]
- Aydinalp, C.; Marinova, S. Distribution and Forms of Heavy Metals in Some Agricultural Soils. Pol. J. Environ. Stud. 2003, 12, 629–633. [Google Scholar]
- Puig, S.; Thiele, D.J. Molecular mechanisms of copper uptake and distribution. Curr. Opin. Chem. Biol. 2002, 6, 171–180. [Google Scholar] [CrossRef]
- Sastre, J.; Sahuquillo, A.; Vidal, M.; Rauret, G. Determination of Cd, Cu, Pb and Zn in environmental samples: Microwaveassisted total digestion versus aqua regia and nitric acid extraction. Anal. Chim. Acta 2002, 462, 59–72. [Google Scholar] [CrossRef]
- Filipiak-Szok, A.; Kurzawa, M.; Szłyk, E. Determination of toxic metals by ICP-MS in Asiatic and European medicinal plants and dietary supplements. J. Trace Elem. Med. Biol. 2015, 30, 54–58. [Google Scholar] [CrossRef]
- Chuang, I.C.H.; Chen, K.S.; Huang, Y.L.; Lee, P.N.; Lin, T.H. Determination of trace elements in some natural drugs by atomic absorption spectrometry. Biol Trace Elem. Res. 2000, 76, 235–244. [Google Scholar] [CrossRef]
- Moor, C.; Lymberopoulou, T.; Dietrich, V.L. Determination of Heavy Metals in Soils, Sediments and Geological Materials by ICP-AES and ICP-MS. Mikrochim. Acta 2001, 136, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Lewen, N.; Mathew, S.; Schenkenberger, M.; Raglione, T. A rapid ICP-MS screen for heavy metals in pharmaceutical compounds. J. Pharm. Biomed. Anal. 2004, 35, 739–752. [Google Scholar] [CrossRef] [PubMed]
- Ackley, K.L.; Sutton, K.L.; Caruso, J.A. The use of ICP–MS as a detector for elemental speciation studies. In Element Speciation–New Approaches for Trace Elemental Analysis. Comprehensive Analytical Chemistry; Caruso, J.A., Sutton, K.L., Ackley, K.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; Volume 33, p. 9. [Google Scholar]
- Rudnick, R.L.; Gao, S. Composition of the Continental Crust. In Treatise on Geochemistry; Turekian, K., Holland, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 3, pp. 1–64. [Google Scholar]
- Ammann, A.A. Speciation of heavy metals in environmental water by ion chromatography coupled to ICP–MS. Anal Bioanal Chem. 2002, 372, 448–452. [Google Scholar] [CrossRef]
- Malassa, H.; Al-Qutob, M.; Al-Khatib, M.; Al-Rimawi, F. Determination of Different Trace Heavy Metals in Ground Water of South West Bank/Palestine by ICP/MS. J. Environ. Prot. 2013, 4, 818–827. [Google Scholar] [CrossRef] [Green Version]
- Sereshti, H.; Heravi, Y.E.; Samadi, S. Optimized ultra sound-assisted emulsification microextraction for.simultaneous trace multielement determination of heavy metals in real water samples by ICP-OES. Talanta 2012, 97, 235–241. [Google Scholar] [CrossRef]
- Bayon, G.; Birot, D.; Bollinger, C.; Barrat, J.A. Multi-Element Determination of Trace Elements in Natural Water Reference Materials by ICP-SFMS after Tm Addition and Iron Co-precipitation. Geostandarts Geoanalytical Res. 2010, 35, 145–153. [Google Scholar] [CrossRef]
- Paszko, T.; Matysiak, J.; Kamiński, D.; Pasieczna–Patkowska, S.; Huber, M.; Król, B. Adsorption of bentazone in the profiles of mineral soils with low organic matter content. PLoS ONE 2020, 1, 1–23. [Google Scholar] [CrossRef]
- Jończy, I.; Huber, M.; Lata, L. Vitrified metallurgical wastes after zinc and lead production from the dump in Ruda Śląska in the aspect of mineralogical and chemical studies. Miner. Resour. Manag. 2014, 30, 161–174. [Google Scholar]
- Yadav, A.; Sahu, P.K.; Patel, K.S.; Lata, L.; Huber, M.; Corns, W.T.; Allen, J.; Martín-Ramos, P. Assessment of Arsenic and Heavy Metal Pollution in Chhattisgarh, India. J. Hazard. Toxic Radioact. Waste 2020, 24, 05019008. [Google Scholar] [CrossRef]
- Sharma, R.; Yadav, A.; Ramteke, S.; Chakradhari, S.; Patel, K.S.; Lata, L.; Huber, M.; Li, P.; Allen, J.; Corns, W. Contamination of arsenic and heavy metals in coal exploitation area. In Environmental Arsenic in a Changing World; Zhu, Y.G., Guo, H., Bhattacharya, P., Bundschuh, J., Ahmad, A., Naidu, R., Eds.; CRC Press/Taylor & Francis Group: Boca Raton, FL, USA, 2019; pp. 381–385. [Google Scholar]
- Koptsik, G.N.; Niedbaiev, N.P.; Koptsik, S.V.; Pavluk, I.N. Heavy metal pollution of forest soils by atmospheric emissions of Pechenganikel smelter. Eurasian Soil Sci. 1999, 32, 896–903. [Google Scholar]
- Koptsik, S.V.; Koptsik, G. Soil pollution in terrestial ecosystems of the Kola peninsula, Russia. In Proceedings of the 10th international Soil Conservation Organization Meeting, West Lafayette, Indiana, 24–29 May 1999; pp. 212–216. [Google Scholar]
- Pereverzev, V.N. Peat Soils of the Kola Peninsula. Eur. Soil Sci. 2005, 38, 457–464. [Google Scholar]
- Sharma, R.; Yadav, A.; Ramteke, S.; Patel, K.S.; Lata, L.; Huber, M.; Corns, W.T.; Martín-Ramos, P. Heavy Metal Pollution in Surface Soil of Korba Basin, India. J. Hazard. Toxic Radioact. Waste 2019, 23, 05019004. [Google Scholar] [CrossRef]
- Ignatyeva, M.; Yurak, V.; Pustokhina, N. Recultivation of Post-Mining Disturbed Land: Review of Content and Comparative Law and Feasibility Study. Resources 2020, 9, 73. [Google Scholar] [CrossRef]
- Paczynski, B. Influence of geogenic and anthropogenic groundwater. In The Changes of Water as a RESULT of Natural and Anthropogenic Processes; Dynowska, I., Ed.; Iagiellonian University Press: Krakow, Poland, 1993; pp. 211–270. [Google Scholar]
- Pekkaa, L.; Ingria, J.; Widerlund, A.; Mokrotovarova, O.; Riabtseva, M.; Öhlander, B. Geochemistry of the Kola River, northwestern Russia. Appl. Geochem. 2004, 19, 1975–1995. [Google Scholar] [CrossRef]
- Hammel, M.; Holzwarth, F. Heavy Metals (Trace Elements) and Organic Matter Content of European Soils. 1999. Available online: https://ec.europa.eu/environment/archives/waste/sludge/pdf/heavy_metals_feasibility_study.pdf (accessed on 1 September 2022).
- Tóth, G.; Hermann, B.; Da Silva, M.R.; Montanarell, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, X.; Yang, Z.; Luan, F.; Xiong, H.; Wang, Z.; Shi, H. Analysis on spatial distribution characteristics and geographical factors of Chinese National Geoparks. Cent. Eur. J. Geosci. 2014, 6, 279–292. [Google Scholar] [CrossRef]
- Gravis, I.; Német, H.K.; Twemlow, C.; Németh, B. The Case for Community-Led Geoheritage and Geoconservation Ventures in Māngere, South Auckland, and Central Otago, New Zealand. Geoheritage 2020, 12, 19. [Google Scholar] [CrossRef]
- Gürer, A.; Gürer, Ö.F.; Sangu, E. Compound geotourism and mine tourism potentiality of Soma region, Turkey. Arab. J. Geosci. 2019, 12, 734. [Google Scholar] [CrossRef]
- Hose, T.A. 3G’s for Modern Geotourism. Geoheritage 2012, 4, 7–24. [Google Scholar] [CrossRef]
- Huber, M.; Iakovleva, O. Tourism, Scientific, and Didactic Potential of the Ultrabasic-Alkaline Intrusion in Afrikanda with Perovskite Mineral (Kola Peninsula, N Russia) and of the Related Built Heritage. Heritage 2021, 4, 213. [Google Scholar] [CrossRef]
- Huber, M.; Rusek, A.; Menshakova, M.; Zhigunova, G.; Chmiel, S.; Iakovleva, O. Possibilities of Sustainable Development including Improvement in Air Quality for the City of Murmansk-Examples of Best Practice from Scandinavia. Climate 2022, 10, 15. [Google Scholar] [CrossRef]
- Sinnyovsky, D.; Sachkov, D.; Tsvetkova, I.; Atanasova, N. Geomorphosite Characterization Method for the Purpose of an Aspiring Geopark Application Dossier on the Example of Maritsa Cirque Complex in Geopark Rila, Rila Mountain, SW Bulgaria. Geoheritage 2020, 12, 26. [Google Scholar] [CrossRef]
- Vdovets, M.S.; Silantiev, V.V.; Mozzherin, V.V. A National Geopark in the Republic of Tatarstan (Russia): A Feasibility Study. Geoheritage 2010, 2, 25–37. [Google Scholar] [CrossRef]
- Voytekhovsky, Y.L. Geological Outdoor Map 1:50,000 with a Guidebook; Kolarctic, Rovaniemi Finland Publishing House: Rovaniemi, Finland, 2014. [Google Scholar]
- Williams, F. Safeguarding Geoheritage in Ethiopia: Challenges Faced, and the Role of Geotourism. Geoheritage 2020, 12, 31. [Google Scholar] [CrossRef]
- Woo, K.S.; Chun, S.S.; Moon, K.O. Outstanding Geoheritage Values of the Island-Type Tidal Flats in Korea. Geoheritage 2020, 12, 8. [Google Scholar] [CrossRef]
- Zangmo, G.T.; Kagou, A.D.; Nkouathio, D.G.; Gountié, M.D.; Kamgang, P. The Volcanic Geoheritage of the Mount Bamenda Calderas (Cameroon Line): Assessment for Geotouristic and Geoeducational Purposes. Geoheritage 2017, 9, 255–278. [Google Scholar] [CrossRef]
- Pactwa, K.; Woźniak, J.; Dudek, M. Coal mining waste in Poland in reference to circular economy principles. Fuel 2020, 270, 117493. [Google Scholar] [CrossRef]
Sam. | 06MON | 11MON | 26MON | 33MON | 14MON | 13MON | 17MON | 18MON | 52MON | 56MON | 02MON | 05MON | 36MON | 37MON |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
O | 42.12 | 9.71 | 17.41 | 40.82 | 41.07 | 8.86 | 10.00 | 17.71 | 18.24 | 51.22 | 0.77 | |||
Na | 0.96 | 0.02 | ||||||||||||
Mg | 0.91 | 25.62 | 11.90 | 13.48 | 13.78 | 0.58 | 36.18 | 31.35 | 8.70 | 3.70 | 7.39 | 9.65 | ||
Al | 4.19 | 1.51 | 0.55 | 8.72 | 0.32 | 0.98 | 0.65 | 0.66 | 3.07 | 1.21 | 0.72 | 12.85 | 11.46 | |
Si | 19.74 | 39.39 | 0.44 | 36.44 | 29.85 | 29.81 | 31.02 | 32.41 | 18.11 | 5.29 | 39.06 | 39.16 | ||
S | 0.05 | 2.96 | 30.79 | 2.86 | 29.25 | 31.16 | 0.01 | 0.07 | 34.01 | |||||
K | 1.32 | 0.01 | 0.12 | 0.04 | 0.01 | 0.02 | 0.04 | 0.08 | 0.18 | 0.38 | 0.26 | |||
Ca | 7.69 | 2.04 | 0.26 | 9.49 | 2.13 | 2.52 | 1.42 | 0.03 | 1.34 | 2.77 | 3.38 | 0.10 | 10.08 | 10.30 |
Ti | 2.23 | 0.01 | 0.19 | 0.09 | 0.11 | 0.05 | 0.05 | 0.12 | 0.10 | 0.24 | 0.02 | |||
Mn | 0.22 | 0.23 | 0.18 | 0.27 | 0.20 | 0.10 | 0.05 | 0.14 | 0.22 | 0.07 | 0.02 | 0.02 | ||
Cr | 0.00 | 0.81 | 0.22 | 0.38 | 0.83 | 0.09 | 0.28 | 0.04 | 1.38 | 0.58 | 0.69 | 0.07 | 0.16 | 0.17 |
Fe | 19.80 | 12.56 | 51.51 | 11.59 | 11.95 | 11.14 | 48.81 | 54.11 | 11.64 | 10.79 | 15.81 | 28.40 | 7.81 | 7.64 |
Ni | 0.01 | 0.02 | 6.48 | 0.41 | 0.18 | 0.18 | 4.21 | 3.90 | 0.55 | 0.49 | 0.22 | 0.28 | 0.01 | 0.01 |
Cu | 0.03 | 1.75 | 0.18 | 0.01 | 5.82 | 0.10 | 0.02 | 26.08 | ||||||
P | 1560 | |||||||||||||
Cl | 327 | 295 | 476 | 135 | 412 | 145 | 333 | 693 | 913 | |||||
V | 466 | 103 | 181 | 115 | 110 | 62 | 35 | 109 | 81 | 134 | 147 | |||
Zn | 320 | 212 | 124 | 88 | 120 | 112 | 121 | 58 | 60 | 157 | 1678 | 74 | 76 | |
Cd | 118 | |||||||||||||
Te | 64 | |||||||||||||
Yb | 318 | 229 | 244 | 222 | 328 | 197 | 216 | |||||||
Pb | 29 | 53 | 24 |
Sample | Content [ppm] | ||||||||
---|---|---|---|---|---|---|---|---|---|
Fe | Mn | Cr | Cu | Pb | Zn | As | Cd | Hg | |
01S | 12,488 | 158.8 | 33.6 | 121 | 20.7 | 47.2 | 4.37 | 1.09 | 0.100 |
02S | 10,559 | 296.4 | 52.3 | 90.2 | 9.27 | 43.4 | 1.93 | 0.77 | 0.004 |
Standard * | - | 741 | 46 | 167 | 83 | 198 | - | 1.44 | - |
Sample | pH | Cond (µS/cm) | TDS | Ca | Mg | Na | K | Sr | NH4 | HCO3 | Cl | SO4 | NO3 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
[ppm] | |||||||||||||
01Aq | 7.11 | 251 | 223.4 | 30.91 | 14.83 | 6.47 | 2.58 | 0.41 | 0.08 | 107 | 1.25 | 59.82 | 0.02 |
02Aq | 7.43 | 85 | 65.80 | 5.14 | 2.82 | 9.90 | 1.01 | 0.10 | 0.11 | 26.4 | 4.43 | 15.57 | 0.27 |
03Aq | 7.36 | 103 | 81.20 | 6.52 | 2.28 | 13.5 | 3.01 | 0.10 | 0.12 | 32.5 | 4.92 | 18.2 | 0.02 |
UE * | 6.5–9.5 | 2500 | - | - | - | 200 | - | - | 0.5 | - | 250 | 250 | 50 |
Sample | Ti | Mn | Cr | Pb | Cd | Fe | Cu | Ni | Zn |
---|---|---|---|---|---|---|---|---|---|
01L | 1218.00 | 182.00 | 38.60 | 102.00 | 1.79 | 9756.00 | 64.30 | 38.40 | 54.90 |
02L | 1082.00 | 40.50 | 60.00 | 122.00 | 0.02 | 5260.00 | 50.00 | 38.40 | 27.30 |
03L | 520.00 | 11.30 | 29.70 | 97.10 | 0.02 | 1655.00 | 21.30 | 37.50 | 29.20 |
04L | 502.50 | 108.00 | 35.30 | 0.10 | 0.02 | 6416.00 | 26.60 | 41.80 | 35.40 |
SJ * | - | 130 | - | - | - | - | 34 | 88 | 106 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huber, M.; Chmiel, S.; Iakovleva, O. Environmental Characteristics of the Mining Area of Ni–Cu–Fe Paleoproterozoic PGE Monchepluton Intrusion (NE Scandinavia). Mining 2022, 2, 683-698. https://doi.org/10.3390/mining2040037
Huber M, Chmiel S, Iakovleva O. Environmental Characteristics of the Mining Area of Ni–Cu–Fe Paleoproterozoic PGE Monchepluton Intrusion (NE Scandinavia). Mining. 2022; 2(4):683-698. https://doi.org/10.3390/mining2040037
Chicago/Turabian StyleHuber, Miłosz, Stanisław Chmiel, and Olga Iakovleva. 2022. "Environmental Characteristics of the Mining Area of Ni–Cu–Fe Paleoproterozoic PGE Monchepluton Intrusion (NE Scandinavia)" Mining 2, no. 4: 683-698. https://doi.org/10.3390/mining2040037
APA StyleHuber, M., Chmiel, S., & Iakovleva, O. (2022). Environmental Characteristics of the Mining Area of Ni–Cu–Fe Paleoproterozoic PGE Monchepluton Intrusion (NE Scandinavia). Mining, 2(4), 683-698. https://doi.org/10.3390/mining2040037