Assessment of Heavy Metal Pollution Using Forest Species Plantations of Post-Mining Landscapes, Ptolemais, N. Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.3. Statistical Analysis
3. Results
Metal Retention
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Georgakopoulos, A.; Valceva, S. Petrographic Characteristics of Neogene Lignites from the Ptolemais and Servia Basins, Northern Greece. Energy Sources 2000, 22, 587–602. [Google Scholar]
- Pentari, D.; Typou, J.; Goodarzi, F.; Foscolos, A.E. Comparison of elements of environmental concern in regular and reclaimed soils, near abandoned coal mines Ptolemais-Amynteon, northern Greece: Impact on wheat crops. Int. J. Coal Geol. 2006, 65, 51–58. [Google Scholar] [CrossRef]
- Petaloti, C.; Triantafyllou, A.; Kouimtzis, T.; Samara, C. Trace elements in atmospheric particulate matter over a coal burning power production area of western Macedonia, Greece. Chemosphere 2006, 65, 2233–2243. [Google Scholar] [CrossRef]
- Tsikritzis, L.; Ganatsios, S.; Duliu, O.G.; Sawidis, T. Heavy metals distribution in some lichens, mosses, and trees in the vicinity of lignite power plants from West Macedonia, Greece. J. Trace Microprobe Tech. 2002, 20, 395–413. [Google Scholar] [CrossRef]
- Iordanidis, A.; Buckman, J.; Triantafyllou, A.G.; Asvesta, A. Fly ash-airborne particles from Ptolemais-Kozani area, northern Greece, as determined by ESEM-EDX. Int. J. Coal Geol. 2008, 73, 63–73. [Google Scholar] [CrossRef]
- Stalikas, C.D.; Chaidou, C.I.; Pilidis, G.A. Enrichment of PAHs and heavy metals in soils in the vicinity of the lignite-fired power plants of West Macedonia (Greece). Sci. Total Environ. 1997, 204, 135–146. [Google Scholar] [CrossRef]
- Kallithrakas-Kontos, N.; Zoumi, K.; Nikolaki, S.; Kritidis, P. Trace elements and radioactivity in aerosol particles, produced in the area of Ptolemais (Greece). J. Radioanal. Nucl. Chem. 1998, 227, 61–65. [Google Scholar] [CrossRef]
- Triantafyllou, G.A. PM10 pollution episodes as a function of synoptic climatology in a mountainous industrial area. Environ. Pollut. 2001, 112, 491–500. [Google Scholar] [CrossRef]
- Samara, C. Chemical mass balance source apportionment of TSP in lignite-burning area of Western Macedonia, Greece. Atmos. Environ. 2005, 39, 6430–6443. [Google Scholar] [CrossRef]
- Triantafyllou, A.G.; Zoras, S.; Evagelopoulos, V. Particulate matter over the last 7 years in urban and rural areas within, proximal and far from mining and power station operations in Greece. Environ. Monit. Assess. 2006, 122, 41–60. [Google Scholar] [CrossRef]
- Samara, T.; Spanos, I.; Platis, P.; Papachristou, T. Heavy metal retention by different forest species used for restoration of post-mining landscapes, N. Greece. Sustainability 2020, 12, 4453. [Google Scholar] [CrossRef]
- Pavlovic, P.; Mitrovic, M.; Djurdjevic, L. An Ecophysiological Study of Plants Growing on the Fly Ash Deposits from the “Nicola Tesla-A” Thermal Power Station in Serbia. Environ. Manag. 2004, 33, 654–663. [Google Scholar] [CrossRef]
- Delia, N.B. Assessing the degree of dispersion and distribution of heavy metals in soil and plants associated with area of influence of coal power plant. J. Environ. Prot. Ecol. 2015, 16, 453–460. [Google Scholar]
- Gerouki, F.; Foscolos, A.E.; Dimitroula, M. Environmental impact of trace elements encountered in fly ashes from power stations located in the wider area of Ptolemais basin. In Proceedings of the 3rd International Conference on Environmental Pollution, Toronto, ON, Canada, 16–20 September 1996; University of Thessaloniki: Thessaloniki, Greece, 1996; pp. 213–218. [Google Scholar]
- Foscolos, A.E.; Goodarzi, F.; Koukouzas, C.N.; Hatziyannis, G. Assessment of environmental impact of coal exploration and exploitation in the Drama basin, Northeastern Greek-Macedonia. Energy Sources 1998, 20, 795–820. [Google Scholar] [CrossRef]
- Fillipidis, A.; Georgokopoulos, A. Mineralogical and chemical investigation of fly ash from the Main and Northern lignite fields in Ptolemais, Greece. Fuel 1992, 71, 373–376. [Google Scholar] [CrossRef]
- Kabata-Pedias, A. Trace Elements in Soils and Plants; CRC: Boca Raton, FL, USA, 2001. [Google Scholar]
- Alfani, A.; Batrol, G.; Rutigliano, F.A.; Maisto, G.; Virzo De Santo, A. Trace metal biomonitoring in the soil and the leaves of Quercus Ilex in the urban area of Naples. Biol. Trace Elem. Res. 1996, 51, 117–131. [Google Scholar] [CrossRef]
- Sawidis, T.; Metentzoglou, E.; Mitrakas, M. A study of chromium, cooper and lead distribution from lignite fuels using cultivated and non-cultivated plants as biological monitors. Water Air Soil Poll. 2011, 220, 339–352. [Google Scholar] [CrossRef]
- Beckett, K.P.; Free-Smith, P.; Taylor, G. Urban Woodlands: Their role in reducing the effect of particulate pollution. Environ. Poll. 1998, 99, 347–360. [Google Scholar] [CrossRef]
- Nowak, D.J. Air pollution removal by Chicago’s urban forest. In Chicago’s Urban Forest Ecosystem: Results of the Chicago’s Urban Forest Climate Project, General Technical Report NE-186; McPherson, E.G., Nowak, D.J., Rowntree, R.A., Eds.; U.S. Department of Agriculture: Radnor, PA, USA, 1994; pp. 63–84. [Google Scholar]
- Taha, H. Modeling impacts of in the South Coast Air Basin. Atmos. Environ. 1996, 30, 3423–3430. [Google Scholar] [CrossRef]
- Nowak, D.J.; Dwyer, J.F. Understanding the benefits and costs of urban forest ecosystems. In Handbook of Urban and Community Forestry in the Northeast; Kuser, J.E., Ed.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2000; pp. 11–22. [Google Scholar]
- Batzias, B.A.; Roumpos, C.P. Optimal policy for lignite fly ash management. In Proceedings of the 5th International Conference on Environmental Pollution, Kittilä, Finland, 29 August–1 September 2000; pp. 849–856. [Google Scholar]
- Georgakopoulos, A.; Filippidis, A.; Kassoli-Fournaraki, A.; Iordanidis, A.; Fernández-Turiel, J.L.; Llorens, J.F.; Gimeno, D. Environmentally important elements in fly ashes and their leachates of the power stations of Greece. Energy Source 2002, 24, 83–91. [Google Scholar] [CrossRef]
- Triantafyllou, G.A. Levels and trends of suspended particles around large lignite power stations. Environ. Monit. Assess. 2003, 89, 15–34. [Google Scholar] [CrossRef] [PubMed]
- Smith, W.H.; Staskawawicz, B.J. Removal of atmospheric particles by leaves and twings of urban trees: Some preliminary observations and assessment of research needs. Environ. Manag. 1977, 1, 317–330. [Google Scholar] [CrossRef]
- Martin, M.H.; Coughtrey, P.J. Biological Monitoring of Heavy Metal Pollution. Land and Air; Applied Science Publishers: London, UK, 1982; p. 475. [Google Scholar]
- Dickinson, N.M.; Turner, A.P.; Lepp, N.W. Survival of trees in a metal-contaminated environment, Part III. Water Air Soil Poll. 1991, 57–58, 627–633. [Google Scholar] [CrossRef]
- Sawidis, T.; Marnasidis, A.; Zachariadis, G.; Stratis, J. A study of air-pollution with heavy-metals in Thessaloniki City (Greece) using trees as biological indicators. Arch. Environ. Con. Tox. 1995, 28, 118–124. [Google Scholar] [CrossRef]
- Beckett, K.P.; Free-Smith, P.; Taylor, G. The capture of particulate pollution by trees at five contrasting urban sites. Arbor. J. 2000, 24, 209–230. [Google Scholar] [CrossRef]
- Pal, A.; Kulshreshtha, K.; Ahmad, K.J.; Behl, H.M. Do leaf surface characters play a role in plant resistance to auto-exhaust pollution? Flora 2002, 197, 47–55. [Google Scholar] [CrossRef]
- Pourkhabbaz, A.; Rastin, N.; Olbrich, A.; Langenfeld-Heyser, R.; Polle, A. Influence of environmental pollution on leaf properties of urban plane trees, Platanus orientalis L. Bull. Environ. Contam. Toxicol. 2010, 85, 251–255. [Google Scholar] [CrossRef]
- Taylor, H.J.; Ashmore, M.R.; Bell, J.N.B. Air Pollution Injury to Vegetation; IEHO: London, UK, 1990. [Google Scholar]
- Al-Shayed, S.M.; Al-Rajhi, M.A.; Seaward, M.R.D. The date palm (Phoenix dactylifera L.) as a biomonitor of lead and other elements in arid environments. Sci. Total Environ. 1995, 168, 1–10. [Google Scholar] [CrossRef]
- Al-alawi, M.; Mandiwana, K. The use of Alepo pine as a bio-monitor of heavy metals in atmosphere. J. Hazard Mater. 2007, 148, 43–46. [Google Scholar] [CrossRef]
- Kovács, M. Trees as Biological Indicators. In Biological Indicators in Environmental Protection; Kovács, M., Ed.; Ellis Horwood: New York, NY, USA, 1992. [Google Scholar]
- Rasmussen, P.E.; Mierle, G.; Nriagu, J.O. The Analysis of Vegetation for Total Mercury. Water Air Soil Pollut. 1991, 56, 379–388. [Google Scholar] [CrossRef]
- Ceburnis, D.; Steinnes, E. Conifer needles as bio-monitors of atmospheric heavy metal deposition: Comparison with mosses and precipitation, role of the canopy. Atmos. Environ. 2000, 34, 4265–4271. [Google Scholar] [CrossRef]
- Holoubek, I.; Korinek, P.; Seda, Z.; Schneiderova, E.; Holoubkova, I.; Pacl, A.; Triska, J.; Cudlin, P.; Caslavsky, J. The use of mosses and pine needles to detect persistent organic pollutants at local and regional scales. Environ. Pollut. 2000, 109, 283–292. [Google Scholar] [CrossRef]
- Migaszewski, Z.M.; Galuszka, A.; Paslawski, P. Polynuclear aromatic hydrocarbons, phenols and trace metals in selected soil profiles and plant bio-indicators in the Holy Cross Mountains, South-Central Poland. Environ. Int. 2002, 28, 303–313. [Google Scholar] [CrossRef]
- Chapman, H.D.; Pratt, P.F. Methods of Analysis for Soils, Plants and Waters; University of California Berkeley, Division of Agriculture Sciences, Ed.; Priced Publication 4034: Berkley, CA, USA, 1961. [Google Scholar]
- Rencher, A. Linear Models in Statistics; John Willey & Sons, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Toothaker, L. Multiple Comparison Procedures; Sage Publications, Inc.: Newbury Park, CA, USA, 1993. [Google Scholar]
- Hodgson, D.R.; Townsend, W.N. The amelioration and revegetation of pulverized fuel ash. In Ecology and Reclamation of Devastated Land; Huntnik, R.J., Davis, G., Eds.; Gordon and Breach: London, UK, 1973; Volume 2, pp. 247–270. [Google Scholar]
- Foscolos, A.E.; Goodarzi, F.; Koukouzas, C.N.; Hatziyannis, G. Reconnaissance study of mineral matter and trace elements in Greek lignites. Chem. Geol. 1989, 76, 107–130. [Google Scholar] [CrossRef]
- Sakorafa, V.; Michailidis, K.; Burragato, F. Mineralogy geochemistry and physical properties of fly ash from the Megapolis lignite fields, Peloponese, Southern Greece. Fuel 1996, 75, 419–423. [Google Scholar] [CrossRef]
- Gentzis, T.; Goodarzi, F.; Koukouzas, C.N.; Foscolos, A.E. Petrology mineralogy and geochemistry of lignites from Crete, Greece. Int. J. Coal Geol. 1996, 30, 131–150. [Google Scholar] [CrossRef]
- Gentzis, T.; Goodarzi, F.; Foscolos, A.E. Geochemistry and mineralogy of Greek lignites from the Ioannina basin. Energy Sources 1997, 19, 111–128. [Google Scholar] [CrossRef]
- Pentari, D.; Foscolos, A.E. Geochemistry of Florina and Ellasona Coal Basins with Emphasis on Trace Elements and Elements of Environmental Concern 2004. In Proceedings of the Chania Conference on the Advances in Mineral Resources Management and Environmenta Geotechnology, Chania, Greece, 7–9 June 2004. [Google Scholar]
- Papanikolaou, C.; Kotis, T.; Foscolos, A.; Goodarzi, F. Coals of Greece: A review of properties, uses and future perspectives. Int. J. Coal Geol. 2004, 58, 147–169. [Google Scholar] [CrossRef]
- Sawidis, T.; Chettri, A.; Papaioannou, A.; Zachariadis, G.; Stratis, J. A study of metal distribution from lignite fuels using trees as biological indicators. Ecotoxicol. Environ. Stud. 2001, 48, 27–35. [Google Scholar] [CrossRef]
- Market, B. Instrumental analysis of plants. In Plants as Biomonitors, Indicators for Heavy Metals in Terrestial Environment; Market, B., Ed.; VCH: Weinheim, Germany, 1993; pp. 65–103. [Google Scholar]
- Bargagli, R. Trace Elements in Terrestrial Plants: An Ecophysiological Approach to Biomonitoring and Biorecovery; Springer: Berlin/Heidelberg, Germany, New York, NY, USA, 1998. [Google Scholar]
- Weiss, P.; Offenthaler, I.; Ohlinger, R.; Wimmer, J. Higher Plants as Accumulative Bioindicators. In Bioindicators & Biomonitors, Principles, Concepts and Applications; Market, B., Breure, A.M., Zechmeister, H.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2003; Volume 6, pp. 465–500. [Google Scholar]
- Stratis, J.A.; Tsitouridou, R.D.; Simeonov, V.D. Chemometrical data treatment to study the environment pollution around lignite power plants. Toxicol. Environ. Chem. 1995, 47, 71–76. [Google Scholar] [CrossRef]
- Tomasevic, M.; Anicic, M.; Jovanovic, L.; Peric-Grujic, A.; Ristic, M. Deciduous tree leaves in trace elements biomonitoring: A contribution to methodology. Ecol. Indic. 2011, 11, 1689–1695. [Google Scholar] [CrossRef]
- Sawidis, T.; Zachariadis, G.; Stratis, J.; Ladukakis, E. Mosses as biological indicators for monitoring of heavy-metal pollution. Fresenius. Environ. Bull. 1993, 2, 193–199. [Google Scholar]
- Sawidis, T.; Chettri, A.; Zachariadis, G.; Stratis, J. Heavy metals in aquatic plants and sediments from water system in Macedonia, Greece. Exotoxicol. Environ. Saf. 1995, 32, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Sawidis, T.; Chettri, A.; Zachariadis, G.; Stratis, J.; Seaward, M.R.D. Heavy metal bioaccumulation in lichens from Macedonia in northern Greece. Toxical. Environ. Chem. 1995, 50, 157–166. [Google Scholar] [CrossRef]
- Samara, T.; Tsitsoni, T. Selection of forest species for use in urban environment in relation to their potential capture to heavy metals. Glob. NEST J. 2014, 16, 966–974. [Google Scholar]
- Beckett, K.P.; Free-Smith, P.; Taylor, G. Effective tree species for local air-quality management. Arboric. J. 2000, 26, 12–19. [Google Scholar]
- Vassileva, E.; Velev, V.; Daiev, C.; Stoichev, T.; Martin, M.; Robin, D.; Haerdi, W. Assessment of heavy metals air pollution in urban and industrial environments using oak leaves as bioindicators. Int. J. Environ. Anal. Chem. 2000, 78, 159–173. [Google Scholar] [CrossRef]
- Aksoy, A.; Ozturk, M.A. Nerium oleader N. as a biomonitor of lead and other heavy metal pollution in Mediterranean environments. Sci. Total Environ. 1997, 205, 145–150. [Google Scholar]
- Blaylock, M.J.; Huang, J.W. Phytoextraction of metals. In Phytoremidation of Toxic Metals-Using Plants to Clean up the Environment; Raskin, I., Ensley, B.D., Eds.; Wiley: New York, NY, USA, 2000; pp. 53–70. [Google Scholar]
- Khan, A.G. Relationships between chromium biomagnification ratio, accumulation factor, and mycorrhizae in plants growing on tannery effluent-polluted soil. Environ. Int. 2001, 26, 417–423. [Google Scholar] [CrossRef]
- Rosselli, W.; Keller, C.; Boschi, K. Phytoextraction capacity of trees growing on a metal contaminated soil. Plant Soil 2003, 256, 265–272. [Google Scholar] [CrossRef]
- Celik, A.; Aslihan, A.; Kartal, A.; Kaska, Y. Determining the heavy metal pollution in Denizli (Turkey) by using Robinia pseudoacacia L. Environ. Intern. 2005, 31, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Corneanu, C.G.; Gracium, C.; Corneanu, M.; Tripon, S. The ultrastructural features of the Robinia pseudoacacia var. Oltenica leaves, cultivated on degraded soils (sterile waste dumps). An. Univ. Din Craiova Ser. Agric.-Montanologie-Cadastru 2009, 39, 104–115. [Google Scholar]
- Converse, T.E.; Betters, D.R. Biomass yield equation for short rotation black locust plantations in the Central Great Plains. Biomass Bioenergy 1995, 8, 251–254. [Google Scholar] [CrossRef]
- Tzvetkova, N.; Petkova, K. Bioaccumulation of heavy metals by the leaves of Robinia pseudoacacia as a bioindicator tree in industrial zones. J. Environ. Biol. 2015, 36, 59–63. [Google Scholar] [PubMed]
- Maisto, G.; Alfani, A.; Baldantoni, D.; De Marco, A.; Virzo De Santo, A. Trace metals in the soil and in Quercus ilex L. leaves at anthropic and remote sites of the Campania Region of Italy. Geoderma 2004, 122, 269–279. [Google Scholar] [CrossRef]
- Papazafeiriou, A.; Alifragis, D.; Lakis, C.; Stefanou, S.; Yialoulaki, M.; Papanikolaou, K. Heavy Metal Transfer to Forage Material in Amended Soils in the Area of Ptolemais-Greece. Dry Grasslands of Europe: Grazing and Ecosystem Services; Vrahnakis, M., Kyriakopoulos, A.P., Chournavas, D., Fotiadis, G., Eds.; Thessaloniki, Greece; pp. 246–251. Available online: https://silo.tips/download/dry-grasslands-of-europe-grazing-and-ecosystem-services (accessed on 30 July 2022).
Heavy metals | Fly ashes (Foscolos et al., 1998) [15] | (Fillipidis et al., 1997) [16] |
Cd | 0.4 | 1.6 |
Co | 17 | 31 |
Cr | 317 | 451 |
Cu | 24 | 59 |
Ni | 218 | 449 |
Pb | 29 | 36 |
Zn | - | 205 |
Soils | ||
Heavy metals | (Pentari et al., 2006) [2] With the addit. of top soil | (Pentari et al., 2006) [2] Without the addit. of top soil |
Cd | 0.3 | 0.2 |
Co | 33.4 | 15.2 |
Cr | 312 | 99.7 |
Cu | 34.2 | 30.8 |
Ni | 209 | 66.5 |
Pb | 63 | 59.6 |
Zn | 69 | 43 |
Plot | Heavy Metals | Species | |||
---|---|---|---|---|---|
Pinus brutia | Quercus trojana | Fraxinus ornus | Robinia pseudoacacia | ||
Forestry use | Cu | 2.139 | 3.081 | 3.395 | 2.670 |
Fe | 76.823 | 90.140 | 127.363 | 101.607 | |
Mn | 66.227 (1.715) | 24.519 (1.389) | 24.911 (1.408) | 21.918 (1.353) | |
Zn | 12.915 (1.143) | 17.677 (1.268) | 17.055 (1.254) | 15.181 (1.190) | |
Cd | 0.087 (0.036) | 0.260 (0.095) | 0.178 (0.068) | 0.131 (0.052) | |
Co | 0.114 | 0.085 | 0.081 | 0.077 | |
Cr | 0.427 | 0.442 | 0.547 | 0.456 | |
Ni | 1.115 (0.318) | 0.695 (0.227) | 0.666 (0.219) | 0.550 (0.188) | |
Pb | 0.433 (0.153) | 0.315 (0.115) | 0.487 (0.167) | 0.271 (0.102) | |
Env. restoration | Cu | 6.622 | 5.967 | 4.791 | 5.791 |
Fe | 167.778 | 166.090 | 181.301 | 195.950 | |
Mn | 45.380 (1.663) | 97.397 (1.806) | 22.138 (1.319) | 27.669 (1.452) | |
Zn | 24.400 (1.366) | 18.357 (1.277) | 19.421 (1.308) | 21.985 (1.353) | |
Cd | 0.160 (0.060) | 0.117 (0.046) | 0.222 (0.082) | 0.602 (0.171) | |
Co | 0.102 | 0.101 | 0.091 | 0.098 | |
Cr | 0.674 | 0.721 | 0.739 | 0.881 | |
Ni | 2.759 (0.563) | 4.058 (0.683) | 1.705 (0.430) | 2.154 (0.494) | |
Pb | 0.618 (0.207) | 0.765 (0.243) | 0.690 (0.224) | 0.832 (0.260) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samara, T.; Spanos, I.; Papachristou, T.G.; Platis, P. Assessment of Heavy Metal Pollution Using Forest Species Plantations of Post-Mining Landscapes, Ptolemais, N. Greece. Mining 2022, 2, 578-588. https://doi.org/10.3390/mining2030031
Samara T, Spanos I, Papachristou TG, Platis P. Assessment of Heavy Metal Pollution Using Forest Species Plantations of Post-Mining Landscapes, Ptolemais, N. Greece. Mining. 2022; 2(3):578-588. https://doi.org/10.3390/mining2030031
Chicago/Turabian StyleSamara, Theano, Ioannis Spanos, Thomas G. Papachristou, and Panagiotis Platis. 2022. "Assessment of Heavy Metal Pollution Using Forest Species Plantations of Post-Mining Landscapes, Ptolemais, N. Greece" Mining 2, no. 3: 578-588. https://doi.org/10.3390/mining2030031
APA StyleSamara, T., Spanos, I., Papachristou, T. G., & Platis, P. (2022). Assessment of Heavy Metal Pollution Using Forest Species Plantations of Post-Mining Landscapes, Ptolemais, N. Greece. Mining, 2(3), 578-588. https://doi.org/10.3390/mining2030031