Passing with ChatGPT? Ethical Evaluations of Generative AI Use in Higher Education
Abstract
1. Introduction
1.1. Ethical Challenges of Generative Artifical Intellugence in Higher Education
- Scenario 1: Improving or correcting essays before submission. The content of the paper remains unchanged. GenAI is simply used to rephrase sentences, fix syntactic errors, or make the text clearer. This is generally considered a fully acceptable use in academic research [13].
- Scenario 2: Preparing for an exam with the help of GenAI. The tool is used to summarize topics, generate practice tests, help understand concepts better, and develop study material. This scenario has positive aspects—such as optimizing time and enhancing student productivity—but also negative ones, such as the potential for dependency or reliance on incorrect or biased information [10].
- Scenario 3: Producing most of the content of an essay using GenAI because the student has little time left before the deadline and perceives the task as too complex. Little or no editing is conducted afterward. This scenario borders on academic fraud [12], yet it is difficult to penalize, as there are currently no reliable tools to detect GenAI-generated text [14].
1.2. Philosophical Framework
2. Ethical Evaluation of the Use of Generative Artificial Intelligence from Various Moral Philosophy Perspectives and Personal Determinants
2.1. Structuring Judgments About the Use of GenAI Around Moral Philosophy Theories
2.2. Moral Equity
2.3. Relativism
2.4. Moral Egoism
2.5. Utilitarianism
2.6. Deontology or Contractualism
2.7. Gender and Employment Status as Potential Factors Shaping Ethical Perceptions of GenAI Use
2.7.1. Potential Differences in the Perception of GenAI Use Between Women and Men
2.7.2. Full-Time Employment Status as a Source of Differences in Ethical Perceptions of GenAI Use
3. Materials and Methods
3.1. Population and Sampling
3.2. Sample Profile
3.3. Questionnaire and Measurement Model
3.4. Data Analysis
4. Results
4.1. Descriptive Statistics and Results for the Research Objective 1
4.2. Results of Research Objectives 2 and 3
5. Discussion
5.1. Discussion of Fingings
5.2. Theoretical Implications
5.3. Practical Implications
6. Conclusions
6.1. Principal Takeaways
6.2. Study Limitations and Further Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | Analysis of Variance |
AVE | Average Variance Extracted |
CA | Cronbach’s alpha |
CR | Convergent reliability |
DE | Deontology |
EG | Moral Egoism |
GAI | Generative Artificial Intelligence |
MANOVA | Multivariate analysis of variance |
ME | Moral Equity |
PT | Pillai’s Trace |
RE | Moral Relativism |
UT | Utilitarianism |
References
- Lo, C.K. What is the impact of ChatGPT on education? A rapid review of the literature. Educ. Sci. 2023, 13, 410. [Google Scholar] [CrossRef]
- Yan, L.; Zhang, Y.; Yin, C.; Yang, S.; Xu, Y. Practical and ethical challenges of large language models in education: A systematic scoping review. Br. J. Educ. Technol. 2024, 55, 90–112. [Google Scholar] [CrossRef]
- Licht, K.F. Generative artificial intelligence in higher education: Why the ‘banning approach’ to student use is sometimes morally justified. Philos. Technol. 2024, 37, 113. [Google Scholar] [CrossRef]
- Culp, J. Ethics of education. In Encyclopedia of the Philosophy of Law and Social Philosophy; Springer: Dordrecht, The Netherlands, 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Farrelly, T.; Baker, N. Generative artificial intelligence: Implications and considerations for higher education practice. Educ. Sci. 2023, 13, 1109. [Google Scholar] [CrossRef]
- Madsen, D.Ø.; Toston, D.M. ChatGPT and Digital Transformation: A Narrative Review of Its Role in Health, Education, and the Economy. Digital 2025, 5, 24. [Google Scholar] [CrossRef]
- Yu, H. Reflection on whether Chat GPT should be banned by academia from the perspective of education and teaching. Front. Psychol. 2023, 14, 1181712. [Google Scholar] [CrossRef] [PubMed]
- Gorrieri, L. Should I use ChatGPT as an academic aid? A response to Aylsworth and Castro. Philos. Technol. 2025, 38, 8. [Google Scholar] [CrossRef]
- Davis, R.O.; Lee, Y.-J. Prompt: ChatGPT, create my course, please! Educ. Sci. 2023, 14, 24. [Google Scholar] [CrossRef]
- Alier, M.; García-Peñalvo, F.; Camba, J.D. Generative artificial intelligence in education: From deceptive to disruptive. Int. J. Interact. Multimed. Artif. Intell. 2024, 8, 5–14. [Google Scholar] [CrossRef]
- McDonald, N.; Johri, A.; Ali, A.; Collier, A.H. Generative artificial intelligence in higher education: Evidence from an analysis of institutional policies and guidelines. Comput. Hum. Behav. Artif. Hum. 2025, 100, 121. [Google Scholar] [CrossRef]
- Aylsworth, T.; Castro, C. Should I use ChatGPT to write my papers? Philos. Technol. 2024, 37, 117. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Hughes, D.L.; Baabdullah, A.M.; Ribeiro-Navarrete, S.; Giannakis, M.; Makrides, A.; Davison, R.M.; Sharma, S.K.; Wood, S.L. Opinion paper: ‘So what if ChatGPT wrote it?’ Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. Int. J. Inf. Manag. 2023, 71, 102642. [Google Scholar] [CrossRef]
- Mittal, U.; Sai, S.; Chamola, V. A comprehensive review on generative AI for education. IEEE Access 2024, 12, 142733–142759. [Google Scholar] [CrossRef]
- Rachels, J.; Rachels, S. The Elements of Moral Philosophy, 7th ed.; McGraw-Hill: New York, NY, USA, 2012. [Google Scholar]
- Hemmingsen, M. Act consequentialism and the gamer’s dilemma. Ethics Inf. Technol. 2025, 27, 19. [Google Scholar] [CrossRef]
- Driver, J. Moral Theory; Oxford University Press: Oxford, UK, 2022. [Google Scholar]
- Reidenbach, R.E.; Robin, D.P. Toward the development of a multidimensional scale for improving evaluations of business ethics. J. Bus. Ethics 1990, 9, 639–653. [Google Scholar] [CrossRef]
- Shawver, T.J.; Sennetti, J.T. Measuring ethical sensitivity and evaluation. J. Bus. Ethics 2009, 88, 663–678. [Google Scholar] [CrossRef]
- Cruz, C.A.; Shafer, W.E.; Strawser, J.R. A multidimensional analysis of tax practitioners’ ethical judgments. J. Bus. Ethics 2000, 24, 223–244. [Google Scholar] [CrossRef]
- Kujala, J. A multidimensional approach to Finnish managers’ moral decision-making. J. Bus. Ethics 2001, 34, 231–254. [Google Scholar] [CrossRef]
- Santalla-Banderali, Z.; Alvarado, J.M.; Malavé, J. Escala Multidimensional de Ética (MES-30): Versión Española y estructura factorial. Rev. Iberoam. Diagn. Eval. Psicol. 2024, 3, 133–150. [Google Scholar] [CrossRef]
- de Andrés-Sánchez, J.; de Torres-Burgos, F. Evaluación ética de atletas y triatletas españoles sobre uso de la tecnología Vaporfly. Rev. Iberoam. Cienc. Act. Fís. Deport. 2021, 10, 139–159. [Google Scholar] [CrossRef]
- Pelegrín-Borondo, J.; Arias-Oliva, M.; Murata, K.; Souto-Romero, M. Does ethical judgment determine the decision to become a cyborg? J. Bus. Ethics 2020, 161, 5–17. [Google Scholar] [CrossRef]
- Reinares-Lara, E.; Olarte-Pascual, C.; Pelegrín-Borondo, J. Do you want to be a cyborg? The moderating effect of ethics on neural implant acceptance. Comput. Hum. Behav. 2018, 85, 43–53. [Google Scholar] [CrossRef]
- Arias-Oliva, M.; Pelegrín-Borondo, J.; Almahameed, A.A.; de Andrés-Sánchez, J.D. Ethical attitudes toward COVID-19 passports: Evidences from Spain. Int. J. Environ. Res. Public Health 2021, 18, 13098. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Basuray, M.T.; Smith, W.P.; Kopka, D.; McCulloh, D. Moral issues and gender differences in ethical judgment using Reidenbach and Robin’s (1990) multidimensional ethics scale: Implications in teaching of business ethics. J. Bus. Ethics 2008, 77, 417–430. [Google Scholar] [CrossRef]
- Jung, I. Ethical judgments and behaviors: Applying a multidimensional ethics scale to measuring ICT ethics of college students. Comput. Educ. 2009, 53, 940–949. [Google Scholar] [CrossRef]
- Yang, S.C. Ethical academic judgments and behaviors: Applying a multidimensional ethics scale to measure the ethical academic behavior of graduate students. Ethics Behav. 2012, 22, 281–296. [Google Scholar] [CrossRef]
- Cunha, M.; Figueiredo, J.; Breia, J.; Pina, J.; Almeida, S.; Oliveira, T. Morality and ethical acting in higher education students. In European Proceedings of Social and Behavioural Sciences, Proceedings of the ICEEPSY 2016: 7th International Conference on Education and Educational Psychology, Rhodes, Greece, 11–15 October 2016; Future Academy: Singapore, 2016; pp. 98–106. [Google Scholar]
- Leonard, L.N.; Riemenschneider, C.K.; Manly, T.S. Ethical behavioral intention in an academic setting: Models and predictors. J. Acad. Ethics 2017, 15, 141–166. [Google Scholar] [CrossRef]
- Pelegrín-Borondo, J.P.; Pascual, C.O.; Pascual, L.B.; Milon, A.G. Impact of ethical judgment on university professors encouraging students to use AI in academic tasks. In The Leading Role of Smart Ethics in the Digital World; Universidad de La Rioja: Logroño, Spain, 2024; pp. 53–61. [Google Scholar]
- Prashar, P.; Gupta, Y.; Dwivedi, Y.K. Plagiarism awareness efforts, students’ ethical judgment and behaviors: A longitudinal experiment study on ethical nuances of plagiarism in higher education. Stud. High. Educ. 2024, 49, 929–955. [Google Scholar] [CrossRef]
- Thornberg, R. A classmate in distress: Schoolchildren as bystanders and their reasons for how they act. Soc. Psychol. Educ. 2007, 10, 5–28. [Google Scholar] [CrossRef]
- Grühn, D.; Cheng, Y. A self-correcting approach to multiple-choice exams improves students’ learning. Teach. Psychol. 2014, 41, 335–339. [Google Scholar] [CrossRef]
- Cuevas, F.; de Ibarrola, M. ¿Estudias y trabajas? Los estudiantes trabajadores de la Universidad Autónoma Metropolitana, Unidad Azcapotzalco. Rev. Latinoam. Estud. Educ. 2009, 39, 121–149. [Google Scholar]
- Wyland, R.L.; Lester, S.W.; Mone, M.A.; Winkel, D.E. Work and school at the same time? A conflict perspective of the work–school interface. J. Leadersh. Organ. Stud. 2013, 20, 346–357. [Google Scholar] [CrossRef]
- Zhou, J.; Müller, H.; Holzinger, A.; Chen, F. Ethical ChatGPT: Concerns, challenges, and commandments. Electronics 2024, 13, 3417. [Google Scholar] [CrossRef]
- Shaw, D. The digital erosion of intellectual integrity: Why misuse of generative AI is worse than plagiarism. AI Soc. 2025. [Google Scholar] [CrossRef]
- Skulmowski, A.; Engel-Hermann, P. The ethics of erroneous AI-generated scientific figures. Ethics Inf. Technol. 2025, 27, 31. [Google Scholar] [CrossRef]
- Barman, K.G.; Wood, N.; Pawlowski, P. Beyond transparency and explainability: On the need for adequate and contextualized user guidelines for LLM use. Ethics Inf. Technol. 2024, 26, 47. [Google Scholar] [CrossRef]
- Şimşek, N. Integration of ChatGPT in mathematical story-focused 5E lesson planning: Teachers and pre-service teachers’ interactions with ChatGPT. Educ. Inf. Technol. 2025, 30, 11391–11462. [Google Scholar] [CrossRef]
- Suh, J.; Lee, K.; Lee, J. Programming education with ChatGPT: Outcomes for beginners and intermediate students. Educ. Inf. Technol. 2025. [Google Scholar] [CrossRef]
- Vaccino-Salvadore, S. Exploring the ethical dimensions of using ChatGPT in language learning and beyond. Languages 2023, 8, 191. [Google Scholar] [CrossRef]
- Gadekallu, T.R.; Khanna, A.; Maddikunta, P.K.R.; Pham, Q.V.; Dev, K.; Liyanage, M. The role of GPT in promoting inclusive higher education for people with various learning disabilities: A review. PeerJ Comput. Sci. 2025, 11, 2400. [Google Scholar] [CrossRef]
- Kasneci, E.; Sessler, K.; Kübler, S.; Bannert, M.; Dementieva, D.; Fischer, F.; Winkler, T.; Sailer, M. ChatGPT for good? On opportunities and challenges of large language models for education. Learn. Individ. Differ. 2023, 103, 102274. [Google Scholar] [CrossRef]
- Leite, H. Artificial intelligence in higher education: Research notes from a longitudinal study. Technol. Forecast. Soc. Change 2025, 215, 124115. [Google Scholar] [CrossRef]
- Tlais, S.; Alkhatib, A.; Hamdan, R.; HajjHussein, H.; Hallal, K.; El Malti, W.E. Artificial intelligence in higher education: Early perspectives from Lebanese STEM faculty. TechTrends 2025, 69, 598–606. [Google Scholar] [CrossRef]
- Monib, W.K.; Qazi, A.; Mahmud, M.M. Exploring learners’ experiences and perceptions of ChatGPT as a learning tool in higher education. Educ. Inf. Technol. 2025, 30, 917–939. [Google Scholar] [CrossRef]
- Cebrián Cifuentes, S.; Guerrero Valverde, E.; Checa Caballero, S. The Vision of University Students from the Educational Field in the Integration of ChatGPT. Digital 2024, 4, 648–659. [Google Scholar] [CrossRef]
- Shahzad, M.F.; Xu, S.; An, X.; Asif, M.; Javed, I. Do generative AI technologies play a double-edged sword role in education? Findings from hybrid approach using PLS-SEM and fsQCA. Educ. Inf. Technol. 2025, 1–30. [Google Scholar] [CrossRef]
- Al-Okaily, M. ChatGPT as an educational resource for accounting students: Expanding the classical TAM model. Educ. Inf. Technol. 2025. [Google Scholar] [CrossRef]
- Nan, D.; Sun, S.; Zhang, S.; Zhao, X.; Kim, J.H. Analyzing behavioral intentions toward generative artificial intelligence: The case of ChatGPT. Univ. Access Inf. Soc. 2025, 24, 885–895. [Google Scholar] [CrossRef]
- Hsu, W.-L.; Silalahi, A.D.K.; Tedjakusuma, A.P.; Riantama, D. How do ChatGPT’s benefit–risk paradoxes impact higher education in Taiwan and Indonesia? An integrative framework of UTAUT and PMT with SEM & fsQCA. Comput. Educ. Artif. Intell. 2025, 8, 100412. [Google Scholar] [CrossRef]
- Al Amin, M.; Kim, Y.S.; Noh, M. Unveiling the drivers of ChatGPT utilization in higher education sectors: The direct role of perceived knowledge and the mediating role of trust in ChatGPT. Educ. Inf. Technol. 2025, 30, 7265–7291. [Google Scholar] [CrossRef]
- Killen, M. The origins of morality: Social equality, fairness, and justice. Philos. Psychol. 2018, 31, 767–803. [Google Scholar] [CrossRef]
- Sandel, M.J. The Tyranny of Merit: What’s Become of the Common Good? Penguin UK: London, UK, 2020. [Google Scholar]
- Gosepath, S. Equality. In The Stanford Encyclopedia of Philosophy (Spring 2023 Edition); Zalta, E.N., Nodelman, U., Eds.; Stanford University: Stanford, CA, USA, 2023; Available online: https://plato.stanford.edu/archives/spr2023/entries/equality/ (accessed on 7 July 2025).
- Moriña, A. Inclusive education in higher education: Challenges and opportunities. Eur. J. Spec. Needs Educ. 2017, 32, 3–17. [Google Scholar] [CrossRef]
- Toh, Y.; Looi, C.K. Transcending the dualities in digital education: A case study of Singapore. Front. Digit. Educ. 2024, 1, 121–131. [Google Scholar] [CrossRef]
- Qadir, J. Engineering education in the era of ChatGPT: Promise and pitfalls of generative AI for education. In Proceedings of the 2023 IEEE Global Engineering Education Conference (EDUCON), Kuwait, Kuwait, 1–4 May 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–9. [Google Scholar] [CrossRef]
- Burgason, K.A.; Sefiha, O.; Briggs, L. Cheating is in the eye of the beholder: An evolving understanding of academic misconduct. Innov. High. Educ. 2019, 44, 203–218. [Google Scholar] [CrossRef]
- Andersen, S.; Hjortskov, M. The unnoticed influence of peers on educational preferences. Behav. Public Policy 2019, 6, 530–553. [Google Scholar] [CrossRef]
- Venkatesh, V. Adoption and use of AI tools: A research agenda grounded in UTAUT. Ann. Oper. Res. 2022, 308, 641–652. [Google Scholar] [CrossRef]
- Berei, E.B. The social responsibility among higher education students. Educ. Sci. 2020, 10, 66. [Google Scholar] [CrossRef]
- Vanderbauwhede, W. Estimating the increase in emissions caused by AI-augmented search. arXiv 2024, arXiv:2407.16894. [Google Scholar]
- Deigh, J. Egoism. In An Introduction to Ethics; Cambridge University Press: Cambridge, UK, 2010; pp. 25–55. [Google Scholar] [CrossRef]
- Shaver, R. Egoism. In The Stanford Encyclopedia of Philosophy (Spring 2023 Edition); Zalta, E.N., Nodelman, U., Eds.; Stanford University: Stanford, CA, USA, 2023; Available online: https://plato.stanford.edu/archives/spr2023/entries/egoism/ (accessed on 24 May 2025).
- Menon, D.; Shilpa, K. ‘Chatting with ChatGPT’: Analyzing the factors influencing users’ intention to use the OpenAI’s ChatGPT using the UTAUT model. Heliyon 2023, 9, e20142. [Google Scholar] [CrossRef]
- Bücker, S.; Nuraydin, S.; Simonsmeier, B.A.; Schneider, M.; Luhmann, M. Subjective well-being and academic achievement: A meta-analysis. J. Res. Pers. 2018, 74, 83–94. [Google Scholar] [CrossRef]
- Meyer, J.G.; Adkins, R.; Hossain, M.N.; Smith, T.R.; Gawryluk, J.R.; Clow, K.A. ChatGPT and large language models in academia: Opportunities and challenges. BioData Min. 2023, 16, 20. [Google Scholar] [CrossRef]
- Casteleiro-Pitrez, J. Generative Artificial Intelligence Image Tools among Future Designers: A Usability, User Experience, and Emotional Analysis. Digital 2024, 4, 316–332. [Google Scholar] [CrossRef]
- Tomova, L.; Andrews, J.L.; Blakemore, S.J. The importance of belonging and the avoidance of social risk taking in adolescence. Dev. Rev. 2021, 61, 100981. [Google Scholar] [CrossRef]
- Rae, S. Moral Choices: An Introduction to Ethics; Zondervan Academic: Grand Rapids, MI, USA, 2018. [Google Scholar]
- Slimmen, S.; Timmermans, O.; Mikolajczak-Degrauwe, K.; Oenema, A. How stress-related factors affect mental wellbeing of university students: A cross-sectional study to explore the associations between stressors, perceived stress, and mental wellbeing. PLoS ONE 2022, 17, e0275925. [Google Scholar] [CrossRef]
- Oates, A.; Johnson, D. ChatGPT in the classroom: Evaluating its role in fostering critical evaluation skills. Int. J. Artif. Intell. Educ. 2025, in press. [Google Scholar] [CrossRef]
- Bossert, L.N.; Loh, W. Why the carbon footprint of generative large language models alone will not help us assess their sustainability. Nat. Mach. Intell. 2025, in press. [Google Scholar] [CrossRef]
- Alexander, L.; Moore, M. Deontological ethics. In The Stanford Encyclopedia of Philosophy (Winter 2024 Edition); Zalta, E.N., Nodelman, U., Eds.; Stanford University: Stanford, CA, USA, 2024. [Google Scholar]
- UNESCO. Education 2030 Agenda. Available online: https://www.unesco.org/en/education2030 (accessed on 7 July 2025).
- De Ruyter, D.; Schinkel, A. Ethics education at the university: From teaching an ethics module to education for the good life. Bordón 2017, 69, 125–138. [Google Scholar] [CrossRef]
- Tuto, C. Ethical and deontological challenges in exercising the functions of higher education teachers: Perceptions of teachers at the School of Management, Science and Technology (ESGCT). Rev. Electrónica Investig. Desenvolv. 2020, 2, 10. [Google Scholar]
- Pilcher, J.J.; Smith, P.D. Social context during moral decision-making impacts males more than females. Front. Psychol. 2024, 15, 1397069. [Google Scholar] [CrossRef] [PubMed]
- Roxas, M.L.; Stoneback, J.Y. The importance of gender across cultures in ethical decision-making. J. Bus. Ethics 2004, 50, 149–165. [Google Scholar] [CrossRef]
- Peng, M. The sources and influencing factors of egoism and altruism. In Proceedings of the 2022 8th International Conference on Humanities and Social Science Research (ICHSSR 2022); Online, 22–24 April 2022, Advances in Social Science, Education and Humanities Research; Atlantis Press: Paris, France, 2022; Volume 664, pp. 2200–2211. [Google Scholar]
- Pierce, J.R. Sex & gender in ethical decision making: A critical review and recommendations for future research. In Academy of Management Proceedings; Academy of Management: Briarcliff Manor, NY, USA, 2014; p. 6. [Google Scholar] [CrossRef]
- Standley, N.; Fesmer, L. Most University Students Working Paid Jobs, Survey Shows. Available online: https://www.bbc.com/news/education-65964375 (accessed on 7 July 2025).
- Simón, H.; Casado Díaz, J.M.; Castejón Costa, J.L. Análisis de la actividad laboral de los estudiantes universitarios y de sus efectos sobre el rendimiento académico. Electron. J. Res. Educ. Psychol. 2017, 15, 281–306. [Google Scholar] [CrossRef]
- Soelistiyono, A.; Chen, F.C. Exploration of studying while working part-time simultaneously with 15 Indonesian students in Taiwan: A public university case study. Int. J. Prof. Bus. Rev. 2023, 8, 26. [Google Scholar] [CrossRef]
- Chantrea, B.; Chansophy, H.; Chantyta, H. Working and Studying at the Same Time; The University of Cambodia: Phnom Penh, Cambodia, 2023. [Google Scholar]
- Busso, M.; Pérez, P.E. Combinar trabajo y estudios superiores ¿Un privilegio de jóvenes de sectores de altos ingresos? Población Soc. 2015, 22, 5–29. [Google Scholar]
- Pacífico, A.; Gandolfo, P.H. Estudios superiores y trabajo: Implicancias de su simultaneidad. Ciencias Econ. 2016, 13, 153–160. [Google Scholar] [CrossRef]
- Brosnan, M.; Bennett, D.; Kercher, K.; Wilson, T.; Keogh, J.W.L. A multi-institution study of the impacts of concurrent work and study among university students in Australia. High. Educ. Res. Dev. 2023, 43, 775–791. [Google Scholar] [CrossRef]
- Parry, G.; Reynoldson, C. Creating an authentic learning environment in economics for MBA studies. In Cases on the Human Side of Information Technology; IGI Global: Hershey, PA, USA, 2006; pp. 76–87. [Google Scholar] [CrossRef]
- Correa, D.; López-Díez, J.; Campuzano-Hoyos, J. A humanistic manager? Integrating humanities into professional management education in Colombia: The case of EAFIT University, 1994–2007. J. Manag. Hist. 2024, 31, 154–173. [Google Scholar] [CrossRef]
- Asian-Chaves, R.; Buitrago, E.M.; Masero-Moreno, I.; Yñiguez, R. Advanced mathematics: An advantage for business and management administration students. Int. J. Manag. Educ. 2021, 19, 100498. [Google Scholar] [CrossRef]
- Leung, S.O. A comparison of psychometric properties and normality in 4-, 5-, 6-, and 11-point Likert scales. J. Soc. Serv. Res. 2011, 37, 412–421. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef]
- Ministerio de Ciencia, Innovación y Universidades. Datos y Cifras del Sistema Universitario Español. Curso 2023–2024. Secretaría General de Universidades. 2024. Available online: https://www.universidades.gob.es/wp-content/uploads/Datosycifras2023-2024.pdf (accessed on 7 July 2025).
- Becker, R. Gender and survey participation: An event history analysis of the gender effects of survey participation in a probability-based multi-wave panel study with a sequential mixed-mode design. Methods Data Anal. J. Quant. Methods Surv. Methodol. (Mda) 2022, 16, 3–32. [Google Scholar] [CrossRef]
- Valentine, S.R.; Rittenburg, T.L. The ethical decision making of men and women executives in international business situations. J. Bus. Ethics 2007, 71, 125–134. [Google Scholar] [CrossRef]
- Rundle, K. Fuller’s Internal Morality of Law. Philos. Compass 2016, 11, 499–506. [Google Scholar] [CrossRef]
Moral Philosophy Theory | Definition |
---|---|
Moral Equity (ME) | Focuses on fairness, justice, and the equitable treatment of individuals, especially in the presence of social or structural disadvantages. Ethical actions should promote real equality of opportunity. |
Relativism (RE) | Holds that moral judgments depend on the social, cultural, or institutional context. An action is not inherently right or wrong but must be evaluated relative to the norms and expectations of the environment. |
Moral Egoism (EG) | Considers an action ethical if it maximizes personal benefit or self-interest. Moral worth is determined by how well an action serves the individual’s goals, well-being, or reputation. |
Utilitarianism (UT) | Judges actions based on their outcomes for the majority. An act is ethical if it generates the greatest good or well-being for the greatest number of people. |
Deontology (DE) | Emphasizes duty, rules, and moral obligations. An action is ethical if it aligns with established principles, agreements, or responsibilities, regardless of its consequences. |
Item | Respondents | Proportion |
---|---|---|
Sex | ||
Male | 43 | 28.48% |
Female | 108 | 71.52% |
Age | ||
≤20 years | 50 | 33.11% |
21 | 33 | 21.85% |
22 | 27 | 17.88% |
≥23 | 40 | 26.49% |
Nonanswered | 1 | 0.66% |
Perceived academic performance | ||
On the average or below | 107 | 70.86% |
Above the average | 44 | 29.14% |
Working status | ||
Full time job | 58 | 38.41% |
Other labor situations | 93 | 62.59% |
Scenario 1 | Scenario 2 | Scenario 3 | |||||||
---|---|---|---|---|---|---|---|---|---|
CA | CR | AVE | Mean | SD | Mean | SD | Mean | SD | |
Moral equity (ME) | 0.876 | 0.883 | 80.1% | ||||||
ME1 = Fair | 7.59 | 1.98 | 7.77 | 2.37 | 4.84 | 2.76 | |||
ME2 = Equal | 7.71 | 2.16 | 7.85 | 2.24 | 6.74 | 2.69 | |||
ME3 = Right | 7.04 | 2.01 | 7.5 | 2.49 | 4.81 | 2.92 | |||
Relativism (RE) | 0.900 | 0.909 | 84.1% | ||||||
RE1 = Acceptable to my peers | 7.83 | 1.97 | 7.8 | 2.35 | 6.12 | 2.86 | |||
RE2 = Acceptable in my environment | 7.62 | 1.95 | 7.43 | 2.43 | 5.63 | 2.89 | |||
RE3 = Acceptable to people whose opinion I respect | 6.33 | 2.58 | 6.96 | 2.72 | 4.3 | 3.08 | |||
Egoism (EG) | 0.799 | 0.810 | 84% | ||||||
EG1 = It will provide relevance and prestige | 8.05 | 1.97 | 7.74 | 2.28 | 6.81 | 2.71 | |||
EG2 = It is rewarding | 6.6 | 2.62 | 6.89 | 2.75 | 4.96 | 3.18 | |||
Utilitarianism (UT) | 0.855 | 0.855 | 87.3% | ||||||
UT1 = It is useful | 8.4 | 1.87 | 7.86 | 2.29 | 6.81 | 2.8 | |||
UT2 = Good cost–benefit balance | 7.29 | 2.07 | 7.4 | 2.43 | 5.99 | 2.88 | |||
Deontology (DE) | 0.918 | 0.919 | 92.5% | ||||||
DE1 = It respects an implicit contract with my environment/society | 6.17 | 2.45 | 6.74 | 2.52 | 4.52 | 3.1 | |||
DE2 = It aligns with what is expected of me as a student | 5.81 | 2.73 | 6.65 | 2.77 | 4.31 | 3.16 |
ANOVA | S2 vs. S1 | S3 vs. S1 | S3 vs. S2 | ||||||
---|---|---|---|---|---|---|---|---|---|
Items | Sndecor’s F | p-Value | η2 | MD | p-Value | MD | p-Value | MD | p-Value |
ME1 | 92.3 | <0.001 | 0.386 | 0.14 | 0.779 | −2.82 | <0.001 | −2.96 | <0.001 |
ME2 | 18.7 | <0.001 | 0.113 | 0.17 | 0.649 | −0.97 | <0.001 | −1.14 | <0.001 |
ME3 | 60.0 | <0.001 | 0.29 | 0.36 | 0.23 | −2.26 | <0.001 | −2.62 | <0.001 |
RE1 | 39.8 | <0.001 | 0.213 | 0.09 | 0.858 | −1.70 | <0.001 | −1.60 | <0.001 |
RE2 | 37.0 | <0.001 | 0.201 | 0.08 | 0.91 | −1.76 | <0.001 | −1.69 | <0.001 |
RE3 | 50.7 | <0.001 | 0.257 | 0.41 | 0.228 | −2.13 | <0.001 | −2.54 | <0.001 |
EG1 | 14.2 | <0.001 | 0.088 | 0.30 | 0.224 | −1.09 | <0.001 | −0.79 | 0.004 |
EG2 | 27.1 | <0.001 | 0.156 | 0.14 | 0.83 | −1.61 | <0.001 | −1.75 | <0.001 |
UT1 | 22.2 | <0.001 | 0.131 | 0.61 | 0.006 | −1.51 | <0.001 | −0.90 | 0.003 |
UT2 | 15.0 | <0.001 | 0.093 | 0.24 | 0.523 | −1.00 | <0.001 | −1.23 | <0.001 |
DE1 | 31.8 | <0.001 | 0.178 | 0.53 | 0.104 | −1.55 | <0.001 | −2.07 | <0.001 |
DE2 | 32.3 | <0.001 | 0.18 | 0.73 | 0.014 | −1.33 | <0.001 | −2.05 | <0.001 |
Descriptive Statistics | Results of MANOVA | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
By Sex | By Working Condition | Effect | ||||||||||||
Factor | Women | Men | No Full Time Work | Full Time Work | Sex | Work Condition | Sex × Work Condition | |||||||
M | SD | M | SD | M | SD | M | SD | PT | p-Value | PT | p-Value | PT | p-Value | |
Moral equity | 0.022 | 0.360 | 0.065 | 0.021 | 0.006 | 0.823 | ||||||||
ME1 | 7.44 | 2.02 | 7.98 | 1.82 | 7.61 | 1.91 | 7.57 | 2.1 | ||||||
ME2 | 7.55 | 2.15 | 8.12 | 2.14 | 8.01 | 1.87 | 7.22 | 2.49 | ||||||
ME3 | 6.86 | 2.01 | 7.49 | 1.98 | 7.03 | 1.98 | 7.05 | 2.09 | ||||||
Relativism | 0.037 | 0.138 | 0.120 | <0.001 | 0.007 | 0.808 | ||||||||
RE1 | 7.79 | 1.95 | 7.93 | 2.03 | 7.78 | 2.03 | 7.9 | 1.87 | ||||||
RE2 | 7.68 | 1.95 | 7.49 | 1.97 | 7.67 | 1.96 | 7.55 | 1.94 | ||||||
RE3 | 6.17 | 2.59 | 6.74 | 2.54 | 5.82 | 2.68 | 7.16 | 2.19 | ||||||
Egoism | 0.007 | 0.614 | 0.020 | 0.226 | 0.008 | 0.539 | ||||||||
EG1 | 8.02 | 1.98 | 8.12 | 1.97 | 8.23 | 1.85 | 7.76 | 2.13 | ||||||
EG2 | 6.47 | 2.62 | 6.91 | 2.64 | 6.61 | 2.57 | 6.57 | 2.73 | ||||||
Utilitarianism | 0.002 | 0.892 | 0.046 | 0.031 | 0.000 | 0.970 | ||||||||
UT1 | 8.38 | 1.86 | 8.47 | 1.93 | 8.72 | 1.45 | 7.9 | 2.33 | ||||||
UT2 | 7.31 | 2.05 | 7.26 | 2.16 | 7.52 | 2.01 | 6.93 | 2.13 | ||||||
Deontology | 0.029 | 0.115 | 0.010 | 0.488 | 0.005 | 0.706 | ||||||||
DE1 | 5.93 | 2.43 | 6.77 | 2.41 | 6.03 | 2.5 | 6.38 | 2.36 | ||||||
DE2 | 5.69 | 2.67 | 6.14 | 2.88 | 5.6 | 2.84 | 6.16 | 2.53 |
Descriptive Statistics | Results of MANOVA | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
By Sex | By Working Condition | Effect | ||||||||||||
Factor | Women | Men | No Full Time Work | Full Time Work | Sex | Work Condition | Sex × Work Condition | |||||||
M | SD | M | SD | M | SD | M | SD | PT | p-Value | PT | p-Value | PT | p-Value | |
Moral equity | 0.010 | 0.679 | 0.012 | 0.630 | 0.007 | 0.807 | ||||||||
ME1 | 7.69 | 2.48 | 7.98 | 2.1 | 7.71 | 2.53 | 7.88 | 2.1 | ||||||
ME2 | 7.72 | 2.38 | 8.19 | 1.83 | 7.95 | 2.32 | 7.71 | 2.13 | ||||||
ME3 | 7.44 | 2.5 | 7.65 | 2.5 | 7.46 | 2.54 | 7.55 | 2.43 | ||||||
Relativism | 0.005 | 0.877 | 0.029 | 0.230 | 0.013 | 0.608 | ||||||||
RE1 | 7.81 | 2.29 | 7.79 | 2.51 | 7.87 | 2.28 | 7.69 | 2.47 | ||||||
RE2 | 7.38 | 2.45 | 7.56 | 2.38 | 7.33 | 2.53 | 7.59 | 2.27 | ||||||
RE3 | 6.93 | 2.66 | 7.05 | 2.89 | 6.83 | 2.87 | 7.17 | 2.45 | ||||||
Egoism | 0.001 | 0.923 | 0.014 | 0.363 | 0.006 | 0.627 | ||||||||
EG1 | 7.69 | 2.29 | 7.86 | 2.27 | 7.91 | 2.15 | 7.47 | 2.47 | ||||||
EG2 | 6.84 | 2.63 | 7 | 3.06 | 7.14 | 2.7 | 6.48 | 2.79 | ||||||
Utilitarianism | 0.043 | 0.040 | 0.016 | 0.300 | 0.033 | 0.087 | ||||||||
UT1 | 7.92 | 2.16 | 7.72 | 2.62 | 8.09 | 2.19 | 7.5 | 2.42 | ||||||
UT2 | 7.23 | 2.41 | 7.84 | 2.46 | 7.6 | 2.36 | 7.09 | 2.52 | ||||||
Deontology | 0.016 | 0.316 | 0.022 | 0.195 | 0.002 | 0.847 | ||||||||
DE1 | 6.56 | 2.46 | 7.19 | 2.65 | 6.66 | 2.77 | 6.88 | 2.09 | ||||||
DE2 | 6.55 | 2.7 | 6.91 | 2.96 | 6.75 | 2.83 | 6.48 | 2.69 |
Descriptive Statistics | Results of MANOVA | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
By Sex | By Working Condition | Effect | ||||||||||||
Factor | Women | Men | No Full Time Work | Full Time Work | Sex | Work Condition | Sex × Work Condition | |||||||
M | SD | M | SD | M | SD | M | SD | PT | p-Value | PT | p-Value | PT | p-Value | |
Moral equity | 0.011 | 0.653 | 0.052 | 0.052 | 0.014 | 0.553 | ||||||||
ME1 | 4.9 | 2.71 | 4.7 | 2.92 | 4.49 | 2.81 | 5.4 | 2.62 | ||||||
ME2 | 6.66 | 2.68 | 6.93 | 2.76 | 6.8 | 2.84 | 6.64 | 2.46 | ||||||
ME3 | 4.79 | 2.81 | 4.86 | 3.2 | 4.42 | 3.02 | 5.43 | 2.66 | ||||||
Relativism | 0.005 | 0.864 | 0.109 | <0.001 | 0.018 | 0.453 | ||||||||
RE1 | 6.19 | 2.76 | 5.95 | 3.12 | 5.77 | 2.96 | 6.67 | 2.63 | ||||||
RE2 | 5.63 | 2.85 | 5.63 | 3.01 | 5.02 | 3.04 | 6.6 | 2.34 | ||||||
RE3 | 4.32 | 2.98 | 4.23 | 3.37 | 3.55 | 3.11 | 5.5 | 2.65 | ||||||
Egoism | 0.006 | 0.639 | 0.022 | 0.193 | 0.008 | 0.536 | ||||||||
EG1 | 6.69 | 2.7 | 7.09 | 2.77 | 6.66 | 2.86 | 7.05 | 2.47 | ||||||
EG2 | 4.94 | 3.05 | 5 | 3.52 | 4.59 | 3.34 | 5.55 | 2.82 | ||||||
Utilitarianism | 0.047 | 0.031 | 0.022 | 0.198 | 0.005 | 0.700 | ||||||||
UT1 | 6.86 | 2.83 | 6.67 | 2.76 | 6.68 | 2.98 | 7.02 | 2.49 | ||||||
UT2 | 5.79 | 2.93 | 6.49 | 2.71 | 5.69 | 3.06 | 6.47 | 2.51 | ||||||
Deontology | 0.019 | 0.244 | 0.094 | <0.001 | 0.003 | 0.792 | ||||||||
DE1 | 4.28 | 2.97 | 5.14 | 3.38 | 4.09 | 3.18 | 5.22 | 2.87 | ||||||
DE2 | 4.14 | 3 | 4.74 | 3.53 | 3.63 | 3.1 | 5.4 | 2.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Portabella, A.; Arias-Oliva, M.; Padilla-Castillo, G.; de Andrés-Sánchez, J. Passing with ChatGPT? Ethical Evaluations of Generative AI Use in Higher Education. Digital 2025, 5, 33. https://doi.org/10.3390/digital5030033
Pérez-Portabella A, Arias-Oliva M, Padilla-Castillo G, de Andrés-Sánchez J. Passing with ChatGPT? Ethical Evaluations of Generative AI Use in Higher Education. Digital. 2025; 5(3):33. https://doi.org/10.3390/digital5030033
Chicago/Turabian StylePérez-Portabella, Antonio, Mario Arias-Oliva, Graciela Padilla-Castillo, and Jorge de Andrés-Sánchez. 2025. "Passing with ChatGPT? Ethical Evaluations of Generative AI Use in Higher Education" Digital 5, no. 3: 33. https://doi.org/10.3390/digital5030033
APA StylePérez-Portabella, A., Arias-Oliva, M., Padilla-Castillo, G., & de Andrés-Sánchez, J. (2025). Passing with ChatGPT? Ethical Evaluations of Generative AI Use in Higher Education. Digital, 5(3), 33. https://doi.org/10.3390/digital5030033