Intelligence-Led Policing and the New Technologies Adopted by the Hellenic Police
Abstract
:1. Introduction
2. Research Design
- Prolonged engagement—invest sufficient time to understand the context of each source [19];
- Persistent observation—dig further into each source, beyond an initial superficial reading [19];
- Broad representation and triangulation—collect a variety of sources of data to confirm the authenticity of each source and create a collected data sample that will be wide enough to ensure that formed conclusions are remarkable [19].
- Locating data;
- Evaluating relevance of the data;
- Assessing the credibility of the data;
- Categorizing and analyzing the data.
3. ILP and Technology
3.1. Defining ILP
3.2. LEA and Technology
3.2.1. Artificial Intelligence
3.2.2. Facial Recognition Software
3.2.3. Biometrics
3.2.4. Robots
3.2.5. ShotSpotter
3.2.6. Thermal Imaging
3.2.7. Automatic License (or Number) Plate Recognition (ALPR or ANPR)
3.2.8. CCTV Systems
3.2.9. Enhanced Body-Worn Cameras
3.2.10. Drones
4. EU Initiatives
5. ILP and Technology in Greece
5.1. The Role of DIDAP
5.2. Drones and the COVID-19 Pandemic
5.3. Body-Worn Cameras and CCTV
5.4. Smart Policing—Facial Recognition
5.5. Research Programs
5.5.1. PREVISION
5.5.2. DARLINE Deep AR Law Enforcement Ecosystem
- AR glasses that will provide real-time information analysis and intelligence provision through capabilities such as facial recognition [31];
- Personalized Heads-Up Display (HUD) that will monitor the users’ physiological state and improve situational awareness [75];
- Devices that will enable police officers to see through concrete walls of buildings, the locations of people [32];
- A 5G radio network for the DARLENE AR-based law enforcement ecosystem [32].
5.5.3. ROXANNE
5.5.4. AIDA
5.5.5. SHIELD
5.5.6. CREST
5.5.7. TRESSPASS (Robust Risk Based Screening and Alert System for Passengers and Luggage)
5.5.8. BORDERUAS
5.5.9. FOLDOUT
5.5.10. EWISA (Early Warning for Increased Situational Awareness)
6. Discussion
6.1. Benefits
6.2. Risks
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burcher, M.; Whelan, C. Intelligence-Led Policing in Practice: Reflections From Intelligence Analysts. Police Q. 2019, 22, 139–160. [Google Scholar] [CrossRef]
- Ratcliffe, J. Intelligence-Led Policing; Willan Publishing: Cullompton, UK, 2008. [Google Scholar]
- Maguire, M. Policing by risks and targets: Some dimensions and implications of intelligence-led crime control. Polic. Soc. Int. J. 2000, 9, 316. [Google Scholar] [CrossRef]
- Flanagin, A. The impact of contemporary communication and information technologies on police organizations. In Law Enforcement, Communication and Community; John Benjamins Publishing: Amsterdam, The Netherlands, 2002; pp. 85–106. ISBN 1588112551/9781588112552. [Google Scholar]
- Hoover, J.E. Science, Crime Detection and the Federal Bureau of Investigation. Stud. Lawyer J. 1961, 6, 14–23. [Google Scholar]
- Newburn, T.; Hayman, S. Policing, Surveillance and Social Control; Routledge: New York, NY, USA, 2012. [Google Scholar]
- Peterson, M. Intelligence-Led Policing: The New Intelligence Architecture; Bureau of Justice Assistance: Washington, DC, USA, 2005.
- Dignum, V. Ethics in artificial intelligence: Introduction to the special issue. Ethics Inf. Technol. 2018, 20, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Islam, Y.; Zahidul, A. Data Mining and Privacy of Social Network Sites’ Users: Implications of the Data Mining Problem. Sci. Eng. Ethics 2015, 21, 941–966. [Google Scholar] [CrossRef]
- LeCates, R. Intelligence-led Policing: Changing the Face of Crime Precention. In Police Chief Magazine; 2018; Available online: https://www.policechiefmagazine.org/changing-the-face-crime-prevention/ (accessed on 27 November 2021).
- Seele, P. Predictive Sustainability Control: A review assessing the potential to transfer big data driven ‘predictive policing’ to corporate sustainability management. J. Clean. Prod. 2017, 153, 673–686. [Google Scholar] [CrossRef]
- Spiegel, J. The Ethics of Virtual Reality Technology: Social Hazards and Public Policy Recommendations. Sci. Eng. Ethics 2018, 24, 1537–1550. [Google Scholar] [CrossRef]
- Wessel, M.; Helmer, N. A Crisis of Ethics in Technology Innovation. MIT Sloan Manag. Rev. 2020, 61, 71–76. [Google Scholar]
- Couderta, F.; Butin, D.; Le Métayer, D. Body-worn cameras for police accountability: Opportunities and risks. Comput. Law Secur. Rev. 2015, 31, 749–762. [Google Scholar] [CrossRef] [Green Version]
- Bîrzu, B. Prevention, Detection, Investigation and Prosecution of Terrorist Offenses and Other Serious Crimes by Using Passenger Name Record (PNR) Data. Critical Opinions. Delege Ferenda Proposals. Perspect. Bus. Law J. 2016, 5, 195–206. [Google Scholar]
- Wen, L.; Du, D.; Zhu, P.; Hu, Q.; Wang, Q.; Bo, L.; Lyu, S. Detection, Tracking, and Counting Meets Drones in Crowds: A Benchmark. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 7812–7821. [Google Scholar]
- Taskiran, M.; Kahraman, N.; Erdem, C.E. Face recognition: Past, present and future (a review). Digit. Signal Process. 2020, 106, 102809. [Google Scholar] [CrossRef]
- Rezende, I.N. Facial recognition in police hands: Assessing the ‘Clearview case’ from a European perspective. New J. Eur. Crim. Law 2020, 11, 375–389. [Google Scholar] [CrossRef]
- O’Leary, Z. The Essential Guide to Doing Your Research Project; Sage Publications: London, UK, 2010. [Google Scholar]
- Vartanian, T.P. Secondary Data Analysis; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Robson, C.; McCartan, K. Real World Research, 3rd ed.; Wiley: Chichester, UK, 2011. [Google Scholar]
- Reiner, R. The Politics of the Police; Oxford University Press: Oxford, UK, 2000. [Google Scholar]
- Hostli, O.R. Content Analysis. In The Handbook of Social Psychology; Lindzey, G., Aronson, E., Eds.; Amerind Publishing Co.: New Delhi, India, 1968; pp. 596–692. [Google Scholar]
- Elo, S.; Kääriäinen, M.; Kanste, O.; Utriainen, K.; Pölkki, T.; Kyngäs, H. Qualitative Content Analysis: A Focus on Trustworthiness. Sage Open 2014, 4, 2158244014522633. [Google Scholar] [CrossRef]
- Hsief, H.-F.; Shannon, S.E. Three Approaches to Qualitative Content Analysis. Qual. Health Res. 2005, 15, 1277–1288. [Google Scholar]
- Manning, P. Information Technologies and the Police. Crime Justice 1992, 15, 349–398. [Google Scholar] [CrossRef]
- Carter, D. Law Enforcement Intelligence: A Guide for State, Local, and Tribal Law Enforcement Agencies; Michigan State University: East Lansing, MI, USA, 2009. [Google Scholar]
- Innes, M.; Graef, R. ‘The Anvil’ in the Information Age: Police, Politics and Media. In Policing: Politics, Culture and Control; Bloomsbury Publishing: London, UK, 2012; pp. 155–172. ISBN 184731967X/9781847319678. [Google Scholar]
- Sheptycki, J. Transnational Policing. Can. Rev. Polic. Res. 2005, 1, 1–7. [Google Scholar]
- OSCE. Project Report: Intelligence-Led Policing (ILP) 2017–2020; OSCE: Vienna, Austria, 2021. [Google Scholar]
- Nunn, S. Police technology in cities: Changes and challenges. Technol. Soc. 2001, 23, 11–27. [Google Scholar] [CrossRef]
- Custers, B. Technology in policing: Experiences, obstacles and police needs. Comput. Law Secur. Rev. 2012, 28, 62–68. [Google Scholar] [CrossRef]
- Wen, L.; Du, D.; Zhu, P.; Hu, Q.; Wang, Q.; Bo, L.; Lyu, S. Drone-based Joint Density Map Estimation, Localization and Tracking with Space-Time Multi-Scale Attention Network. arXiv 2019, arXiv:1912.01811. [Google Scholar]
- Schultz, P. Future is Here: Technology in Police Departments. Police Chief 2008, 75, 20–22,24,25. [Google Scholar]
- Hayrapetyan, N.; Hakobyan, R.; Poghosyan, A.; Gabrielyan, V. Border Surveillance Using UAVs with Thermal Camera. In Meeting Security Challenges Through Data Analytics and Decision Support; Shahbazian, E., Rogova, G., Eds.; IOS Press: Amsterdam, The Netherlands, 2016; pp. 219–226. ISBN 1614997152/9781614997153. [Google Scholar]
- Akula, A.; Ghosh, R.; Sardana, H.K. Thermal Imaging And Its Application In Defence Systems. In The AIP Conference Proceedings 1391; Predeep, P., Thakur, M., Ravi Varma, M.K., Eds.; American Institute of Physics: Kerala, India, 2011; pp. 333–335. [Google Scholar]
- Dumpert, D.; Dirksen, S. Networked thermal imaging and intelligent video technology for border security applications. In Proceedings of the SPIE 6203, Optics and Photonics in Global Homeland Security II, Orlando (Kissimmee), FL, USA, 17–21 April 2006; Volume 6203. [Google Scholar]
- Dijstelbloem, H. Borders as Infrastructure: The Technopolitics of Border Control; MIT Press: Cambridge, UK, 2021; ISBN 0262366371/9780262366373. [Google Scholar]
- Kirby, S.; Turner, G. Think Crime, Think Car, Think ANPR: The Use of ANPR in Major Crime Investigations. J. Homicide Major Incid. Investig. 2007, 3, 35–42. [Google Scholar]
- Joh, E. Policing Police Robots. UCLA Law Rev. Discl. 2016, 64, 516. [Google Scholar]
- Szocik, K.; Abylkasymova, R. Ethical Issues in Police Robots. The Case of Crowd Control Robots in a Pandemic. J. Appl. Secur. Res. 2021, 1–16. [Google Scholar] [CrossRef]
- McGuire, M.R. The laughing policebot: Automation and the end of policing. Polic. Soc. 2021, 31, 20–36. [Google Scholar] [CrossRef]
- Tanner, S.; Meyer, M. Police work and new ‘security devices’: A tale from the beat. Secur. Dialogue 2015, 46, 384–400. [Google Scholar] [CrossRef]
- Tombul, F.; Cakar, B. Police use of technology to fight against crime. Eur. Sci. J. 2015, 11, 286–296. [Google Scholar]
- Willis, J. Police Technology. In The Handbook of Social Control; Deflem, M., Ed.; Wiley Blackwell: Hoboken, NJ, USA, 2018. [Google Scholar]
- Haskins, C.; Mac, R.; McDonald, L. Clearview AI Wants to Sell Its Facial Recognition Software to Authoritarian Regimes around the World. Available online: https://www.buzzfeednews.com/article/carolinehaskins1/clearview-ai-facial-recognition-authoritarian-regimes-22 (accessed on 15 June 2021).
- Dumbrava, C. Artificial intelligence at EU Borders; European Parliamentary Research Service: Brussels, Belgium, 2021. [Google Scholar]
- Galbally Herrero, J.; Ferrara, P.; Haraksim, R.; Psyllos, A.; Beslay, L. Study on Face Identification Technology for Its Implementation in the Schengen Information System; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Peeters, B. Facial Recognition at Brussels Airport: Face down in the Mud; CiTiP Blog: Leuven, Belgium, 2020. [Google Scholar]
- Nunn, S. Police Information Technology: Assessing the Effects of Computerization on Urban Police Functions. Public Adm. Rev. 2001, 61, 221–234. [Google Scholar] [CrossRef]
- Carr, J.; Doleac, J.L. The Geography, Incidence, and Underreporting of Gun Violence: New Evidence Using Shotspotter Data. SSRN Electron. J. 2016, 17. [Google Scholar] [CrossRef] [Green Version]
- Doucette, M.; Green, C.; Dineen, J.N.; Shapiro, D.; Raissian, K. Impact of ShotSpotter Technology on Firearm Homicides and Arrests Among Large Metropolitan Counties: A Longitudinal Analysis, 1999–2016. J. Urban Health 2021, 98, 609–621. [Google Scholar] [CrossRef]
- Lambert, N.; Clochard, O. Mobile and Fatal: The EU Borders. In Borderities and the Politics of Contemporary Mobile Borders; Palgrave Macmillan: London, UK, 2015; pp. 119–137. [Google Scholar]
- Goold, B.J. CCTV and Policing: Public Area Surveillance and Police Practices in Britain; Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Papadimitrakopoulos, G. Evidence-based policing (EBP) as a strategy for accomplishing police goals more effectively, the challenges EBP faces, and the prospects for it being adopted widely in Greece. In Europe in Crisis: Crime, Criminal Justice, and the Way Forward; Ant. N. Sakkoulas Publishers L.P.: Athens, Greece, 2017; pp. 881–899. [Google Scholar]
- Erpenbach, M. Whole World is Watching: Camera Phones Put Law Enforcement Under Surveillance. Law Enforc. Technol. 2008, 35, 40–44. [Google Scholar]
- Williams, C. Police Surveillance and the Emergence of CCTV in the 1960s. Crime Prev. Community Saf. 2003, 5, 27–37. [Google Scholar] [CrossRef]
- Farrar, T. Self-Awareness to Being Watched and Socially-Desirable Behavior: A Field Experiment on the Effect of Body-Worn Cameras on Police Use-of-Force; National Policing Institute: Arlington, VA, USA, 2013. [Google Scholar]
- Pilant, L. Spotlight on In-Car Video Systems. Police Chief 1995, 62, 30–31. [Google Scholar]
- Europol. How COVID-19-Related Crime Infected Europe during 2020; Europol: Den Haag, The Netherlands, 2020. [Google Scholar]
- Knight, A.; Oriala, T. COVID-19, George Floyd and Human Security. Afr. Secur. 2020, 13, 111–115. [Google Scholar] [CrossRef]
- Sousa, W.; Sakiyama, M.; Miethe, T. Inconsistencies in Public Opinion of Body-Worn Cameras on Police: Transparency, Trust, and Improved Police–Citizen Relationships. Polic. A J. Policy Pract. 2018, 12, 100–108. [Google Scholar] [CrossRef]
- Renda, A.; Arroyo, J.; Fanni, R.; Laurer, M.; Sipiczki, A.; Yeung, T.; Maridis, G.; Fernandes, M.; Endrodi, G.; Milio, S.; et al. Study to Support an Impact Assessment of Regulatory Requirements for Artificial Intelligence in Europe; European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Deloitte. Opportunities and Challenges for the Use of Artificial Intelligence in Border Control, Migration and Security; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Frontex. Best Practice Operational Guidelines for Automated Border Control (ABC) Systems; Frontex: Warsaw, Poland, 2015. [Google Scholar]
- Ecorys. Feasibility Study on a Forecasting and Early Warning Tool for Migration Based on Artificial Intelligence Technology; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Braga, A.; Papachristos, A.; Hureau, D.M. The Effects of Hot Spots Policing on Crime: An Updated Systematic Review and Meta-Analysis. Justice Q. 2014, 31, 633–663. [Google Scholar] [CrossRef]
- Papadopoulos, V.; Marketakis, P.; Alexopoulos, P. National Programme (ISF); Ministry of Interior: Athens, Greece, 2021. [Google Scholar]
- Lozada, B. The Emerging Technology of Predictive Analytics: Implications for Homeland Security. Inf. Secur. J. A Glob. Perspect. 2014, 23, 118–122. [Google Scholar] [CrossRef]
- FRA. Coronavirus Pandemic in the EU—Fundamental Rights Implications; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Goold, B.J. Public Area Surveillance and Police Work: The Impact of CCTV on Police Behaviour and Autonomy. J. Surveill. Soc. 2003, 1, 191–203. [Google Scholar] [CrossRef]
- Smart Policing. Available online: https://innovation.gov.gr/en/innovationscaten/smart-policing/ (accessed on 4 November 2021).
- FRA. Facial Recognition Technology: Fundamental Rights Considerations in the Context of Law Enforcement; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Gates, K. Our Biometric Future: Facial Recognition Technology and the Culture of Surveillance; New York University Press: New York, NY, USA, 2011. [Google Scholar]
- Barrett, L.F.; Adolphs, R.; Marsella, S.; Martinez, A.M.; Pollak, S.D. Emotional Expressions Reconsidered: Challenges to Inferring Emotion From Human Facial Movements. Psychol. Sci. Public Interes. 2019, 20, 1–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Commission. Horizon Europe Strategic Plan (2021–2024); European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Pawlicka, A.; Choraś, M.; Kozik, R.; Pawlicki, M. First broad and systematic horizon scanning campaign and study to detect societal and ethical dilemmas and emerging issues spanning over cybersecurity solutions. Pers. Ubiquitous Comput. 2021. [Google Scholar] [CrossRef]
- Pawlicki, M.; Choraś, M.; Kozik, R.; Hołubowicz, W. Missing and Incomplete Data Handling in Cybersecurity Applications. In Proceedings of the Asian Conference on Intelligent Information and Database Systems, Phuket, Thailand, 7–10 April 2021; Nguyen, N.T., Chittayasothorn, S., Niyato, D., Trawiński, B., Eds.; Springer: Cham, Switzerland, 2021; pp. 413–426. [Google Scholar]
- Gerostathopoulos, I.; Fernández, D.M.; Zarras, A. Can Today’s Machine Learning Pass Image-Based Turing Tests? In Proceedings of the International Conference on Information Security, Paris, France, 11–12 December 2019; Lin, Z., Papamanthou, C., Polychronakis, M., Eds.; Springer: Cham, Switzerland, 2019; pp. 129–148. [Google Scholar]
- Demertzis, K.; Tsiknas, K. Darknet Traffic Big-Data Analysis and Network Management for Real-Time Automating of the Malicious Intent Detection Process by a Weight Agnostic Neural Networks Framework. Electronics 2021, 10, 781. [Google Scholar] [CrossRef]
- Iosu, A. Improving Situational Awareness with DARLENE Augmented Reality Tools to Combat Crime and Terrorism. Available online: https://www.darleneproject.eu/improving-situational-awareness-with-darlene-augmented-reality-tools-to-combat-crime-and-terrorism/ (accessed on 8 November 2021).
- Duszynska-Trojanowska, A. The Intelligence Cycle and the ROXANNE Platform. Available online: https://www.roxanne-euproject.org/news/blog/the-intelligence-cycle-and-the-roxanne-platform (accessed on 8 November 2021).
- Shivam, G. Social Network Analysis for Criminology in ROXANNE. Available online: https://www.roxanne-euproject.org/news/blog/social-network-analysis-for-criminology-in-roxanne (accessed on 8 November 2021).
- Gonzales Fuster, G. Artificial Intelligence and Law Enforcement—Impact on Fundamental Rights; European Parliament: Brussels, Belgium, 2020. [Google Scholar]
- Andreadis, S.; Antzoulatos, G.; Mavropoulos, T.; Giannakeris, P.; Tzionis, G.; Pantelidis, N.; Ioannidis, K.; Karakostas, A.; Gialampoukidis, I.; Vrochidis, S.; et al. A social media analytics platform visualising the spread of COVID-19 in Italy via exploitation of automatically geotagged tweets. Online Soc. Netw. Media 2021, 23, 100134. [Google Scholar] [CrossRef]
- Gkountakos, K.; Touska, D.; Ioannidis, K.; Tsikrika, T.; Vrochidis, S.; Kompatsiaris, I. Spatio-temporal activity detection and recognition in untrimmed surveillance videos. In Proceedings of the ACM International Conference on Multimedia Retrieval, Taipei, Taiwan, 21–24 August 2021. [Google Scholar]
- Altobelli, C.; Johnson, E.; Forgó, N.; Napieralski, A. To Scrape or Not to Scrape? The Lawfulness of Social Media Crawling under the GDPR. In Deep Diving into Data Protection; Herveg, J., Ed.; Larcier: Namur, Belgium, 2021. [Google Scholar]
- Thanos, K.G.; Kyriazanos, D.; Thomopoulos, S. TRESSPASS risk and behaviour data fusion and analysis for border crossing points security. In Proceedings of the Mediterranean Security Event (MSE) 2019, Fodele Crete, Greece, 29–31 October 2019; Springer: Berlin/Heidelberg, Germany, 2020; pp. 29–31. [Google Scholar]
- Vora, S.; Shahriari, M.; Thomopoulos, S.; Fischer, L.; Hoch, T. A scoring algorithm for abnormal traveller behaviour in border crossing areas. In Proceedings of the Counterterrorism, Crime Fighting, Forensics, and Surveillance Technologies IV, Online, 21–25 September 2020; Volume 11542. [Google Scholar]
- Thanos, K.G.; Kyriazanos, D.; Thomopoulos, S. Fairness-by-design dempster-shafer reasoning system. In Proceedings of the Signal Processing, Sensor/Information Fusion, and Target Recognition XXX, Online, 12–16 April 2021; Volume 11756. [Google Scholar]
- Israel, T. Facial Recognition at a Crossroads: Transformation at Our Borders & Beyond; CIPPIC: Ottawa, Canada, 2020. [Google Scholar]
- Batabyal, A.A.; Kourtit, K.; Nijkamp, P. Technological Forecasting & Social Change A political-economy analysis of the provision of urban anti-crime technologies in a model with three cities. Technol. Forecast. Soc. Chang. 2020, 160, 120211. [Google Scholar] [CrossRef]
- Kuskonmaz, E.M.; Guild, E. COVID-19: A New Struggle over Privacy, Data Protection and Human Rights? European Law Blog: Trier, Germany, 2020. [Google Scholar]
- Flynn, M.J. Study on Technical Requirements for Data Spaces in Law Enforcement; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Dintino, J.; Martens, F. Police Intelligence Systems in Crime Control: Maintaining a Delicate Balance in a Liberal Democracy; Charles C. Thomas: Springfield, IL, USA, 1983. [Google Scholar]
- Drozdowski, P.; Rathgeb, C.; Dantcheva, A.; Damer, N.; Busch, C. Demographic Bias in Biometrics: A Survey on an Emerging Challenge. IEEE Trans. Technol. Soc. 2020, 1, 89–103. [Google Scholar] [CrossRef]
- Marx, G. Windows into the Soul: Surveillance and Society in an Age of High Technology; University of Chicago Press: Chicago, IL, USA, 2016. [Google Scholar]
- Marx, G. Undercover: Police Surveillance in America; University of California Press: Berkeley, CA, USA, 1988. [Google Scholar]
- Rule, J. Private Lives and Public Surveillance: Social Control in the Computer Age; Schocken Books: New York, NY, USA, 1974. [Google Scholar]
- Brayne, S. Big Data Surveillance The Case of Policing. Am. Sociol. Rev. 2017, 82, 977–1008. [Google Scholar] [CrossRef] [Green Version]
- Ball, K.; Webster, F. The Intensification of Surveillance: Crime, Terrorism & Warfare in the Information Age; Pluto Press: London, UK, 2003. [Google Scholar]
- Giddens, A. The Consequences of Modernity; Stanford University Press: Stanford, CA, USA, 1990. [Google Scholar]
- Lyon, D. The Electronic Eye: The Rise of Surveillance Society; University of Minesota Press: Minneapolis, MN, USA, 1994. [Google Scholar]
- Lyon, D. Surveillance as Social Sorting: Privacy, Risk, and Digital Discrimination; Routledge: New York, NY, USA, 2003. [Google Scholar]
- Rogers, C.; Scally, E.J. Police use of technology: Insights from the literature. Int. J. Emerg. Serv. 2018, 7, 100–110. [Google Scholar] [CrossRef]
- Eu-LISA. Artificial Intelligencein the Operational Management of Large-Scale IT Systems; Eu-LISA: Tallinn, Estonia, 2020. [Google Scholar]
- Europa.eu Civil Society Initiative for a Ban on Biometric Mass Surveillance Practices. Available online: https://europa.eu/citizens-initiative/initiatives/details/2021/000001_en (accessed on 14 July 2021).
- Demertzis, K.; Taketzis, D.; Tsiotas, D.; Magafas, L.; Iliadis, L.; Kikiras, P. Pandemic Analytics by Advanced Machine Learning for Improved Decision Making of COVID-19 Crisis. Processes 2021, 9, 1267. [Google Scholar] [CrossRef]
- Demertzis, K.; Iliadis, L.; Pimenidis, E. Geo-AI to aid disaster response by memory-augmented deep reservoir computing. Integr. Comput. Aided Eng. 2021, 28, 383–398. [Google Scholar] [CrossRef]
- Demertzis, K.; Iliadis, L.; Anezakis, V.-D. An innovative soft computing system for smart energy grids cybersecurity. Adv. Build. Energy Res. 2018, 12, 3–24. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gkougkoudis, G.; Pissanidis, D.; Demertzis, K. Intelligence-Led Policing and the New Technologies Adopted by the Hellenic Police. Digital 2022, 2, 143-163. https://doi.org/10.3390/digital2020009
Gkougkoudis G, Pissanidis D, Demertzis K. Intelligence-Led Policing and the New Technologies Adopted by the Hellenic Police. Digital. 2022; 2(2):143-163. https://doi.org/10.3390/digital2020009
Chicago/Turabian StyleGkougkoudis, Georgios, Dimitrios Pissanidis, and Konstantinos Demertzis. 2022. "Intelligence-Led Policing and the New Technologies Adopted by the Hellenic Police" Digital 2, no. 2: 143-163. https://doi.org/10.3390/digital2020009
APA StyleGkougkoudis, G., Pissanidis, D., & Demertzis, K. (2022). Intelligence-Led Policing and the New Technologies Adopted by the Hellenic Police. Digital, 2(2), 143-163. https://doi.org/10.3390/digital2020009