In Vitro Testing of Botanical Extracts as Safe and Effective Alternatives for Oral Care: A Two-Pronged Model Integrating Pathogen Control and Host Compatibility
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of Botanical Extracts
2.2. Bacterial Strains and Culture Conditions
2.3. Antibacterial Cell Assays
2.3.1. Preparation of Artificial Saliva and Determination of MIC and MBIC with Colony Regrowth Verification
2.3.2. Determination of MBEC
2.4. Cell Biocompatibility Assays
2.4.1. Viability Assays for Probiotic Cells
2.4.2. Cytotoxicity Assays for Oral Mammalian Cells
2.5. Machine-Guided Quantitative Microscopy Analyses
2.5.1. Scanning Electron Microscopy (SEM) Analyses of Biofilms on Hydroxyapatite Discs
2.5.2. Confocal Laser Scanning Microscopy (CLSM) and Biofilm Fluorescence Analyses
3. Results
3.1. Antibacterial Activity
3.2. Biocompatibility Evaluation
3.2.1. Effects on Commensal Bacteria
3.2.2. Cytotoxicity Toward Oral Cell Lines
3.3. Quantitative Microscopy Analyses
3.3.1. SEM Imaging and Quantification of Biofilms
3.3.2. CLSM Imaging and Fluorescence Analyses of Biofilm Architecture
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hascoët, E.; Blanchard, F.; Blin-Wakkach, C.; Guicheux, J.; Lesclous, P.; Cloitre, A. New insights into inflammatory osteoclast precursors as therapeutic targets for rheumatoid arthritis and periodontitis. Bone Res. 2023, 11, 26. [Google Scholar] [CrossRef]
- Scannapieco, F.A.; Cantos, A. Oral inflammation and infection, and chronic medical diseases: Implications for the elderly. Periodontol. 2000 2016, 72, 153–175. [Google Scholar] [CrossRef]
- Tomás, I.; Diz, P.; Tobías, A.; Scully, C.; Donos, N. Periodontal health status and bacteraemia from daily oral activities: Systematic review/meta-analysis. J. Clin. Periodontol. 2012, 39, 213–228. [Google Scholar] [CrossRef]
- Thomas, C.; Minty, M.; Vinel, A.; Canceill, T.; Loubières, P.; Burcelin, R.; Kaddech, M.; Blasco-Baque, V.; Laurencin-Dalicieux, S. Oral microbiota: A major player in the diagnosis of systemic diseases. Diagnostics 2021, 11, 1376. [Google Scholar] [CrossRef]
- Velsko, I.M.; Fellows Yates, J.A.; Aron, F.; Hagan, R.W.; Frantz, L.A.F.; Loe, L.; Rodriguez Martinez, J.B.; Chaves, E.; Gosden, C.; Larson, G.; et al. Microbial differences between dental plaque and historic dental calculus are related to oral biofilm maturation stage. Microbiome 2019, 7, 102. [Google Scholar] [CrossRef]
- Jenkinson, H.F. Beyond the oral microbiome. Environ. Microbiol. 2011, 13, 3077–3087. [Google Scholar] [CrossRef]
- Luo, S.-C.; Wei, S.-M.; Luo, X.-T.; Yang, Q.-Q.; Wong, K.-H.; Cheung, P.C.; Zhang, B. How probiotics, prebiotics, synbiotics, and postbiotics prevent dental caries: An oral microbiota perspective. NPJ Biofilms Microbiomes 2024, 10, 14. [Google Scholar] [CrossRef]
- Liu, S.; Sun, Y.; Liu, Y.; Hu, F.; Xu, L.; Zheng, Q.; Wang, Q.; Zeng, G.; Zhang, K. Genomic and phenotypic characterization of Streptococcus mutans isolates suggests key gene clusters in regulating its interaction with Streptococcus gordonii. Front. Microbiol. 2022, 13, 945108. [Google Scholar] [CrossRef]
- Lee, S.-H.; Kim, Y.-J. A comparative study of the effect of probiotics on a cariogenic biofilm model for preventing dental caries. Arch. Microbiol. 2014, 196, 601–609. [Google Scholar] [CrossRef]
- Loesche, W.J. Role of Streptococcus mutans in human dental decay. Microbiol. Rev. 1986, 50, 353–380. [Google Scholar] [CrossRef]
- Sakanaka, A.; Kuboniwa, M.; Shimma, S.; Alghamdi, S.A.; Mayumi, S.; Lamont, R.J.; Fukusaki, A.; Amano, A. Fusobacterium nucleatum metabolically integrates commensals and pathogens in oral biofilms. mSystems 2022, 7, e0017022. [Google Scholar] [CrossRef]
- Yamaguchi-Kuroda, Y.; Kikuchi, Y.; Kokubu, E.; Ishihara, K. Porphyromonas gingivalis diffusible signaling molecules enhance Fusobacterium nucleatum biofilm formation via gene expression modulation. J. Oral Microbiol. 2023, 15, 2165001. [Google Scholar] [CrossRef]
- Sun, J.; Tang, Q.; Yu, S.; Xie, M.; Zheng, W.; Chen, G.; Yin, Y.; Huang, X.; Wo, K.; Zhang, J.; et al. Fusobacterium nucleatum facilitates oral squamous cell carcinoma progression via GLUT1-driven lactate production. eBioMedicine 2023, 88, 104444. [Google Scholar] [CrossRef]
- Shahoumi, L.A.; Saleh, M.H.A.; Meghil, M.M. Virulence factors of the periodontal pathogens: Tools to evade the host immune response and promote carcinogenesis. Microorganisms 2023, 11, 115. [Google Scholar] [CrossRef] [PubMed]
- Baty, J.J.; Stoner, S.N.; Scoffield, J.A. Oral commensal streptococci: Gatekeepers of the oral cavity. J. Bacteriol. 2022, 204, e0025722. [Google Scholar] [CrossRef]
- Socransky, S.S.; Smith, C.; Haffajee, A.D. Subgingival microbial profiles in refractory periodontal disease. J. Clin. Periodontol. 2002, 29, 260–268. [Google Scholar] [CrossRef]
- Cheng, X.; Redanz, S.; Treerat, P.; Qin, H.; Choi, D.; Zhou, X.; Xu, X.; Merritt, J.; Kreth, J. Magnesium-dependent promotion of H2O2 production increases ecological competitiveness of oral commensal streptococci. J. Dent. Res. 2020, 99, 847–854. [Google Scholar] [CrossRef]
- Presland, R.B.; Jurevic, R.J. Making sense of the epithelial barrier: What molecular biology and genetics tell us about the functions of oral mucosal and epidermal tissues. J. Dent. Educ. 2002, 66, 564–574. [Google Scholar] [CrossRef]
- Hosokawa, I.; Hosokawa, Y.; Ozaki, K.; Nakae, H.; Matsuo, T. Proinflammatory effects of muramyldipeptide on human gingival fibroblasts. J. Periodont. Res. 2010, 45, 193–199. [Google Scholar] [CrossRef]
- Fiorillo, L.; Cervino, G.; Herford, A.S.; Laino, L.; Cicciù, M. Stannous fluoride effects on enamel: A systematic review. Biomimetics 2020, 5, 41. [Google Scholar] [CrossRef]
- Mao, X.; Auer, D.L.; Buchalla, W.; Hiller, K.-A.; Maisch, T.; Hellwig, E.; Al-Ahmad, A.; Cielplik, F. Cetylpyridinium chloride: Mechanism of action, antimicrobial efficacy in biofilms, and potential risks of resistance. Antimicrob. Agents Chemother. 2020, 64, e00576-20. [Google Scholar] [CrossRef]
- Paul, S.; Pan, S.; Mukherjee, A.; De, P. Nitric oxide releasing delivery platforms: Design, detection, biomedical applications, and future possibilities. Mol. Pharm. 2021, 18, 3181–3205. [Google Scholar] [CrossRef]
- Dietz, B.M.; Hajirahimkhan, A.; Dunlap, T.L.; Bolton, J.L. Botanicals and their bioactive phytochemicals for women’s health. Pharmacol. Rev. 2016, 68, 1026–1073. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Dell’agli, M.; Badea, M.; Dima, L.; Colombo, E.; Sangiovannia, E. Plant food supplements with anti-inflammatory properties: A systematic review (II). Crit. Rev. Food Sci. Nutr. 2013, 53, 507–516. [Google Scholar] [CrossRef]
- Brendler, T.; Al-Harrasi, A.; Bauer, R.; Gafner, S.; Hardy, M.L.; Heinrich, M.; Hosseinzadeh, H.; Izzo, A.A.; Michaelis, M.; Nassari-Asl, M.; et al. Botanical drugs and supplements affecting the immune response in the time of COVID-19: Implications for research and clinical practice. Phytother. Res. 2021, 35, 3013–3031. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical insecticides in the twenty-first century—Fulfilling their promise? Annu. Rev. Entomol. 2020, 65, 233–249. [Google Scholar] [CrossRef]
- Nordin, A.; Bin Saim, A.; Ramli, R.; Abdul Hamid, A.; Wahida Mohd Nasri, N.; Bt Hj Idrus, R. Miswak and oral health: An evidence-based review. Saudi J. Biol. Sci. 2020, 27, 1801–1810. [Google Scholar] [CrossRef]
- Heyman, L.; Houri-Haddad, Y.; Heyman, S.N.; Ginsburg, I.; Gleitman, Y.; Feuerstein, O. Combined antioxidant effects of Neem extract, bacteria, red blood cells and lysozyme: Possible relation to periodontal disease. BMC Complement. Altern. Med. 2017, 17, 399. [Google Scholar] [CrossRef]
- Aumeeruddy, M.Z.; Zengin, G.; Mahomoodally, M.F. A review of the traditional and modern uses of Salvadora persica L. (Miswak): Toothbrush tree of Prophet Muhammad. J. Ethnopharmacol. 2018, 213, 409–444. [Google Scholar] [CrossRef]
- Vitrac, X.; Vitrac, C.; Brunel, M.; Costa, J.; Muselli, A. Particular Extract from Perfume Plants, Aromatic Plants and Medicinal Plants, Method for Obtaining Said Extract, Compositions Containing Same and Uses Thereof. WO2017/092555A1, 9 May 2019. [Google Scholar]
- Cheng, Y.; Xue, F.; Yu, S.; Du, S.; Yang, Y. Subcritical water extraction of natural products. Molecules 2021, 26, 4004. [Google Scholar] [CrossRef]
- Pu, Y.; Wang, J.-X.; Wang, D.; Foster, N.R.; Chen, J.-F. Subcritical water processing for nanopharmaceuticals. Chem. Eng. Process. Process Intensif. 2019, 140, 36–42. [Google Scholar] [CrossRef]
- Huamán-Castilla, N.L.; Mariotti-Celis, M.S.; Martínez-Cifuentes, M.; Pérez-Correa, J.R. Glycerol as Alternative Co-Solvent for Water Extraction of Polyphenols from Carménère Pomace: Hot Pressurized Liquid Extraction and Computational Chemistry Calculations. Biomolecules 2020, 10, 474. [Google Scholar] [CrossRef]
- Khajotia, S.S.; Smart, K.H.; Pilula, M.; Thompson, D.M. Concurrent quantification of cellular and extracellular components of biofilms. J. Vis. Exp. 2013, 77, e50639. [Google Scholar] [CrossRef]
- Rostami, N.; Shields, R.C.; Serrage, H.J.; Lawler, C.; Brittan, J.L.; Yassin, S.; Ahmed, H.; Trumann, A.; Thompson, P.; Wldron, K.J.; et al. Interspecies competition in oral biofilms mediated by Streptococcus gordonii extracellular deoxyribonuclease SSNA. NPJ Biofilms Microbiomes 2022, 8, 96. [Google Scholar] [CrossRef]
- D’Agostino, S.; Valentini, G.; Iarussi, F.; Dolci, M. Effect of probiotics Lactobacillus rhamnosus and Lactobacillus plantarum on caries and periodontal diseases: A systematic review. Dent. J. 2024, 12, 102. [Google Scholar] [CrossRef]
- Tansiri, N.; Ruensukon, T.; Hatsadaloi, W.; Trachoo, V.; Lochaiwatana, Y.; Laiteerapong, A. Cytotoxicity Evaluation of Herbal Mouthwashes Containing Ginseng Extract on Human Gingival Fibroblast-like Cells: An In Vitro Study. J. Dent. Assoc. Thai. 2022, 72, 490–499. [Google Scholar] [CrossRef]
- Vyas, N.; Sammons, R.L.; Addison, O.; Dehghani, H.; Walmsley, A.D. A quantitative method to measure biofilm removal efficiency from complex biomaterial surfaces using SEM and image analysis. Sci. Rep. 2016, 6, 32694. [Google Scholar] [CrossRef]
- Visperas, A.; Santana, D.; Ju, M.; Milbrandt, N.B.; Tsai, Y.H.; Wickramasinghe, S.; Klika, A.K.; Piuzzi, N.S.; Samia, A.C.S. Standardized quantification of biofilm in a novel rabbit model of periprosthetic joint infection. J. Bone Jt. Infect. 2022, 7, 91–99. [Google Scholar] [CrossRef]
- Milbrandt, N.B.; Tsai, Y.H.; Cui, K.; Massado, C.S.N.; Jung, H.; Visperas, A.; Klika, A.; Piuzzi, N.; Higuera-Rueda, C.A.; Samia, A.C.S. Combination D-amino acid and photothermal hydrogel for the treatment of prosthetic joint infections. ACS Appl. Bio Mater. 2023, 6, 1231–1241. [Google Scholar] [CrossRef]
- Wojdyło, A.; Oszmiański, J.; Czemerys, R. Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- Robbins, R.J. Phenolic acids in foods: An overview of analytical methodology. J. Agric. Food Chem. 2003, 51, 2866–2887. [Google Scholar] [CrossRef]
- Sarkar, B.; Chakraborty, S.; Pal, C. Phytomedicine Against Infectious Diseases. Phytopharmaceuticals 2021, 161–172. [Google Scholar] [CrossRef]
- Kim, S.-Y.; Kim, J.-M.; Chung, K.-S.; Jang, D.S.; Lee, J.-Y.; Kim, C.; Lee, J.Y.; Lee, J.K.; Lee, K.-T. In vitro and in vivo anti-inflammatory effects of 5-hydroxyconiferaldehyde via NF-κB, MAPK/AP-1, and Nrf2 modulation. Chem. Biol. Interact. 2025, 409, 111427. [Google Scholar] [CrossRef]
- Cueva, C.; Moreno-Arribas, M.V.; Martín-Álvarez, P.J.; Bills, G.; Vicente, M.F.; Basilio, A.; López Rivas, C.; Requena, T.; Rodríguez, J.M.; Bartolomé, B. Antimicrobial activity of phenolic acids against commensal, probiotic and pathogenic bacteria. Res. Microbiol. 2010, 161, 372–382. [Google Scholar] [CrossRef]
- Almuhanna, Y.; Alshalani, A.; AlSudais, H.; Alanazi, F.; Alissa, M.; Asad, M.; Joseph, B. Antibacterial, antibiofilm, and wound healing activities of rutin and quercetin and their interaction with gentamicin on excision wounds in diabetic mice. Biology 2024, 13, 676. [Google Scholar] [CrossRef]
- Yun, J.; Woo, E.-R.; Lee, D.G. Effect of isoquercitrin on membrane dynamics and apoptosis-like death in Escherichia coli. Biochim. Biophys. Acta Biomembr. 2018, 1860, 357–363. [Google Scholar] [CrossRef]
- Efenberger-Szmechtyk, M.; Nowak, A.; Czyżowska, A. Plant extracts rich in polyphenols: Antibacterial agents and natural preservatives for meat and meat products. Crit. Rev. Food Sci. Nutr. 2021, 61, 149–178. [Google Scholar] [CrossRef]







| Compound | Concentration (ppm) | Relative Abundance (%) |
|---|---|---|
| 5-Hydroxyconiferaldehyde | 69.32 | 69.50 |
| Benzoic Acid | 20.45 | 20.50 |
| Apigenin | 1.35 | 1.35 |
| Vanillin | 0.67 | 0.67 |
| Syringic Acid | 0.58 | 0.58 |
| Other Compounds | 7.37 | 7.39 |
| Total Polyphenols | 99.74 | 100 |
| Compound | Concentration (ppm) | Relative Abundance (%) |
|---|---|---|
| Rutin | 65.52 | 58.36 |
| Isoquercitrin | 12.50 | 11.13 |
| Quercitrin | 3.54 | 3.15 |
| Quercetin | 2.82 | 2.51 |
| Myricetin | 0.41 | 0.37 |
| Ellagic Acid | 2.92 | 2.60 |
| Apigenin | 2.44 | 2.17 |
| Syringic Acid | 2.37 | 2.11 |
| Other Compounds | 19.75 | 17.59 |
| Total Polyphenols | 112.27 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponce, N.B.; Milbrandt, N.B.; Alam, M.M.; Ledesma, C.R.M.; Ju, M.; Venkataraman, S.; Draganoiu, E.; Miinea, L.; Li, Y.; Samia, A.C.S. In Vitro Testing of Botanical Extracts as Safe and Effective Alternatives for Oral Care: A Two-Pronged Model Integrating Pathogen Control and Host Compatibility. Oral 2025, 5, 89. https://doi.org/10.3390/oral5040089
Ponce NB, Milbrandt NB, Alam MM, Ledesma CRM, Ju M, Venkataraman S, Draganoiu E, Miinea L, Li Y, Samia ACS. In Vitro Testing of Botanical Extracts as Safe and Effective Alternatives for Oral Care: A Two-Pronged Model Integrating Pathogen Control and Host Compatibility. Oral. 2025; 5(4):89. https://doi.org/10.3390/oral5040089
Chicago/Turabian StylePonce, Nicole Beatrice, Nathalie B. Milbrandt, Md. Masud Alam, Carlene Rome M. Ledesma, Minseon Ju, Sylesh Venkataraman, Elena Draganoiu, Liliana Miinea, Yafan Li, and Anna Cristina S. Samia. 2025. "In Vitro Testing of Botanical Extracts as Safe and Effective Alternatives for Oral Care: A Two-Pronged Model Integrating Pathogen Control and Host Compatibility" Oral 5, no. 4: 89. https://doi.org/10.3390/oral5040089
APA StylePonce, N. B., Milbrandt, N. B., Alam, M. M., Ledesma, C. R. M., Ju, M., Venkataraman, S., Draganoiu, E., Miinea, L., Li, Y., & Samia, A. C. S. (2025). In Vitro Testing of Botanical Extracts as Safe and Effective Alternatives for Oral Care: A Two-Pronged Model Integrating Pathogen Control and Host Compatibility. Oral, 5(4), 89. https://doi.org/10.3390/oral5040089

