The Potential Effects of ACE Inhibitors on the Severity of Periodontal Disease-Related Attachment Loss: An Observational, Cross-Sectional Comparative Study
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ACE | Angiotensin-converting enzyme |
| IL-1 | Interleukin-1 |
| IL-6 | Interleukin-6 |
| TNFα | Tumour necrosis factor-alpha |
| RANKL | Receptor activator of nuclear factor-kappa B ligand |
| RANK | Receptor activator of nuclear factor-kappa B |
| OPG | Osteoprotegerin |
| CAL | Clinical attachment level |
| SEM | Standard error of the mean |
| TLR | Toll-like receptor |
References
- Medzhitov, R.; Preston-Hurlburt, P.; Janeway, C.A., Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997, 388, 394–397. [Google Scholar] [CrossRef]
- Wara-Aswapati, N.; Chayasadom, A.; Surarit, R.; Pitiphat, W.; Boch, J.A.; Nagasawa, T.; Ishikawa, I.; Izumi, Y. Induction of Toll-Like Receptor Expression by Porphyromonas Gingivalis. J. Periodontol. 2012, 84, 1010–1018. [Google Scholar] [CrossRef]
- Song, B.; Zhang, Y.L.; Chen, L.J.; Zhou, T.; Huang, W.K.; Zhou, X.; Shao, L.Q. The role of Toll-like receptors in periodontitis. Oral. Dis. 2017, 23, 168–180. [Google Scholar] [CrossRef]
- Graves, D.T.; Li, J.; Cochran, D.L. Inflammation and uncoupling as mechanisms of periodontal bone loss. J. Dent. Res. 2011, 90, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Ruiz, J.S.; Guerrero-Velázquez, C.; Martínez-Esquivias, F.; Martínez-Pérez, L.A.; Guzmán-Flores, J.M. Innate and adaptive immunity of periodontal disease. From etiology to alveolar bone loss. Oral Dis. 2022, 28, 1441–1447. [Google Scholar] [CrossRef] [PubMed]
- Ivashkiv, L.B.; Zhao, B.; Park-Min, K.H.; Takami, M. Feedback inhibition of osteoclastogenesis during inflammation by IL-10, M-CSF receptor shedding, and induction of IRF8. Ann. N. Y. Acad. Sci. 2011, 1237, 88–94. [Google Scholar] [CrossRef]
- Murray, P.J.; Smale, S.T. Restraint of inflammatory signaling by interdependent strata of negative regulatory pathways. Nat. Immunol. 2012, 13, 916–924. [Google Scholar] [CrossRef] [PubMed]
- Mo, K.; Wang, Y.; Lu, C.; Li, Z. Insight into the role of macrophages in periodontitis restoration and development. Virulence 2024, 15, 2427234. [Google Scholar] [CrossRef]
- Graves, D.T.; Cochran, D. The contribution of interleukin-1 and tumor necrosis factor to periodontal tissue destruction. J. Periodontol. 2003, 74, 391–401. [Google Scholar] [CrossRef]
- Usui, M.; Onizuka, S.; Sato, T.; Kokabu, S.; Ariyoshi, W.; Nakashima, K. Mechanism of alveolar bone destruction in periodontitis—Periodontal bacteria and inflammation. Jpn. Dent. Sci. Rev. 2021, 57, 201–208. [Google Scholar] [CrossRef]
- Cochran, D.L. Inflammation and bone loss in periodontal disease. J. Periodontol. 2008, 79, 1569–1576. [Google Scholar] [CrossRef]
- Bostanci, N.; Ilgenli, T.; Emingil, G.; Afacan, B.; Han, B.; Toz, H.; Berdeli, A.; Atilla, G.; McKay, I.J.; Hughes, F.J.; et al. Differential expression of receptor activator of nuclear factor-kappaB ligand and osteoprotegerin mRNA in periodontal diseases. J. Periodontal Res. 2007, 42, 287–293. [Google Scholar] [CrossRef]
- Bostanci, N.; Ilgenli, T.; Emingil, G.; Afacan, B.; Han, B.; Toz, H.; Atilla, G.; Hughes, F.J.; Belibasakis, G.N. Gingival crevicular fluid levels of RANKL and OPG in periodontal diseases: Implications of their relative ratio. J. Clin. Periodontol. 2007, 34, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Jin, Q.; Cirelli, J.A.; Park, C.H.; Sugai, J.V.; Taba, M., Jr.; Kostenuik, P.J.; Giannobile, W.V. RANKL inhibition through osteoprotegerin blocks bone loss in experimental periodontitis. J. Periodontol. 2007, 78, 1300–1308. [Google Scholar] [CrossRef] [PubMed]
- Lundy, F.T.; Linden, G.J. Neuropeptides and Neurogenic Mechanisms in Oral and Periodontal Inflammation. Crit. Rev. Oral Biol. Med. Off. Publ. Am. Assoc. Oral Biol. 2004, 15, 82–98. [Google Scholar] [CrossRef] [PubMed]
- Jayanthi, A.; Tiwari, D.; Puzhankara, L. Substance P-A neuropeptide regulator of periodontal disease pathogenesis and potential novel therapeutic entity: A narrative review. J. Indian Soc. Periodontol. 2024, 28, 284–289. [Google Scholar] [CrossRef]
- Dray, A.; Perkins, M. Bradykinin and inflammatory pain. Trends Neurosci. 1993, 16, 99–104. [Google Scholar] [CrossRef]
- Bhatia, M.; Saluja, A.K.; Hofbauer, B.; Frossard, J.L.; Lee, H.S.; Castagliuolo, I.; Wang, C.C.; Gerard, N.; Pothoulakis, C.; Steer, M.L. Role of substance P and the neurokinin 1 receptor in acute pancreatitis and pancreatitis-associated lung injury. Proc. Natl. Acad. Sci. USA 1998, 95, 4760–4765. [Google Scholar] [CrossRef]
- Douglas, S.D.; Leeman, S.E. Neurokinin-1 receptor: Functional significance in the immune system in reference to selected infections and inflammation. Ann. N. Y. Acad. Sci. 2011, 1217, 83–95. [Google Scholar] [CrossRef]
- Donkin, J.J.; Nimmo, A.J.; Cernak, I.; Blumbergs, P.C.; Vink, R. Substance P is associated with the development of brain edema and functional deficits after traumatic brain injury. J. Cereb. Blood Flow Metab. 2009, 29, 1388–1398. [Google Scholar] [CrossRef]
- Lau, H.Y.; Bhatia, M. Effect of CP-96,345 on the expression of adhesion molecules in acute pancreatitis in mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G1283–G1292. [Google Scholar] [CrossRef]
- Nessler, S.; Stadelmann, C.; Bittner, A.; Schlegel, K.; Gronen, F.; Brueck, W.; Hemmer, B.; Sommer, N. Suppression of autoimmune encephalomyelitis by a neurokinin-1 receptor antagonist—A putative role for substance P in CNS inflammation. J. Neuroimmunol. 2006, 179, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Brechter, A.B.; Persson, E.; Lundgren, I.; Lerner, U.H. Kinin B1 and B2 receptor expression in osteoblasts and fibroblasts is enhanced by interleukin-1 and tumour necrosis factor-alpha. Effects dependent on activation of NF-kappaB and MAP kinases. Bone 2008, 43, 72–83. [Google Scholar] [CrossRef]
- Lundy, F.T.; Mullally, B.H.; Burden, D.J.; Lamey, P.J.; Shaw, C.; Linden, G.J. Changes in substance P and neurokinin A in gingival crevicular fluid in response to periodontal treatment. J. Clin. Periodontol. 2000, 27, 526–530. [Google Scholar] [CrossRef]
- Mori, T.; Ogata, T.; Okumura, H.; Shibata, T.; Nakamura, Y.; Kataoka, K. Substance P regulates the function of rabbit cultured osteoclast; increase of intracellular free calcium concentration and enhancement of bone resorption. Biochem. Biophys. Res. Commun. 1999, 262, 418–422. [Google Scholar] [CrossRef]
- Niedermair, T.; Schirner, S.; Seebröker, R.; Straub, R.H.; Grässel, S. Substance P modulates bone remodeling properties of murine osteoblasts and osteoclasts. Sci. Rep. 2018, 8, 9199. [Google Scholar] [CrossRef]
- Lee, H.J.; Jeong, G.S.; Pi, S.H.; Lee, S.I.; Bae, W.J.; Kim, S.J.; Lee, S.K.; Kim, E.C. Heme oxygenase-1 protects human periodontal ligament cells against substance P-induced RANKL expression. J. Periodontal Res. 2010, 45, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Lin, Q.; Tang, K.; Liu, S.; Du, Y.; Yu, X.; Li, S. Substance P participates in periodontitis by upregulating HIF-1α and RANKL/OPG ratio. BMC Oral Health 2020, 20, 27. [Google Scholar] [CrossRef] [PubMed]
- Gabb, G.M.; Mangoni, A.A.; Anderson, C.S.; Cowley, D.; Dowden, J.S.; Golledge, J.; Hankey, G.J.; Howes, F.S.; Leckie, L.; Perkovic, V.; et al. Guideline for the diagnosis and management of hypertension in adults—2016. Med. J. Aust. 2016, 205, 85–89. [Google Scholar] [CrossRef]
- Lang, C.C.; Struthers, A.D. Targeting the renin-angiotensin-aldosterone system in heart failure. Nat. Rev. Cardiol. 2013, 10, 125–134. [Google Scholar] [CrossRef]
- Shen, X.Z.; Bernstein, K.E. The peptide network regulated by angiotensin converting enzyme (ACE) in hematopoiesis. Cell Cycle 2011, 10, 1363–1369. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.A.; Hooper, N.M.; Turner, A.J. Characterization of neuronal and endothelial forms of angiotensin converting enzyme in pig brain. J. Neurochem. 1991, 57, 193–199. [Google Scholar] [CrossRef]
- Sulpizio, A.C.; Pullen, M.A.; Edwards, R.M.; Brooks, D.P. The effect of acute angiotensin-converting enzyme and neutral endopeptidase 24.11 inhibition on plasma extravasation in the rat. J. Pharmacol. Exp. Ther. 2004, 309, 1141–1147. [Google Scholar] [CrossRef]
- Borsook, D.; Sava, S. Pain: Do ACE inhibitors exacerbate complex regional pain syndrome? Nat. Rev. Neurol. 2009, 5, 306–308. [Google Scholar] [CrossRef]
- Volans, A.; Ferguson, R. Using a bradykinin blocker in ACE inhibitor-associated angioedema in the emergency department. BMJ Case Rep. 2013, 2013, bcr2012008295. [Google Scholar] [CrossRef]
- Lu, X.; Liu, J.; Wei, T.; Zhou, X. Elevated salivary activity of mast cell chymase of periodontitis patients, and a new bradykinin generation cascade, mediating the cross-talks between mast cell and gingival fibroblast. Int. Immunopharmacol. 2021, 101, 108269. [Google Scholar] [CrossRef]
- Byrd, J.B.; Touzin, K.; Sile, S.; Gainer, J.V.; Yu, C.; Nadeau, J.; Adam, A.; Brown, N.J. Dipeptidyl peptidase IV in angiotensin-converting enzyme inhibitor associated angioedema. Hypertension 2008, 51, 141–147. [Google Scholar] [CrossRef]
- Lindhe, J.; Ranney, R.; Lamster, I.; Charles, A.; Chung, C.P.; Flemmig, T.; Kinane, D.; Listgarten, M.; Löe, H.; Schoor, R.; et al. Consensus Report: Chronic Periodontitis. Ann. Periodontol. 1999, 4, 38. [Google Scholar] [CrossRef]
- American Academy of Periodontology Task Force Report on the Update to the 1999 Classification of Periodontal Diseases and Conditions. J. Periodontol. 2015, 86, 835–838. [CrossRef] [PubMed]
- Ramírez Martínez-Acitores, L.; Hernández Ruiz de Azcárate, F.; Casañas, E.; Serrano, J.; Hernández, G.; López-Pintor, R.M. Xerostomia and Aalivary Flow in Patients Taking Antihypertensive Drugs. Int. J. Environ. Res. Public Health 2020, 17, 2478. [Google Scholar] [CrossRef] [PubMed]
- Taubman, M.A.; Kawai, T.; Han, X. The new concept of periodontal disease pathogenesis requires new and novel therapeutic strategies. J. Clin. Periodontol. 2007, 34, 367–369. [Google Scholar] [CrossRef] [PubMed]
- Azarpazhooh, A.; Tenenbaum, H.C. Separating fact from fiction: Use of high-level evidence from research syntheses to identify diseases and disorders associated with periodontal disease. J. Can. Dent. Assoc. 2012, 78, c25. [Google Scholar] [PubMed]
- Harford-Wright, E.; Thornton, E.; Vink, R. Angiotensin-converting enzyme (ACE) inhibitors exacerbate histological damage and motor deficits after experimental traumatic brain injury. Neurosci. Lett. 2010, 481, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, A.R.; Raj, S.; Aruna, G.; Chowdhry, S. Gingival crevicular fluid and plasma levels of neuropeptide Substance-P in periodontal health, disease and after nonsurgical therapy. J. Periodontal Res. 2009, 44, 232–237. [Google Scholar] [CrossRef]
- Habbab, K.M.; Moles, D.R.; Porter, S.R. Potential oral manifestations of cardiovascular drugs. Oral Dis. 2010, 16, 769–773. [Google Scholar] [CrossRef]
- da Silva, R.A.; Ferreira, P.D.; De Rossi, A.; Nelson-Filho, P.; Silva, L.A. Toll-like receptor 2 knockout mice showed increased periapical lesion size and osteoclast number. J. Endod. 2012, 38, 803–813. [Google Scholar] [CrossRef]
- Sun, Y.; Li, H.; Yang, M.F.; Shu, W.; Sun, M.J.; Xu, Y. Effects of aging on endotoxin tolerance induced by lipopolysaccharides derived from Porphyromonas gingivalis and Escherichia coli. PLoS ONE 2012, 7, e39224. [Google Scholar] [CrossRef]
- Gutierrez-Venegas, G.; Arreguin-Cano, J.A. Bradykinin promotes TLR2 expression in human gingival fibroblasts. Int. Immunopharmacol. 2011, 11, 2079–2085. [Google Scholar] [CrossRef]
- Ozturk, A.; Bilgici, B.; Odyakmaz, S.; Konas, E. The relationship of periodontal disease severity to serum and GCF substance P levels in diabetics. Quintessence Int. 2012, 43, 587–596. [Google Scholar]
- Zhou, Y.; Sun, L.; Hu, J.; Liu, X.; Ma, Y. Association of antihypertensive drugs with periodontitis: A comprehensive drug-target Mendelian randomization study. Quintessence Int. 2024, 55, 814–823. [Google Scholar] [CrossRef]
- Rodrigues, M.; Barbirato, D.; Luiz, R.R.; Scharfstein, J.; Salles, G.F.; Feres-Filho, E.J. Effect of antihypertensive therapy with angiotensin-converting enzyme inhibitors on chronic periodontitis: A case-control study. Oral Dis. 2016, 22, 791–796. [Google Scholar] [CrossRef] [PubMed]
- Lim, G.; Janu, U.; Chiou, L.L.; Gandhi, K.K.; Palomo, L.; John, V. Periodontal Health and Systemic Conditions. Dent. J. 2020, 8, 130. [Google Scholar] [CrossRef]
- Craig, R.G.; Pernat, A.M.; Pecoits-Filho, R.; Levin, N.W.; Kotanko, P. Periodontal diseases and systemic inflammation. Semin. Dial. 2013, 26, 23–28. [Google Scholar] [CrossRef]
- Parahitiyawa, N.B.; Jin, L.J.; Leung, W.K.; Yam, W.C.; Samaranayake, L.P. Microbiology of odontogenic bacteremia: Beyond endocarditis. Clin. Microbiol. Rev. 2009, 22, 46–64. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.; Kong, C.; Yuan, L.; Liu, L.; Zhao, K.; Lü, J.; Wang, X. The bidirectional relationship between periodontitis and diabetes: New prospects for stem cell-derived exosomes. Biomed. Pharmacother. 2023, 165, 115219. [Google Scholar] [CrossRef] [PubMed]
- Kiyomoto, K.; Matsuo, I.; Suita, K.; Ohnuki, Y.; Ishikawa, M.; Ito, A.; Mototani, Y.; Tsunoda, M.; Morii, A.; Nariyama, M.; et al. Oral angiotensin-converting enzyme inhibitor captopril protects the heart from Porphyromonas gingivalis LPS-induced cardiac dysfunction in mice. PLoS ONE 2023, 18, e0292624. [Google Scholar] [CrossRef]
- Strauss, M.H.; Hall, A.S.; Narkiewicz, K. The Combination of Beta-Blockers and ACE Inhibitors Across the Spectrum of Cardiovascular Diseases. Cardiovasc. Drugs Ther. 2023, 37, 757–770. [Google Scholar] [CrossRef]
- Khalil, M.E.; Basher, A.W.; Brown, E.J., Jr.; Alhaddad, I.A. A remarkable medical story: Benefits of angiotensin-converting enzyme inhibitors in cardiac patients. J. Am. Coll. Cardiol. 2001, 37, 1757–1764. [Google Scholar] [CrossRef]
- Kwon, T.; Lamster, I.B.; Levin, L. Current Concepts in the Management of Periodontitis. Int. Dent. J. 2021, 71, 462–476. [Google Scholar] [CrossRef]
- Poulter, N. Coronary heart disease is a multifactorial disease. Am. J. Hypertens. 1999, 12, 92S–95S. [Google Scholar] [CrossRef]
- Etta, I.; Kambham, S.; Girigosavi, K.B.; Panjiyar, B.K. Mouth-Heart Connection: A Systematic Review on the Impact of Periodontal Disease on Cardiovascular Health. Cureus 2023, 15, e46585. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.; Yu, W.; Li, Y.; Li, Y.; Wan, Q.; Chen, L.; Dong, Y.; Tay, F.R.; Niu, L. Association between tooth loss and hypertension: A systematic review and meta-analysis. J. Dent. 2022, 123, 104178. [Google Scholar] [CrossRef] [PubMed]
- Xu, K.H.; Li, L.; Jia, S.L.; Li, Q.; Hao, J.X.; Ma, S.; He, Z.K.; Wan, Q.Q.; Cai, Y.F.; Li, Z.T.; et al. Association of Tooth Loss and Diet Quality with Acceleration of Aging: Evidence from NHANES. Am. J. Med. 2023, 136, 773–779. [Google Scholar] [CrossRef] [PubMed]



| Antihypertensive Medication | ||||
|---|---|---|---|---|
| ACE Inhibitor | Other Anti-Hyper | No Anti-Hyper | ||
| Gender | Female | 7 | 14 | 22 |
| Male | 12 | 7 | 12 | |
| Age (years) | Mean | 63.11 | 56.21 | 61.88 |
| Range | 50–80 | 38–80 | 48–76 | |
| Number of Teeth | Mean | 23.95 | 26.37 | 22.71 |
| Range | 18–32 | 21–31 | 11–31 | |
| Medication | CAL 1–3 mm | CAL 4–5 mm | CAL > 6 mm |
|---|---|---|---|
| No antihypertensive | 66.1% ± 3.7 | 26.9% ± 2.8 | 7.0% ± 1.7 |
| ACE Inhibitor | 55.2% ± 7.1 | 31.0% ± 4.8 | 13.8% ± 4.2 |
| Other Antihypertensive | 71.7% ± 5.5 | 23.4% ± 3.6 | 4.9% ± 1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cullinan, K.; Behrens, M.; Del Solar, K.; Johnson, K.; James, A.; James, B.; Nimmo, A. The Potential Effects of ACE Inhibitors on the Severity of Periodontal Disease-Related Attachment Loss: An Observational, Cross-Sectional Comparative Study. Oral 2025, 5, 88. https://doi.org/10.3390/oral5040088
Cullinan K, Behrens M, Del Solar K, Johnson K, James A, James B, Nimmo A. The Potential Effects of ACE Inhibitors on the Severity of Periodontal Disease-Related Attachment Loss: An Observational, Cross-Sectional Comparative Study. Oral. 2025; 5(4):88. https://doi.org/10.3390/oral5040088
Chicago/Turabian StyleCullinan, Kathrine, Monika Behrens, Kylie Del Solar, Kimberley Johnson, Andrea James, Brian James, and Alan Nimmo. 2025. "The Potential Effects of ACE Inhibitors on the Severity of Periodontal Disease-Related Attachment Loss: An Observational, Cross-Sectional Comparative Study" Oral 5, no. 4: 88. https://doi.org/10.3390/oral5040088
APA StyleCullinan, K., Behrens, M., Del Solar, K., Johnson, K., James, A., James, B., & Nimmo, A. (2025). The Potential Effects of ACE Inhibitors on the Severity of Periodontal Disease-Related Attachment Loss: An Observational, Cross-Sectional Comparative Study. Oral, 5(4), 88. https://doi.org/10.3390/oral5040088

