Beyond Fluoride: Exploring Silicon’s Potential for Dental Repair and Caries Prevention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Size and Specimen Preparation
2.2. Toothpaste Selection
2.3. Treatment and pH Cycling
2.4. Surface Microhardness Test Analysis (SMH)
2.5. Light-Induced Fluorescence (QLF) Analysis
2.6. Scanning Electron Microscopy (SEM) Analysis and Energy-Dispersive X-Ray Spectroscopy (EDS) Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pitts, N.B.; Zero, D.T.; Marsh, P.D.; Ekstrand, K.; Weintraub, J.A.; Ramos-Gomez, F.; Tagami, J.; Twetman, S.; Tsakos, G.; Ismail, A. Dental caries. Nat. Rev. Dis. Primers 2017, 3, 17030. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.Y.F.; Chen, M.X.; Zhong, Y.J.; Dong, Q.Q.; Wong, H.M. Global burden and inequality of dental caries, 1990 to 2019. J. Dent. Res. 2022, 101, 392–399. [Google Scholar] [CrossRef] [PubMed]
- Anil, S.; Anand, P.S. Early Childhood Caries: Prevalence, Risk Factors, and Prevention. Front. Pediatr. 2017, 5, 157. [Google Scholar] [CrossRef] [PubMed]
- Kassebaum, N.J.; Smith, A.G.C.; Bernabé, E.; Fleming, T.D.; Reynolds, A.E.; Vos, T.; Murray, C.J.L.; Marcenes, W. Global, Regional, and National Prevalence, Incidence, and Disability-Adjusted Life Years for Oral Conditions for 195 Countries, 1990–2015: A Systematic Analysis for the Global Burden of Diseases, Injuries, and Risk Factors. J. Dent. Res. 2017, 96, 380–387. [Google Scholar] [CrossRef]
- Meyer, F.; Schulze Zur Wiesche, E.; Amaechi, B.T.; Limeback, H.; Enax, J. Caries etiology and preventive measures. Eur. J. Dent. 2024, 18, 766–776. [Google Scholar] [CrossRef]
- Chen, L.; Al-Bayatee, S.; Khurshid, Z.; Shavandi, A.; Brunton, P.; Ratnayake, J. Hydroxyapatite in oral care products—A review. Materials 2021, 14, 4865. [Google Scholar] [CrossRef] [PubMed]
- Epple, M.; Enax, J.; Meyer, F. Prevention of Caries and Dental Erosion by Fluorides-A Critical Discussion Based on Physico-Chemical Data and Principles. Dent. J. 2022, 10, 6. [Google Scholar] [CrossRef]
- He, L.; Hao, Y.; Zhen, L.; Liu, H.; Shao, M.; Xu, X.; Liang, K.; Gao, Y.; Yuan, H.; Li, J.; et al. Biomineralization of dentin. J. Struct. Biol. 2019, 207, 115–122. [Google Scholar] [CrossRef]
- Dawasaz, A.A.; Togoo, R.A.; Mahmood, Z.; Ahmad, A.; Thirumulu Ponnuraj, K. Remineralization of dentinal lesions using biomimetic agents: A systematic review and meta-analysis. Biomimetics 2023, 8, 159. [Google Scholar] [CrossRef]
- Butera, A.; Pascadopoli, M.; Pellegrini, M.; Trapani, B.; Gallo, S.; Radu, M.; Scribante, A. Biomimetic hydroxyapatite paste for molar-incisor hypomineralization: A randomized clinical trial. Oral Dis. 2023, 29, 2789–2798. [Google Scholar] [CrossRef]
- Liu, X.-X.; Tenenbaum, H.C.; Wilder, R.S.; Quock, R.; Hewlett, E.R.; Ren, Y.-F. Pathogenesis, diagnosis and management of dentin hypersensitivity: An evidence-based overview for dental practitioners. BMC Oral Health 2020, 20, 220. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Lee, E.S.; Kim, B.I. Optical diagnosis of dentin caries lesions using quantitative light-induced fluorescence technology. Photodiagnosis Photodyn. Ther. 2018, 23, 68–70. [Google Scholar] [CrossRef] [PubMed]
- Athanasiadou, D.; Eymael, D.; Hajhamid, B.; Carneiro, K.M.M.; Prakki, A. Chemical and ultrastructural characterization of dentin treated with remineralizing dentifrices. J. Funct. Biomater. 2024, 15, 25. [Google Scholar] [CrossRef]
- Vilhena, F.V.; Polassi, M.R.; Paloco, E.A.C.; Alonso, R.C.; Guiraldo, R.D.; D’Alpino, P.H. Effectiveness of toothpaste containing REFIX technology against dentin hypersensitivity: A randomized clinical study. J. Contemp. Dent. Pract. 2020, 21, 609–614. [Google Scholar] [CrossRef]
- Amaechi, B.T.; Phillips, T.S.; Evans, V.; Ugwokaegbe, C.P.; Luong, M.N.; Okoye, L.O.; Meyer, F.; Enax, J. The potential of hydroxyapatite toothpaste to prevent root caries: A pH-cycling study. Clin. Cosmet. Investig. Dent. 2021, 13, 315–324. [Google Scholar] [CrossRef]
- Fernandes, N.L.S.; Silva, J.; de Sousa, E.B.G.; D’Alpino, P.H.P.; de Oliveira, A.F.B.; de Jong, E.J.; Sampaio, F.C. Effectiveness of fluoride-containing toothpastes associated with different technologies to remineralize enamel after pH cycling: An in vitro study. BMC Oral Health 2022, 22, 489. [Google Scholar] [CrossRef]
- Jafari, N.; Habashi, M.S.; Hashemi, A.; Shirazi, R.; Tanideh, N.; Tamadon, A. Application of bioactive glasses in various dental fields. Biomater. Res. 2022, 26, 31. [Google Scholar] [CrossRef] [PubMed]
- Alhamdan, M.M.; Knowles, J.C.; McDonald, A.V. In vitro evaluation of remineralization potential of five toothpastes on soft drink-eroded human enamel and dentine. Cureus 2024, 16, e62921. [Google Scholar] [CrossRef]
- Rahman, B.; El-Damanhoury, H.M.; Sheela, S.; Ngo, H.C. Effect of calcium silicate, sodium phosphate, and fluoride on dentinal tubule occlusion and permeability in comparison to desensitizing toothpaste: An in vitro study. Oper. Dent. 2021, 46, 641–649. [Google Scholar] [CrossRef]
- Singer, L.; Fouda, A.; Bourauel, C. Biomimetic approaches and materials in restorative and regenerative dentistry: Review article. BMC Oral Health 2023, 23, 105. [Google Scholar] [CrossRef]
- Butera, A.; Gallo, S.; Pascadopoli, M.; Montasser, M.A.; Abd El Latief, M.H.; Modica, G.G.; Scribante, A. Home Oral Care with Biomimetic Hydroxyapatite vs. Conventional Fluoridated Toothpaste for the Remineralization and Desensitizing of White Spot Lesions: Randomized Clinical Trial. Int. J. Environ. Res. Public Health 2022, 19, 8676. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, F.C.; Oliveira, A.F.B.d.; Fernandes, N.L.S.; Gentile, A.C.C.; Marinho, G.B.; Bönecker, M.J.S.; Paschoal, M.A.B.; D’Alpino, P.H.P.; Vilhena, F.V. Silicon-, Silica-, and Silicate-Toothpastes for Remineralization and Repair of Teeth: A Scoping Review. Oral 2024, 4, 467–486. [Google Scholar] [CrossRef]
- Jeon, M.-J.; Choi, Y.-S.; Park, J.-K.; Ahn, J.-S.; Chiang, Y.-C.; Seo, D.-G. Biomineralization reaction from nanosized calcium silicate: A new method for reducing dentin hypersensitivity. J. Dent. Sci. 2024. [Google Scholar] [CrossRef]
- Vilhena, F.V.; de Oliveira, S.M.L.; Matochek, M.H.M.; Tomaz, P.L.S.; Oliveira, T.S.; D’Alpino, P.H.P. Biomimetic mechanism of action of fluoridated toothpaste containing proprietary REFIX technology on the remineralization and repair of demineralized dental tissues: An in vitro study. Eur. J. Dent. 2021, 15, 236–241. [Google Scholar] [CrossRef]
- Takeo Hara, A.; Silami de Magalhães, C.; Campos Serra, M.; Luiz Rodrigues, A. Cariostatic effect of fluoride-containing restorative systems associated with dentifrices on root dentin. J. Dent. 2002, 30, 205–212. [Google Scholar] [CrossRef]
- Vieira, A.E.; Delbem, A.C.; Sassaki, K.T.; Rodrigues, E.; Cury, J.A.; Cunha, R.F. Fluoride dose response in pH-cycling models using bovine enamel. Caries Res. 2005, 39, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Wierichs, R.J.; Rupp, K.; Meyer-Lueckel, H.; Apel, C.; Esteves-Oliveira, M. Effects of dentifrices differing in fluoride content on remineralization characteristics of dentin in vitro. Caries Res. 2020, 54, 75–86. [Google Scholar] [CrossRef]
- Diniz, M.B.; Campos, P.H.; Wilde, S.; Cordeiro, R.C.L.; Zandona, A.G.F. Performance of light-emitting diode device in detecting occlusal caries in the primary molars. Lasers Med. Sci. 2019, 34, 1235–1241. [Google Scholar] [CrossRef]
- Park, S.W.; Kim, S.K.; Lee, H.S.; Lee, E.S.; de Josselin de Jong, E.; Kim, B.I. Comparison of fluorescence parameters between three generations of QLF devices for detecting enamel caries in vitro and on smooth surfaces. Photodiagnosis Photodyn. Ther. 2019, 25, 142–147. [Google Scholar] [CrossRef]
- Tomaz, P.L.S.; Sousa, L.A.; Aguiar, K.F.; Oliveira, T.S.; Matochek, M.H.M.; Polassi, M.R.; D’Alpino, P.H.P. Effects of 1450-ppm fluoride-containing toothpastes associated with boosters on the enamel remineralization and surface roughness after cariogenic challenge. Eur. J. Dent. 2020, 14, 161–170. [Google Scholar] [CrossRef]
- Heinemann, S.; Heinemann, C.; Jäger, M.; Neunzehn, J.; Wiesmann, H.P.; Hanke, T. Effect of silica and hydroxyapatite mineralization on the mechanical properties and the biocompatibility of nanocomposite collagen scaffolds. ACS Appl. Mater. Interfaces 2011, 3, 4323–4331. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, N.L.S.; Juliellen, L.D.C.; Andressa, F.B.O.; D‘Alpino, H.P.P.; Sampaio, C.F. Resistance against erosive challenge of dental enamel treated with 1,450-PPM fluoride toothpastes containing different biomimetic compounds. Eur. J. Dent. 2021, 15, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Limeback, H.; Enax, J.; Meyer, F. Improving Oral Health with Fluoride-Free Calcium-Phosphate-Based Biomimetic Toothpastes: An Update of the Clinical Evidence. Biomimetics 2023, 8, 331. [Google Scholar] [CrossRef] [PubMed]
- Zangrando, M.S.R.; Silva, G.F.F.; Bigotto, M.L.B.; Cintra, F.M.R.N.; Damante, C.A.; Sant’Ana, A.C.P.; Vilhena, F.V. Blocking tubules technologies for dentin hypersensitivity in periodontal patients—Pilot study. Res. Soc. Dev. 2021, 10, e35101320398. [Google Scholar] [CrossRef]
- Palard, M.; Champion, E.; Foucaud, S. Synthesis of silicated hydroxyapatite Ca10(PO4)6−x(SiO4)x(OH)2−x. J. Solid. State Chem. 2008, 181, 1950–1960. [Google Scholar] [CrossRef]
Product | Active Agents | Manufacturer |
---|---|---|
Sensitive Regenerator (RGS1) | 1450 ppm sodium fluoride, glycerin, silica, sorbitol, sodium lauryl sulfate, aqua, aroma, PEF-12, cellulose gum, phosphoric acid, xylitol, tetrasodium pyrophosphate, sodium saccharin, cetylpyridinium chloride, menthol, mica, sodium benzoate, REFIX® Technology. pH 4.7. | Dentalclean US LLC, Kissimmee, FL, USA. Lot No. 70345 |
Sensitive Regenerator (RGS2) | 1110 ppm sodium fluoride, glycerin, silica, sorbitol, sodium lauryl sulfate, aqua, aroma, PEF-12, cellulose gum, phosphoric acid, xylitol, tetrasodium pyrophosphate, sodium saccharin, cetylpyridinium chloride, menthol, mica, sodium benzoate, REFIX® Technology. pH 4.5. | Dentalclean US LLC, Kissimmee, FL, USA. Lot No. 78306 |
Sensitive Regenerator (RGS3) | Fluoride-free toothpaste, glycerin, silica, sorbitol, sodium lauryl sulfate, aqua, aroma, PEF-12, cellulose gum, phosphoric acid, xylitol, tetrasodium pyrophosphate, sodium saccharin, cetylpyridinium chloride, menthol, mica, sodium benzoate, REFIX® Technology. pH 4.0. | Dentalclean US LLC, Kissimmee, FL, USA. Lot No. 08312023 |
Negative Control (NC) | No active ingredients. Fluoride-free toothpaste. pH 6.6. | Dentalclean US LLC, Kissimmee, FL, USA. Lot No. 78057 |
Positive Control (PC) | 1450 ppm sodium fluoride, aqua, sorbitol, silica, sodium lauryl sulfate, aroma, carrageenan, sodium gluconate, stannous chloride, xanthan gum, zinc citrate, CI 77891, sodium saccharin, sodium hydroxide, limonene. pH 7.0. | Oral B—Procter & Gamble, São Paulo, SP, Brazil. Lot No. 3107662C04 |
Experimental Groups | SMH0 * | SMH1 * | %SMHC * |
---|---|---|---|
RGS1 | 46.80 ± 2.5 a | 68.60 ± 6.50 e | 47.29 ± 19.4 c |
RGS2 | 45.96 ± 3.14 a | 75.09 ± 6.81 d | 64.01 ± 17.6 c |
RGS3 | 46.22 ± 3.49 a | 56.87 ± 3.10 c | 23.51 ± 9.5 a |
NC | 45.49 ± 3.46 a | 28.07 ± 2.81 b | −38.07 ± 7.0 b |
PC | 44.78 ± 2.30 a | 48.07 ± 1.37 a | 7.4 ± 3.8 a |
Experimental Groups | ΔF (Mean ± SD, CI) * | ΔFmax (Mean ± SD, CI) * |
---|---|---|
RGS1 | −6.65 ± 0.3 (−6.92 to −6.37) c | −8.98 ± 1.89 (−10.57 to −7.41) c |
RGS2 | −6.35 ± 0.8 (−6.93 to −5.76) c | −8.91 ± 2.2 (−10.48 to −7.33) c |
RGS3 | −7.11 ± 0.6 (−7.54 to −6.67) b,c | −10.65 ± 1.08 (−11.43 to −9.87) c |
NC | −13.24 ± 1.4 (−14.28 to −12.19) a | −29.06 ± 3.96 (−31.89 to −26.22) a |
PC | −8.48 ± 1.4 (−9.68 to −7.29) b | −16.15 ± 2.93 (−18.60 to −13.69) b |
Element | RGS1 | RGS2 | RGS3 | NC | PC |
---|---|---|---|---|---|
C | 58.70 | 65.17 | 53.60 | 61.42 | 81.62 |
O | 34.73 | 28.88 | 29.43 | 25.91 | 6.37 |
P | 0.87 | 0.80 | 1.07 | 3.97 | 2.16 |
Ca | 1.17 | 1.14 | 1.28 | 7.24 | 2.36 |
Si | 4.00 | 3.63 | 2.34 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, A.F.B.d.; Melo Costa, B.M.d.; Forte, A.G.; Sousa, E.B.G.d.; Nunes, V.R.R.; Brito Andrade, A.F.d.; da Cunha, J.L.; Fernandes, N.L.S.; Pereira, A.M.B.C.; Vilhena, F.V.; et al. Beyond Fluoride: Exploring Silicon’s Potential for Dental Repair and Caries Prevention. Oral 2024, 4, 578-588. https://doi.org/10.3390/oral4040045
Oliveira AFBd, Melo Costa BMd, Forte AG, Sousa EBGd, Nunes VRR, Brito Andrade AFd, da Cunha JL, Fernandes NLS, Pereira AMBC, Vilhena FV, et al. Beyond Fluoride: Exploring Silicon’s Potential for Dental Repair and Caries Prevention. Oral. 2024; 4(4):578-588. https://doi.org/10.3390/oral4040045
Chicago/Turabian StyleOliveira, Andressa Feitosa Bezerra de, Bianne Maria de Melo Costa, Anderson Gomes Forte, Elizabeth Barreto Galvão de Sousa, Vitória Régia Rolim Nunes, Arthur Felipe de Brito Andrade, Juliellen Luiz da Cunha, Nayanna Lana Soares Fernandes, Ana Maria Barros Chaves Pereira, Fabiano Vieira Vilhena, and et al. 2024. "Beyond Fluoride: Exploring Silicon’s Potential for Dental Repair and Caries Prevention" Oral 4, no. 4: 578-588. https://doi.org/10.3390/oral4040045
APA StyleOliveira, A. F. B. d., Melo Costa, B. M. d., Forte, A. G., Sousa, E. B. G. d., Nunes, V. R. R., Brito Andrade, A. F. d., da Cunha, J. L., Fernandes, N. L. S., Pereira, A. M. B. C., Vilhena, F. V., D’Alpino, P. H. P., & Sampaio, F. C. (2024). Beyond Fluoride: Exploring Silicon’s Potential for Dental Repair and Caries Prevention. Oral, 4(4), 578-588. https://doi.org/10.3390/oral4040045