Influence of Root Canal Size and Curvature on Insertion Depth of Three Different Endodontic Irrigation Needles
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Insertion Depth Evaluation
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nair, P.N. On the causes of persistent apical periodontitis: A review. Int. Endod. J. 2006, 39, 249–281. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, L.; Vaishnavi, C. Endodontic microbiology. J. Conserv. Dent. 2010, 13, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.F., Jr. Aetiology of root canal treatment failure: Why well-treated teeth can fail. Int. Endod. J. 2001, 34, 1–10. [Google Scholar] [CrossRef]
- Siqueira, J.F., Jr. Endodontic infections: Concepts, paradigms, and perspectives. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2002, 94, 281–293. [Google Scholar] [CrossRef]
- Versiani, M.A.; Martins, J.; Ordinola-Zapata, R. Anatomical complexities affecting root canal preparation: A narrative review. Aust. Dent. J. 2023, 68 (Suppl. S1), S5–S23. [Google Scholar] [CrossRef]
- Siqueira, J.F., Jr.; Pérez, A.R.; Marceliano-Alves, M.F.; Provenzano, J.C.; Silva, S.G.; Pires, F.R.; Vieira, G.C.S.; Rôças, I.N.; Alves, F.R.F. What happens to unprepared root canal walls: A correlative analysis using micro-computed tomography and histology/scanning electron microscopy. Int. Endod. J. 2018, 51, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.F., Jr.; Rôças, I.D.N.; Marceliano-Alves, M.F.; Pérez, A.R.; Ricucci, D. Unprepared root canal surface areas: Causes, clinical implications, and therapeutic strategies. Braz. Oral. Res. 2018, 32 (Suppl. S1), e65. [Google Scholar] [CrossRef]
- Lee, O.Y.S.; Khan, K.; Li, K.Y.; Shetty, H.; Abiad, R.S.; Cheung, G.S.P.; Neelakantan, P. Influence of apical preparation size and irrigation technique on root canal debridement: A histological analysis of round and oval root canals. Int. Endod. J. 2019, 52, 1366–1376. [Google Scholar] [CrossRef]
- Marvaniya, J.; Agarwal, K.; Mehta, D.N.; Parmar, N.; Shyamal, R.; Patel, J. Minimal Invasive Endodontics: A Comprehensive Narrative Review. Cureus 2022, 14, e25984. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.J.N.L.; De-Deus, G.; Souza, E.M.; Belladonna, F.G.; Cavalcante, D.M.; Simões-Carvalho, M.; Versiani, M.A. Present status and future directions—Minimal endodontic access cavities. Int. Endod. J. 2022, 55 (Suppl. S3), 531–587. [Google Scholar] [CrossRef]
- Zehnder, M. Root canal irrigants. J. Endod. 2006, 32, 389–398. [Google Scholar] [CrossRef] [PubMed]
- Haapasalo, M.; Shen, Y.; Qian, W.; Gao, Y. Irrigation in endodontics. Dent. Clin. N. Am. 2010, 54, 291–312. [Google Scholar] [CrossRef] [PubMed]
- Yared, G.; Al Asmar Ramli, G. Antibacterial Ability of Sodium Hypochlorite Heated in the Canals of Infected Teeth: An Ex Vivo Study. Cureus 2020, 12, e6975. [Google Scholar] [CrossRef] [PubMed]
- Morago, A.; Ruiz-Linares, M.; Ferrer-Luque, C.M.; Baca, P.; Rodríguez Archilla, A.; Arias-Moliz, M.T. Dentine tubule disinfection by different irrigation protocols. Microsc. Res. Tech. 2019, 82, 558–563. [Google Scholar] [CrossRef]
- Boutsioukis, C.; Arias-Moliz, M.T. Present status and future directions—Irrigants and irrigation methods. Int. Endod. J. 2022, 55 (Suppl. S3), 588–612. [Google Scholar] [CrossRef]
- Boutsioukis, C.; Verhaagen, B.; Versluis, M.; Kastrinakis, E.; Wesselink, P.R.; van der Sluis, L.W. Evaluation of irrigant flow in the root canal using different needle types by an unsteady computational fluid dynamics model. J. Endod. 2010, 36, 875–879. [Google Scholar] [CrossRef]
- Snjaric, D.; Carija, Z.; Braut, A.; Halaji, A.; Kovacevic, M.; Kuis, D. Irrigation of human prepared root canal—Ex Vivo based computational fluid dynamics analysis. Croat. Med. J. 2012, 53, 470–479. [Google Scholar] [CrossRef]
- Chang, J.W.; Cheung, A.W.; Cheung, G.S. Effect of root canal dimensions, injection rate, and needle design on the apical extrusion of an irrigant: An in vitro study. J. Investig. Clin. Dent. 2015, 6, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Perez, R.; Neves, A.A.; Belladonna, F.G.; Silva, E.J.N.L.; Souza, E.M.; Fidel, S.; Versiani, M.A.; Lima, I.; Carvalho, C.; De-Deus, G. Impact of needle insertion depth on the removal of hard-tissue debris. Int. Endod. J. 2017, 50, 560–568. [Google Scholar] [CrossRef]
- Raducka, M.; Piszko, A.; Piszko, P.J.; Jawor, N.; Dobrzyński, M.; Grzebieluch, W.; Mikulewicz, M.; Skośkiewicz-Malinowska, K. Narrative Review on Methods of Activating Irrigation Liquids for Root Canal Treatment. Appl. Sci. 2023, 13, 7733. [Google Scholar] [CrossRef]
- Schneider, S.W. A comparison of canal preparations in straight and curved root canals. Oral Surg. Oral Med. Oral Pathol. 1971, 32, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Huang, Z.; Yu, M.; Deng, S.; Fu, B.; Jin, H. Influence of needle working length and root canal curvature on irrigation: A computational fluid dynamics analysis based on a real tooth. BMC Oral Health 2022, 22, 179. [Google Scholar] [CrossRef] [PubMed]
- Psimma, Z.; Boutsioukis, C.; Kastrinakis, E.; Vasiliadis, L. Effect of needle insertion depth and root canal curvature on irrigant extrusion ex vivo. J. Endod. 2013, 39, 521–524. [Google Scholar] [CrossRef]
- Aksel, H.; Askerbeyli, S.; Canbazoglu, C.; Serper, A. Effect of needle insertion depth and apical diameter on irrigant extrusion in simulated immature permanent teeth. Braz. Oral Res. 2014, 28, 1–6. [Google Scholar]
- Uzunoglu-Özyürek, E.; Karaaslan, H.; Türker, S.A.; Özçelik, B. Influence of size and insertion depth of irrigation needle on debris extrusion and sealer penetration. Restor. Dent. Endod. 2017, 43, e2. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, F.R.; Hecker, H.; Weiger, R. Curved Root Canals: Effects of Dimensional Parameters on the Insertion Depth of Irrigation Needles. Dentistry 2011, 1, 101. [Google Scholar]
- Widbiller, M.; Rosendahl, A.; Schlichting, R.; Schuller, C.; Lingl, B.; Hiller, K.-A.; Buchalla, W.; Galler, K.M. Impact of Endodontic Irrigant Activation on Smear Layer Removal and Surface Disintegration of Root Canal Dentine In Vitro. Healthcare 2023, 11, 376. [Google Scholar] [CrossRef]
- Rajamanickam, K.; Teja, K.V.; Ramesh, S.; Choudhari, S.; Cernera, M.; Armogida, N.G.; Mustafa, M.; Spagnuolo, G. Evaluation of Root Canal Cleanliness on Using a Novel Irrigation Device with an Ultrasonic Activation Technique: An Ex Vivo Study. Appl. Sci. 2023, 13, 796. [Google Scholar] [CrossRef]
Curvature | Standard Irrigation Needle (SI) | Side-Vented Needle (SV) | TruNatomy Irrigation Needle (TN) | ||
---|---|---|---|---|---|
Straight n = 40 | Pre-Bent n = 30 | Straight n = 40 | Pre-Bent n = 30 | n = 40 | |
0° | −1.85 ± 0.18 | −1.87 ± 0.24 | −2.20 ± 0.25 | ||
24.7° | −4.36 ± 0.11 | −4.75 ± 0.62 | −4.43 ± 0.10 | −3.50 ± 0.65 | −3.02 ± 0.14 |
46° | −4.77 ± 0.39 | −3.96 ± 0.22 | −4.75 ± 0.10 | −3.66 ± 0.30 | −2.72 ± 0.28 |
69.7° | −5.46 ± 0.34 | −4.16 ± 0.22 | −5.65 ± 0.12 | −3.28 ± 1.69 | −1.64 ± 0.19 |
Curvature | Standard Irrigation Needle (SI) | Side-Vented Needle (SV) | TruNatomy Irrigation Needle (TN) | ||
---|---|---|---|---|---|
Straight n = 40 | Pre-Bent n = 30 | Straight n = 40 | Pre-Bent n = 30 | n = 40 | |
0° | −0.510.12 | −0.850.04 | −1.180.20 | ||
24.7° | −2.960.51 | −1.840.48 | −2.070.12 | −2.330.31 | −2.390.45 |
46° | −3.280.35 | −1.900.20 | −3.450.13 | −1.670.55 | −0.440.14 |
69.7° | −4.670.18 | −2.960.15 | −4.900.14 | −3.020.27 | −0.790.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinker, M.; Frank, W.; Wrbas, K.-T.; Tchorz, J.P. Influence of Root Canal Size and Curvature on Insertion Depth of Three Different Endodontic Irrigation Needles. Oral 2024, 4, 459-466. https://doi.org/10.3390/oral4040037
Pinker M, Frank W, Wrbas K-T, Tchorz JP. Influence of Root Canal Size and Curvature on Insertion Depth of Three Different Endodontic Irrigation Needles. Oral. 2024; 4(4):459-466. https://doi.org/10.3390/oral4040037
Chicago/Turabian StylePinker, Michael, Wilhelm Frank, Karl-Thomas Wrbas, and Jörg Philipp Tchorz. 2024. "Influence of Root Canal Size and Curvature on Insertion Depth of Three Different Endodontic Irrigation Needles" Oral 4, no. 4: 459-466. https://doi.org/10.3390/oral4040037
APA StylePinker, M., Frank, W., Wrbas, K.-T., & Tchorz, J. P. (2024). Influence of Root Canal Size and Curvature on Insertion Depth of Three Different Endodontic Irrigation Needles. Oral, 4(4), 459-466. https://doi.org/10.3390/oral4040037