Parenteral Iron Therapy for Pediatric Patients
Abstract
:1. Introduction
2. History of Intravenous Iron Therapy
3. Intravenous Iron Formulations
4. Safety of Intravenous Iron
5. Low-Molecular-Weight Iron Dextran (LMWID)
6. Iron Sucrose (IS)
7. Ferric Carboxymaltose (FCM)
8. Iron Isomaltoside 1000 (IIM, Ferric Derisomaltose in the US)
9. Parenteral Iron-Induced Hypophosphatemia
10. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Mantadakis, E. Iron deficiency anemia in children residing in high and low-income countries: Risk factors, prevention, diagnosis and therapy. Mediterr. J. Hematol. Infect. Dis. 2020, 12, e2020041. [Google Scholar] [CrossRef] [PubMed]
- Brotanek, J.M.; Gosz, J.; Weitzman, M.; Flores, G. Secular Trends in the Prevalence of Iron Deficiency Among US Toddlers, 1976–2002. Arch. Pediatr. Adolesc. Med. 2008, 162, 374–381. [Google Scholar] [CrossRef]
- Powers, J.M.; McCavit, T.L.; Buchanan, G.R. Management of iron deficiency anemia: A survey of pediatric hematology/oncology specialists. Pediatr. Blood Cancer 2015, 62, 842–846. [Google Scholar] [CrossRef] [PubMed]
- Tolkien, Z.; Stecher, L.; Mander, A.P.; Pereira, D.I.A.; Powell, J.J. Ferrous Sulfate Supplementation Causes Significant Gastrointestinal Side-Effects in Adults: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0117383. [Google Scholar] [CrossRef]
- Fiorino, G.; Colombel, J.-F.; Katsanos, K.; Mearin, F.; Stein, J.; Andretta, M.; Antonacci, S.; Arenare, L.; Citraro, R.; Dell’orco, S.; et al. Iron deficiency anemia impacts disease progression and healthcare resource consumption in patients with inflammatory bowel disease: A real-world evidence study. Ther. Adv. Gastroenterol. 2023, 16, 17562848231177153. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.M.; Jacobson-Kelly, A.M.; Donegan, A.M.; Boyle, B.; Maltz, R.M.; Michel, H.K.; Dotson, J.L. Diagnosis and Treatment of Iron Deficiency and Anemia in Youth with Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2022, 76, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Burisch, J.; Vegh, Z.; Katsanos, K.H.; Christodoulou, D.K.; Lazar, D.; Goldis, A.; O’Morain, C.; Fernandez, A.; Pereira, S.; Myers, S.; et al. Occurrence of Anaemia in the First Year of Inflammatory Bowel Disease in a European Population-based Inception Cohort—An ECCO-EpiCom Study. J. Crohn’s Colitis 2017, 11, 1213–1222. [Google Scholar] [CrossRef]
- Stein, J.; Bager, P.; Befrits, R.; Gasche, C.; Gudehus, M.; Lerebours, E.; Magro, F.; Mearin, F.; Mitchell, D.; Oldenburg, B.; et al. Anaemia management in patients with inflammatory bowel disease: Routine practice across nine European countries. Eur. J. Gastroenterol. Hepatol. 2013, 25, 1456–1463. [Google Scholar] [CrossRef] [PubMed]
- Gasche, C.; Berstad, A.; Befrits, R.; Beglinger, C.; Dignass, A.; Erichsen, K.; Gomollon, F.; Hjortswang, H.; Koutroubakis, I.; Kulnigg, S.; et al. Guidelines on the diagnosis and management of iron deficiency and anemia in inflammatory bowel diseases. Inflamm. Bowel Dis. 2007, 13, 1545–1553. [Google Scholar] [CrossRef]
- Van Assche, G.; Dignass, A.; Bokemeyer, B.; Danese, S.; Gionchetti, P.; Moser, G.; Beaugerie, L.; Gomollón, F.; Häuser, W.; Herrlinger, K.; et al. Second European evidence-based consensus on the diagnosis and management of ulcerative colitis Part 3: Special situations. J. Crohn’s Colitis 2013, 7, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Domellöf, M.; Szitanyi, P.; Simchowitz, V.; Franz, A.; Mimouni, F. ESPGHAN/ESPEN/ESPR/CSPEN Working Group on Pediatric Parenteral Nutrition. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Iron and trace minerals. Clin. Nutr. 2018, 37, 2354–2359. [Google Scholar] [CrossRef]
- Marchasin, S.; Wallerstein, R.O. The Treatment of Iron-Deficiency Anemia with Intravenous Iron Dextran. Blood 1964, 23, 354–358. [Google Scholar] [CrossRef]
- Hamstra, R.D.; Block, M.H.; Schocket, A.L. Intravenous Iron Dextran in Clinical Medicine. JAMA 1980, 243, 1726–1731. [Google Scholar] [CrossRef]
- Chertow, G.M.; Mason, P.D.; Vaage-Nilsen, O.; Ahlmén, J. Update on adverse drug events associated with parenteral iron. Nephrol. Dial. Transplant. 2006, 21, 378–382. [Google Scholar] [CrossRef]
- Rodgers, G.M.; Auerbach, M.; Cella, D.; Chertow, G.M.; Coyne, D.W.; Glaspy, J.A.; Henry, D.H. High-Molecular Weight Iron Dextran: A Wolf in Sheep’s Clothing? J. Am. Soc. Nephrol. 2008, 19, 833–834. [Google Scholar] [CrossRef]
- Geisser, P.; Burckhardt, S. The Pharmacokinetics and Pharmacodynamics of Iron Preparations. Pharmaceutics 2011, 3, 12–33. [Google Scholar] [CrossRef]
- Halpin, T.C.; Bertino, J.S.; Rothstein, F.C.; Kurczynski, E.M.; Reed, M.D. Iron-Deficiency Anemia in Childhood Inflammatory Bowel Disease: Treatment with Intravenous Iron-Dextran. J. Parenter. Enter. Nutr. 1982, 6, 9–11. [Google Scholar] [CrossRef]
- Mamula, P.; Piccoli, D.A.; Peck, S.N.; Markowitz, J.E.; Baldassano, R.N. Total Dose Intravenous Infusion of Iron Dextran for Iron-Deficiency Anemia in Children with Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2002, 34, 286–290. [Google Scholar] [CrossRef]
- Auerbach, M.; Macdougall, I.C. Safety of intravenous iron formulations: Facts and folklore. Blood Transfus. 2014, 12, 296–300. [Google Scholar] [CrossRef]
- Mantadakis, E. Advances in Pediatric Intravenous Iron Therapy. Pediatr. Blood Cancer 2015, 63, 11–16. [Google Scholar] [CrossRef]
- Caimmi, S.; Crisafulli, G.; Franceschini, F.; Liotti, L.; Bianchi, A.; Bottau, P.; Mori, F.; Triggiano, P.; Paglialunga, C.; Saretta, F.; et al. Hypersensitivity to Intravenous Iron Preparations. Children 2022, 9, 1473. [Google Scholar] [CrossRef]
- Ganzoni, A.M. Kinetics and regulation of erythrocyte production. Experimental studies on normal and anemic rats. Exp. Med. Pathol. Klin. 1970, 31, 1–94. [Google Scholar]
- Ganzoni, A.M. New aspects of iron deficiency. Schweiz. Med. Wochenschr. 1970, 100, 691–697. [Google Scholar]
- Avni, T.; Bieber, A.; Grossman, A.; Green, H.; Leibovici, L.; Gafter-Gvili, A. The Safety of Intravenous Iron Preparations. Mayo Clin. Proc. 2015, 90, 12–23. [Google Scholar] [CrossRef]
- Bullen, J.J.; Ward, C.G.; Rogers, H.J. The critical role of iron in some clinical infections. Eur. J. Clin. Microbiol. Infect. Dis. 1991, 10, 613–617. [Google Scholar] [CrossRef]
- Michels, K.R.; Lambrecht, N.J.; Carson, W.F.; A Schaller, M.; Lukacs, N.W.; Bermick, J.R. The Role of Iron in the Susceptibility of Neonatal Mice to Escherichia coli K1 Sepsis. J. Infect. Dis. 2019, 220, 1219–1229. [Google Scholar] [CrossRef]
- Bircher, A.J.; Auerbach, M. Hypersensitivity from Intravenous Iron Products. Immunol. Allergy Clin. N. Am. 2014, 34, 707–723. [Google Scholar] [CrossRef]
- Rampton, D.; Folkersen, J.; Fishbane, S.; Hedenus, M.; Howaldt, S.; Locatelli, F.; Patni, S.; Szebeni, J.; Weiss, G. Hypersensitivity reactions to intravenous iron: Guidance for risk minimization and management. Haematologica 2014, 99, 1671–1676. [Google Scholar] [CrossRef]
- Szebeni, J.; Fishbane, S.; Hedenus, M.; Howaldt, S.; Locatelli, F.; Patni, S.; Rampton, D.; Weiss, G.; Folkersen, J. Hypersensitivity to intravenous iron: Classification, terminology, mechanisms and management. Br. J. Pharmacol. 2015, 172, 5025–5036. [Google Scholar] [CrossRef]
- Wang, C.; Graham, D.J.; Kane, R.C.; Xie, D.; Wernecke, M.; Levenson, M.; MaCurdy, T.E.; Houstoun, M.; Ryan, Q.; Wong, S.; et al. Comparative Risk of Anaphylactic Reactions Associated with Intravenous Iron Products. JAMA 2015, 314, 2062–2068. [Google Scholar] [CrossRef]
- Mulder, M.B.; van Den Hoek, H.L.; Birnie, E.; van Tilburg, A.J.; Westerman, E.M. Comparison of hypersensitivity reactions of intravenous iron: Iron isomaltoside-1000 (Monofer®) versus ferric carboxy-maltose (Ferinject®). A single center, cohort study. Br. J. Clin. Pharmacol. 2018, 85, 385–392. [Google Scholar] [CrossRef]
- Pollock, R.F.; Biggar, P. Indirect methods of comparison of the safety of ferric derisomaltose, iron sucrose and ferric carboxymaltose in the treatment of iron deficiency anemia. Expert Rev. Hematol. 2020, 13, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Durup, D.; de Muckadell, P.S.; Strom, C.C. Evaluation of the reported rates of hypersensitivity reactions associated with iron dextran and ferric carboxymaltose based on global data from VigiBase™ and IQVIA™ MIDAS® over a ten-year period from 2008 to 2017. Expert Rev. Hematol. 2020, 13, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.C.P. Epidemiology of adverse reactions to nonsteroidal antiinflammatory drugs. Adv. Inflam. Res. 1984, 6, 1. [Google Scholar]
- Nathell, L.; Gohlke, A.; Wohlfeil, S. Reported Severe Hypersensitivity Reactions after Intravenous Iron Administration in the European Economic Area (EEA) Before and After Implementation of Risk Minimization Measures. Drug Saf. 2019, 43, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Plummer, E.S.; Crary, S.E.; McCavit, T.L.; Buchanan, G.R. Intravenous low molecular weight iron dextran in children with iron deficiency anemia unresponsive to oral iron. Pediatr. Blood Cancer 2013, 60, 1747–1752. [Google Scholar] [CrossRef] [PubMed]
- Boucher, A.A.; Pfeiffer, A.; Bedel, A.; Young, J.; McGann, P.T. Utilization trends and safety of intravenous iron replacement in pediatric specialty care: A large retrospective cohort study. Pediatr. Blood Cancer 2018, 65, e26995. [Google Scholar] [CrossRef] [PubMed]
- Surico, G.; Muggeo, P.; Muggeo, V.; Lucarelli, A.; Martucci, T.; Daniele, R.; Rigillo, N. Parenteral iron supplementation for the treatment of iron deficiency anemia in children. Ann. Hematol. 2002, 81, 154–157. [Google Scholar] [CrossRef]
- Michaud, L.; Guimber, D.; Mention, K.; Neuville, S.; Froger, H.; Gottrand, F.; Turck, D. Tolerance and efficacy of intravenous iron saccharate for iron deficiency anemia in children and adolescents receiving long-term parenteral nutrition. Clin. Nutr. 2002, 21, 403–407. [Google Scholar] [CrossRef]
- Pinsk, V.; Levy, J.; Moser, A.; Yerushalmi, B.; Kapelushnik, J. Efficacy and safety of intravenous iron sucrose therapy in a group of children with iron deficiency anemia. Isr. Med. Assoc. J. 2008, 10, 335–338. [Google Scholar]
- Crary, S.E.; Hall, K.; Buchanan, G.R. Intravenous iron sucrose for children with iron deficiency failing to respond to oral iron therapy. Pediatr. Blood Cancer 2010, 56, 615–619. [Google Scholar] [CrossRef] [PubMed]
- Mantadakis, E.; Tsouvala, E.; Xanthopoulou, V.; Chatzimichael, A. Intravenous iron sucrose for children with iron deficiency anemia: A single institution study. World J. Pediatr. 2015, 12, 109–113. [Google Scholar] [CrossRef] [PubMed]
- Kaneva, K.; Chow, E.; Rosenfield, C.G.; Kelly, M.J. Intravenous Iron Sucrose for Children with Iron Deficiency Anemia. J. Pediatr. Hematol. 2017, 39, e259–e262. [Google Scholar] [CrossRef]
- Sharma, R.; Stanek, J.R.; Koch, T.L.; Grooms, L.; O’Brien, S.H. Intravenous iron therapy in non-anemic iron-deficient menstruating adolescent females with fatigue. Am. J. Hematol. 2016, 91, 973–977. [Google Scholar] [CrossRef] [PubMed]
- Houston, B.L.; Hurrie, D.; Graham, J.; Perija, B.; Rimmer, E.; Rabbani, R.; Bernstein, C.N.; Turgeon, A.F.; A Fergusson, D.; Houston, D.S.; et al. Efficacy of iron supplementation on fatigue and physical capacity in non-anaemic iron-deficient adults: A systematic review of randomised controlled trials. BMJ Open 2018, 8, e019240. [Google Scholar] [CrossRef] [PubMed]
- Sabe, R.; Vatsayan, A.; Mahran, A.; Khalili, A.S.; Ahuja, S.; Sferra, T.J. Safety and Efficacy of Intravenous Iron Sucrose for Iron-Deficiency Anemia in Children and Adolescents with Inflammatory Bowel Disease. Glob. Pediatr. Health 2019, 6, 2333794X19870981. [Google Scholar] [CrossRef] [PubMed]
- Grim, K.; Lee, B.; Sung, A.Y.; Kotagal, S. Treatment of childhood-onset restless legs syndrome and periodic limb movement disorder using intravenous iron sucrose. Sleep Med. 2013, 14, 1100–1104. [Google Scholar] [CrossRef]
- Keating, G.M. Ferric Carboxymaltose: A Review of Its Use in Iron Deficiency. Drugs 2014, 75, 101–127. [Google Scholar] [CrossRef]
- Evstatiev, R.; Alexeeva, O.; Bokemeyer, B.; Chopey, I.; Felder, M.; Gudehus, M.; Iqbal, T.; Khalif, I.; Marteau, P.; Stein, J.; et al. Ferric Carboxymaltose Prevents Recurrence of Anemia in Patients with Inflammatory Bowel Disease. Clin. Gastroenterol. Hepatol. 2013, 11, 269–277. [Google Scholar] [CrossRef]
- Evstatiev, R.; Marteau, P.; Iqbal, T.; Khalif, I.L.; Stein, J.; Bokemeyer, B.; Chopey, I.V.; Gutzwiller, F.S.; Riopel, L.; Gasche, C. FERGIcor, a Randomized Controlled Trial on Ferric Carboxymaltose for Iron Deficiency Anemia in Inflammatory Bowel Disease. Gastroenterology 2011, 141, 846–853.e2. [Google Scholar] [CrossRef]
- Powers, J.M.; Shamoun, M.; McCavit, T.L.; Adix, L.; Buchanan, G.R. Intravenous Ferric Carboxymaltose in Children with Iron Deficiency Anemia Who Respond Poorly to Oral Iron. J. Pediatr. 2016, 180, 212–216. [Google Scholar] [CrossRef]
- Mantadakis, E.; Roganovic, J. Safety and efficacy of ferric carboxymaltose in children and adolescents with iron deficiency anemia. J. Pediatr. 2017, 184, 241. [Google Scholar] [CrossRef] [PubMed]
- Bevers, N.; Van de Vijver, E.; Aliu, A.; Ardabili, A.R.; Rosias, P.; Stapelbroek, J.; Maartens, I.A.B.; van de Feen, C.; Escher, H.; Oudshoorn, A.; et al. Ferric Carboxymaltose Versus Ferrous Fumarate in Anemic Children with Inflammatory Bowel Disease: The POPEYE Randomized Controlled Clinical Trial. J. Pediatr. 2022, 256, 113–119.e4. [Google Scholar] [CrossRef]
- Kaenkumchorn, T.K.; Rosete, B.E.; Carlin, K.; Fukasawa, S.; Horslen, S.P.; Wendel, D. Analysis of transition from intravenous iron sucrose to ferric carboxymaltose infusions in pediatric patients with intestinal failure. J. Parenter. Enter. Nutr. 2022, 46, 1578–1584. [Google Scholar] [CrossRef] [PubMed]
- Korczowski, B.; Farrell, C.; Falone, M.; Blackman, N.; Rodgers, T. Safety, pharmacokinetics, and pharmacodynamics of intravenous ferric carboxymaltose in children with iron deficiency anemia. Pediatr. Res. 2023, 94, 1547–1554. [Google Scholar] [CrossRef]
- Laass, M.W.; Straub, S.; Chainey, S.; Virgin, G.; Cushway, T. Effectiveness and safety of ferric carboxymaltose treatment in children and adolescents with inflammatory bowel disease and other gastrointestinal diseases. BMC Gastroenterol. 2014, 14, 184. [Google Scholar] [CrossRef]
- Gordon, M.; Sinopoulou, V.; Iheozor-Ejiofor, Z.; Iqbal, T.; Allen, P.; Hoque, S.; Engineer, J.; Akobeng, A.K. Interventions for treating iron deficiency anaemia in inflammatory bowel disease. Cochrane Database Syst. Rev. 2021, 2021, CD013529. [Google Scholar] [CrossRef]
- Aksan, A.; Işık, H.; Radeke, H.H.; Dignass, A.; Stein, J. Systematic review with network meta-analysis: Comparative efficacy and tolerability of different intravenous iron formulations for the treatment of iron deficiency anaemia in patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2017, 45, 1303–1318. [Google Scholar] [CrossRef]
- Panagopoulou, P.; Alexiadou, S.; Ntoumpara, M.; Papazoglou, A.; Makis, A.; Tragiannidis, A.; Fotoulaki, M.; Mantadakis, E. Safety of Ferric Carboxymaltose in Children: Report of a Case Series from Greece and Review of the Literature. Pediatr. Drugs 2022, 24, 137–146. [Google Scholar] [CrossRef]
- Schaefer, B.; Tobiasch, M.; Wagner, S.; Glodny, B.; Tilg, H.; Wolf, M.; Zoller, H. Hypophosphatemia after intravenous iron therapy: Comprehensive review of clinical findings and recommendations for management. Bone 2022, 154, 116202. [Google Scholar] [CrossRef]
- Edmonston, D.; Wolf, M. FGF23 at the crossroads of phosphate, iron economy and erythropoiesis. Nat. Rev. Nephrol. 2020, 16, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.; Koch, T.A.; Bregman, D.B. Effects of iron deficiency anemia and its treatment on fibroblast growth factor 23 and phosphate homeostasis in women. J. Bone Miner. Res. 2013, 28, 1793–1803. [Google Scholar] [CrossRef] [PubMed]
- Wolf, M.; Rubin, J.; Achebe, M.; Econs, M.J.; Peacock, M.; Imel, E.A.; Thomsen, L.L.; Carpenter, T.O.; Weber, T.; Brandenburg, V.; et al. Effects of Iron Isomaltoside vs Ferric Carboxymaltose on Hypophosphatemia in Iron-Deficiency Anemia: Two Randomized Clinical Trials. JAMA 2020, 323, 432. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, B.; Tobiasch, M.; Viveiros, A.; Tilg, H.; Kennedy, N.A.; Wolf, M.; Zoller, H. Hypophosphataemia after treatment of iron deficiency with intravenous ferric carboxymaltose or iron isomaltoside—A systematic review and meta-analysis. Br. J. Clin. Pharmacol. 2020, 87, 2256–2273. [Google Scholar] [CrossRef] [PubMed]
- Posod, A.; Schaefer, B.; Mueller, T.; Zoller, H.; Kiechl-Kohlendorfer, U. Hypophosphatemia in children treated with ferric carboxymaltose. Acta Paediatr. 2020, 109, 1491–1492. [Google Scholar] [CrossRef] [PubMed]
- Cococcioni, L.; Pensabene, L.; El-Khouly, S.; Chadokufa, S.; McCartney, S.; Saliakellis, E.; Kiparissi, F.; Borrelli, O. Ferric carboxymaltose treatment for iron deficiency anemia in children with inflammatory bowel disease: Efficacy and risk of hypophosphatemia. Dig. Liver Dis. 2021, 53, 830–834. [Google Scholar] [CrossRef]
- Kirk, S.E.; Scheurer, M.E.; Bernhardt, M.B.; Mahoney, D.H.; Powers, J.M. Phosphorus levels in children treated with intravenous ferric carboxymaltose. Am. J. Hematol. 2021, 96, E215–E218. [Google Scholar] [CrossRef]
- Russo, G.; Guardabasso, V.; Romano, F.; Corti, P.; Samperi, P.; Condorelli, A.; Sainati, L.; Maruzzi, M.; Facchini, E.; Fasoli, S.; et al. Monitoring oral iron therapy in children with iron deficiency anemia: An observational, prospective, multicenter study of AIEOP patients (Associazione Italiana Emato-Oncologia Pediatrica). Ann. Hematol. 2020, 99, 413–420. [Google Scholar] [CrossRef]
- Mantadakis, E. Intravenous iron: Safe and underutilized in children. Pediatr. Blood Cancer 2018, 65, e27016. [Google Scholar] [CrossRef]
Inability to swallow oral iron preparations |
Failure of oral iron therapy (poor compliance due to taste, adverse effects usually from the digestive system, need for long-term treatment, etc.) |
Inadequate absorption of iron from the gut (e.g., celiac disease, IBD, short bowel syndrome, gastric bypass surgery, iron-refractory iron deficiency anemia (IRIDA), etc.) |
Continued blood loss from the digestive tract (e.g., esophageal varices, intestinal mucosal telangiectasias, etc.) |
Need for rapid correction of anemia (e.g., before elective surgery) |
Functional IDA (e.g., chronic renal failure, rheumatoid arthritis, etc.) |
Refusal of transfusions for religious or other reasons |
Side Effects | Duration of Therapy | Cost | Quality of Life |
---|---|---|---|
Gastrointestinal | At least 3 months | Low, but the need for laboratory and clinical follow-up increases cost | It depends on patient compliance, anemia correction, and follow-up visits for clinical and laboratory work-up |
Infusional | Correction of the total iron deficit with a single or a few infusions | High, due to the acquisition cost of parenteral iron | Outpatient or inpatient administration, frequently only once |
First-generation products | High-molecular-weight iron dextran (HMWID) |
Second-generation products | Low-molecular-weight iron dextran (LMWID), ferric gluconate, iron sucrose (sucroferric oxyhydroxide or iron saccharate) |
Third-generation products | Ferumoxytol, ferric carboxymaltose, iron isomaltoside 1000 (ferric derisomaltose in the US) |
Hemoglobin | Patient Body Weight | ||
---|---|---|---|
g/dL | <35 kg | 35–70 kg | ≥70 kg |
<10 | 30 mg/kg | 1500 mg | 2000 mg |
10–14 | 15 mg/kg | 1000 mg | 1500 mg |
≥14 | 15 mg/kg | 500 mg | 500 mg |
LMWID | Ferric Gluconate | Iron Sucrose | Ferric Carboxymaltose | |
---|---|---|---|---|
Test dose recommended | Yes | No | No | No |
TDI possible | Yes | No | No | Yes |
Rate of IV administration | Over 60 min | Over 60 min | If dose ≤100 mg over ≥30 min If dose 100–200 mg over ≥60 min If dose 200–300 mg over ≥90 min Do not use single doses >300 mg | Dilute to ≥2 mg/mL over ≥15 min BW <50 kg: 5 mg/kg on day 1; repeat dose after at least 7 days (max: 1500 mg per course in the US) ≥50 kg: 750 mg on day 1; repeat dose after at least 7 days (max: 1500 mg per course in the US) In Europe, max 1000 mg/day, not to exceed 1000 mg/week |
Iron concentration in commercially available vial | 50 mg/mL | 12.5 mg/mL | 20 mg/ml | 50 mg/mL |
IV preparation guidelines | Dilute in sterile 0.9% NaCl and infuse over 4 to 6 h | Dilute in 100 mL of sterile 0.9% NaCl and infuse over 1 h | Dilute in sterile 0.9% NaCl. The final solution should be 1 mg/mL | Dilute up to 750 mg in ≤250 mL of 0.9% NaCl. The final solution must be ≥2 mg/mL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantadakis, E.; Alexiadou, S.; Zikidou, P. Parenteral Iron Therapy for Pediatric Patients. Hemato 2024, 5, 35-47. https://doi.org/10.3390/hemato5010005
Mantadakis E, Alexiadou S, Zikidou P. Parenteral Iron Therapy for Pediatric Patients. Hemato. 2024; 5(1):35-47. https://doi.org/10.3390/hemato5010005
Chicago/Turabian StyleMantadakis, Elpis, Sonia Alexiadou, and Panagiota Zikidou. 2024. "Parenteral Iron Therapy for Pediatric Patients" Hemato 5, no. 1: 35-47. https://doi.org/10.3390/hemato5010005
APA StyleMantadakis, E., Alexiadou, S., & Zikidou, P. (2024). Parenteral Iron Therapy for Pediatric Patients. Hemato, 5(1), 35-47. https://doi.org/10.3390/hemato5010005