Risk Factors and Risk Stratification of Thromboembolic Risk in Patients with Multiple Myeloma
Abstract
:1. Introduction
2. Epidemiology of CAT
3. Hemostatic Abnormalities in Patients with Multiple Myeloma
3.1. Primary Hemostasis
3.2. Secondary Hemostasis and Coagulation Inhibitors
3.3. Effect of Paraproteins on Coagulation Potential
3.4. Other Tests
3.5. Global Hemostatic Methods
4. Risk Factors Associated with the Patient
5. Effect of Treatment on Thrombotic Risk
6. Guidelines and Risk Scores
7. Thromboprophylaxis
8. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goldenberg, N.; Kahn, S.R.; Solymos, S. Markers of coagulation and angiogenesis in cancer-associated venous thromboembolism. J. Clin. Oncol. 2003, 21, 4194–4199. [Google Scholar] [CrossRef] [PubMed]
- Falanga, A.; Marchetti, M.; Vignoli, A. Coagulation and cancer: Biological and clinical aspects. J. Thromb. Haemost. 2013, 11, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Blom, J.W.; Doggen, C.J.; Osanto, S.; Rosendaal, F.R. Malignancies, prothrombotic mutations, and the risk of venous thrombosis. JAMA 2005, 293, 715–722. [Google Scholar] [CrossRef]
- Matsui, W.; Wang, Q.; Barber, J.P.; Brennan, S.; Smith, B.D.; Borrello, I.; McNiece, I.; Lin, L.; Ambinder, R.F.; Peacock, C.; et al. Clonogenic multiple myeloma progenitors, stem cell properties, and drug resistance. Cancer Res. 2008, 68, 190–197. [Google Scholar] [CrossRef]
- Sant, M.; Allemani, C.; Tereanu, C.; De Angelis, R.; Capocaccia, R.; Visser, O.; Marcos-Gragera, R.; Maynadiè, M.; Simonetti, A.; Lutz, J.M.; et al. Incidence of hematologic malignancies in Europe by morphologic subtype: Results of the HAEMACARE project. Blood 2010, 116, 3724–3734. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, A.; Anderson, K. Multiple Myeloma. NEJM 2011, 364, 1046–1060. [Google Scholar] [CrossRef] [PubMed]
- Barlogie, B.; Jagannath, S.; Desikan, K.R.; Mattox, S.; Vesole, D.; Siegel, D.; Tricot, G.; Munshi, N.; Fassas, A.; Singhal, S.; et al. Total therapy with tandem transplants for newly diagnosed multiple myeloma. Blood 1999, 93, 55–65. [Google Scholar] [CrossRef]
- Kristinsson, S.Y.; Pfeiffer, R.M.; Björkholm, M.; Goldin, L.R.; Schulman, S.; Blimark, C.; Mellqvist, U.H.; Wahlin, A.; Turesson, I.; Landgren, O. Arterial and venous thrombosis in monoclonal gammopathy of undetermined significance and multiple myeloma: A population-based study. Blood 2010, 115, 4991–4998. [Google Scholar] [CrossRef]
- De Stefano, V.; Za, T.; Rossi, E. Venous thromboembolism in multiple myeloma. Semin. Thromb. Hemost. 2014, 40, 338–347. [Google Scholar]
- Kristinsson, S.Y. Thrombosis in multiple myeloma. Hematol. Am. Soc. Hematol. Educ. Program 2010, 2010, 437–444. [Google Scholar] [CrossRef]
- Zangari, M.; Anaissie, E.; Badros, A. Thrombotic complications in myeloma patients receiving thalidomide in combination with chemotherapy. Thromb. Haemost. 2001, P2192, (Abstract). [Google Scholar]
- Fotiou, D.; Sergentanis, T.N.; Papageorgiou, L.; Stamatelopoulos, K.; Gavriatopoulou, M.; Kastritis, E.; Psaltopoulou, T.; Salta, S.; Van Dreden, P.; Sangare, R.; et al. Longer procoagulant phospholipid dependent clotting time, lower endogenous thrombin potential and higher tissue factor pathway inhibitor concentrations are associated with increased VTE occurrence in patients with newly diagnosed multiple myeloma: Results of the prospective ROADMAP-MM-CAT study. Blood Cancer J. 2018, 8, 102. [Google Scholar] [PubMed] [Green Version]
- Lim, H.Y.; Brook, R.; Krishnamoorthi, B.; Tacey, M.; Leung, T.; Donnan, G.; Nandurkar, H.; Ho, P. Global coagulation assays in patients with multiple myeloma and monoclonal gammopathy of unknown significance. Thromb. Res. 2019, 183, 45–48. [Google Scholar] [CrossRef]
- Crowley, M.P.; Quinn, S.; Coleman, E.; Eustace, J.A.; Gilligan, O.M.; Shea, S.I.O. Differing coagulation profiles of patients with monoclonal gammopathy of undetermined significance and multiple myeloma. J. Thromb. Thrombolysis 2015, 39, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Tiong, I.S.; Rodgers, S.E.; Lee, C.H.S.; McRae, S.J. Baseline and treatment-related changes in thrombin generation in patients with multiple myeloma. Leuk. Lymphoma 2017, 58, 941–949. [Google Scholar] [CrossRef]
- Sokol, J.; Hrncar, M.; Nehaj, F.; Stasko, J. Plasma Levels of Vascular Endothelial Growth Factor and Selected Hemostatic Parameters in Association with Treatment Response in Multiple Myeloma. Clin. Appl. Thromb. Hemost. 2019, 25, 1–6. [Google Scholar] [CrossRef]
- Hinterleitner, C.; Pecher, A.-C.; Kreißelmeier, K.-P.; Budde, U.; Kanz, L.; Kopp, H.-G.; Jaschonek, K. Disease progression and defects in primary hemostasis as major cause of bleeding in multiple myeloma. Eur. J. Haematol. 2020, 104, 26–35. [Google Scholar] [CrossRef]
- Eby, C.S. Bleeding and Thrombosis Risks in Plasma Cell Dyscrasias. Hematol. Am. Soc. Hematol. Educ. Program 2007, 1, 158–164. [Google Scholar] [CrossRef]
- Gomperts, E.D.; Shulman, G.; Lynch, S.R. Factor VIII and factor- VIII-related antigen in multiple myelomatosis and related conditions. Br. J. Haematol. 1976, 32, 249–255. [Google Scholar] [CrossRef]
- Zangari, M.; Saghafifar, F.; Anaissie, E.; Badros, A.; Desikan, R.; Fassas, A.; Mehta, P.; Morris, C.; Toor, A.; Whitfield, D.; et al. Activated protein C resistance in the absence of factor V Leiden mutation is a common finding in multiple myeloma and is associated with an increased risk of thrombotic complications. Blood Coagul. Fibrinolysis 2002, 13, 187–192. [Google Scholar] [CrossRef]
- Jalowiec, K.A.; Andres, M.; Mansouri Taleghani, B.; Musa, A.; Dickenmann, M.; Angelillo-Scherrer, A.; Rovó, A.; Kremer Hovinga, J.A. Acquired hemophilia A and plasma cell neoplasms: A case report and review of the literature. J. Med. Case Rep. 2020, 14, 206. [Google Scholar] [CrossRef] [PubMed]
- Röllig, C.; Knop, S.; Bornhäuser, M. Multiple myeloma. Lancet 2015, 385, 2197–2208. [Google Scholar] [CrossRef]
- Choufani, E.B.; Sanchorawala, V.; Ernst, T.; Quillen, K.; Skinner, M.; Wright, D.G.; Seldin, D.C. Acquired factor X deficiency in patients with amyloid light-chain amyloidosis: Incidence, bleeding manifestations, and response to high-dose chemotherapy. Blood 2001, 97, 1885–1887. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, D.A.; Muga, K.; Boothroyd, E.M. The effect of fibrin structure on fibrinolysis. J. Biol. Chem. 1992, 2367, 24259–24263. [Google Scholar] [CrossRef]
- Gabriel, D.A.; Smith, L.A.; Folds, J.D.; Davis, L.; Cancelosi, S.E. The influence of immunoglobulin (IgG) on the assembly of fibrin gels. J. Lab. Clin. Med. 1983, 101, 545–552. [Google Scholar] [PubMed]
- Frick, P.G. Inhibition of conversion of fibrinogen to fibrin by abnormal proteins in multiple myeloma. Am. J. Clin. Pathol. 1955, 25, 12634–12637. [Google Scholar] [CrossRef] [PubMed]
- Lopaciuk, S.; Snigurowicz, J.; Rostkowska, J.; Pniejnia-Olszynski, W.; Powiertowska-Rezmer, M. Disorders in the conversion of fibrinogen to fibrin in patients with multiple myeloma. Acta Haematol. Pol. 1978, 9, 157–164. [Google Scholar]
- Cohen, L.; Amir, J.; Bern Shaul, Y.; Pick, A.; De Vries, A. Plasma cell myeloma associated with an unusual myeloma protein causing impairment of fibrin aggregation and platelet function in a patient with multiple malignancy. Am. J. Med. 1970, 48, 766–776. [Google Scholar] [CrossRef]
- Carr, M.E.; Dent, R.M.; Carr, S.L. Abnormal fibrin structure and inhibition of fibrinolysis in patients with multiple myeloma. J. Lab. Clin. Med. 1996, 128, 83–88. [Google Scholar] [CrossRef]
- Carr, M.E.; Zrekert, S.L. Abnormal clot retraction, altered fibrin structure and normal platelet function in multiple myeloma. Am. J. Physiol. 1994, 266, H1195–H1201. [Google Scholar] [CrossRef]
- O’Kane, M.J.; Wisdom, G.B.; Desai, Z.R.; Archbold, G.P. Inhibition of fibrin monomer polymerization by myeloma immunoglobulin. J. Clin. Pathol. 1994, 47, 266–268. [Google Scholar] [CrossRef] [PubMed]
- Panzer, S.; Thaler, E. An acquired cryoglobulinemia which inhibits fibrin polymerization in a patient with IgG kappa myeloma. Haemostasis 1993, 23, 69–76. [Google Scholar] [CrossRef] [PubMed]
- Coleman, M.; Vigiliano, E.M.; Weksler, M.E.; Nachman, R.L. Inhibition of fibrin monomer polymerization by lambda myeloma globulins. Blood 1972, 39, 210–223. [Google Scholar] [CrossRef]
- Zarfati, M.; Katz, T.; Avivi, I.; Brenner, B.; Aharon, A. The role of microvesicles in multiple myeloma progression. PO-45 Abstracts. Thromb. Res. 2016, 140, S168–S200. [Google Scholar] [CrossRef]
- Nielsen, T.; Kristensen, S.R.; Gregersen, H.; Teodorescu, E.M.; Christiansen, G.; Pedersen, S. Extracellular vesicle-associated procoagulant phospholipid and tissue factor activity in multiple myeloma. PLoS ONE 2019, 14, e0210835. [Google Scholar] [CrossRef] [PubMed]
- Lancé, M.D. A general review of major global coagulation assays: Thrombelastography, thrombin generation test and clot waveform analysis. Thromb. J. 2015, 13, 1. [Google Scholar] [CrossRef]
- Ay, C.; Dunkler, D.; Simanek, R.; Thaler, J.; Koder, S.; Marosi, C.; Zielinski, C.; Pabinger, I. Prediction of venous thromboembolism in patients with cancer by measuring thrombin generation: Results from the Vienna Cancer and Thrombosis Study. J. Clin. Oncol. 2011, 29, 2099–2103. [Google Scholar] [CrossRef]
- Legendre, P.; Verstraete, E.; Poinsard, A.; Martin, M.; Perrin, J.; Perrot, A.; Hulin, C.; Faure, G.; Latger-Cannard, V. Hypocoagulability as assessed by thrombin generation test in newly-diagnosed patients with multiple myeloma. Blood Cells Mol. Dis. 2017, 66, 47–49. [Google Scholar] [CrossRef]
- Crowley, M.P.; Kevane, B.; O’Shea, S.I.; Quinn, S.; Egan, K.; Gilligan, O.M.; Ni Áinle, F. Plasma thrombin generation and sensitivity to activated protein C among patients with myeloma and monoclonal gammopathy of undetermined significance. Clin. Appl. Thromb. Hemost. 2016, 22, 554–562. [Google Scholar] [CrossRef]
- Undas, A.; Zubkiewicz-Usnarska, L.; Helbig, G.; Woazczyk, D.; Kozinska, J.; Dmoszynska, A.; Debski, J.; Podolak-Dawidziak, M.; Kuliczkowski, K. Induction therapy alters plasma fibrin clot properties in multiple myeloma patients: Association with thromboembolic complications. Blood. Coagul. Fibrinolysis. 2015, 26, 621–627. [Google Scholar] [CrossRef]
- Nielsen, T.; Risom Kristensen, S.; Gregersen, H.; Teodorescu, E.M.; Pedersen, S. Prothrombotic abnormalities in patients with multiple myeloma and monoclonal gammopathy of undetermined significance. Thromb. Res. 2021, 202, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Leiba, M.; Malkiel, S.; Budnik, I.; Rozic, G.; Avigdor, A.; Duek, A.; Nagler, A.; Kenet, G.; Livnat, T. Thrombin generation as a predictor of thromboembolic events in multiple myeloma patients. Blood Cells Mol. Dis. 2017, 65, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Leleu, X.; Rodon, P.; Hulin, C.; Daley, L.; Dauriac, C.; Hacini, M.; Decaux, O.; Eisemann, J.-C.; Fitoussi, O.; Lioure, B.; et al. MELISSE, a large multicentric observational study to determine risk factors of venous thromboembolism in patients with multiple myeloma treated with immunomodulatory drugs. Thromb. Haemost. 2013, 110, 844–851. [Google Scholar] [CrossRef] [PubMed]
- Rus, C.; Bazzan, M.; Palumbo, A.; Bringhen, S.; Boccadoro, M. Thalidomide in front line treatment in multiple myeloma: Serious risk of venous thromboembolism and evidence for thromboprophylaxis. J. Thromb. Haemost. 2004, 2, 2063–2065. [Google Scholar] [CrossRef]
- Barlogie, B.; Desikan, R.; Eddlemon, P.; Spencer, T.; Zeldis, J.; Munshi, N.; Badros, A.; Zangari, M.; Anaissie, E.; Epstein, J.; et al. Extended survival in advanced and refractory multiple myeloma after single- agent thalidomide: Identification of prognostic factors in a phase 2 study of 169 patients. Blood 2001, 98, 492–494. [Google Scholar] [CrossRef]
- Carrier, M.; Le Gal, G.; Tay, J.; Wu, C.; Lee, A.Y. Rates of venous thromboem- bolism in multiple myeloma patients undergoing immunomodulatory therapy with thalidomide or lenalidomide: A systematic review and meta-analysis. J. Thromb. Haemost. 2011, 9, 653–663. [Google Scholar] [CrossRef]
- Zangari, M.; Barlogie, B.; Thertulien, R.; Jacobson, J.; Eddleman, P.; Fink, L.; Fassas, A.; Van Rhee, F.; Talamo, G.; Choon-Kee, L.; et al. Thalidomide and deep vein thrombosis in multiple myeloma: Risk factors and effect on survival. Clin. Lymphoma 2003, 4, 32–35. [Google Scholar] [CrossRef]
- Zangari, M.; Siegel, E.; Barlogie, B.; Anaissie, E.; Saghafifar, F.; Fassas, A.; Morris, C.; Fink, L.; Tricot, G. Throm bogenic activity of doxorubicin in myeloma patients receiving thalidomide: Implications for therapy. Blood 2002, 100, 1168–1171. [Google Scholar] [CrossRef]
- Dimopoulos, M.; Spencer, A.; Attal, M.; Prince, H.M.; Harousseau, J.L.; Dmoszynska, A.; San Miguel, J.; Hellmann, A.; Facon, T.; Foá, R.; et al. Lenalidomide plus dexamethasone for relapsed or refractory multiple myeloma. N. Engl. J. Med. 2007, 357, 2123–2132. [Google Scholar] [CrossRef]
- Lonial, S.; Richardson, P.G.; San Miguel, J.; Sonneveld, P.; Schuster, M.W.; Bladè, J.; Cavenagh, J.; Rajukumar, S.V.; Jakubowiak, A.J.; Esseltine, D.-L.; et al. Characterisation of haematological profiles and low risk of thromboembolic events with bortezomib in patients with relapsed multiple myeloma. Br. J. Haematol. 2008, 143, 222–229. [Google Scholar] [CrossRef]
- Zangari, M.; Fink, L.; Zhan, F.; Tricot, G. Low venous thromboembolic risk with bortezomib in multiple myeloma and potential protective effect with thalidomide/lenalidomide-based therapy: Review of data from phase 3 trials and studies of novel combination regimens. Clin. Lymphoma Myeloma Leuk. 2011, 11, 228–236. [Google Scholar] [CrossRef] [PubMed]
- Khorana, A.A.; Kuderer, N.M.; Culakova, E.; Lyman, G.H.; Francis, C.W. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood. 2008, 111, 4902–4907. [Google Scholar] [CrossRef]
- Sanfilippo, K.M.; Wang, T.F.; Luo, S.; Thomas, T.S.; Carson, K.R.; Keller, J.W.; Kuderer, N.M.; Calverley, D.; Gage, B. Predictive ability of the khorana score for venous thromboembolism (VTE) in multiple myeloma (MM). J. Clin. Oncol. 2018, 36, e18733. [Google Scholar] [CrossRef]
- Sanfilippo, K.M.; Carson, K.R.; Wang, T.-F.; Luo, S.; Edwin, N.; Kuderer, N.; Keller, J.M.; Gage, B.F. Evaluation of the Khorana score for prediction of venous thromboembolism in patients with multiple myeloma. Res. Pract. Thromb. Haemost. 2022, 6, e12634. [Google Scholar] [CrossRef]
- Palumbo, A.; Rajkumar, S.V.; Dimopoulos, M.A.; Richardson, P.G.; San Miguel, J.; Barlogie, B.; Harousseau, J.; Zonder, J.A.; Cavo, M.; Zangari, M.; et al. Prevention of thalidomide- and lenalidomide- associated thrombosis in myeloma. Leukemia 2008, 22, 414–423. [Google Scholar] [CrossRef]
- Terpos, E.; Kleber, M.; Engelhardt, M.; Zweegman, S.; Gay, F.; Kastritis, E.; van de Donk, N.W.; Bruno, B.; Sezer, O.; Broijl, A.; et al. European Myeloma Network guidelines for the management of multiple myeloma-related complications. Haematologica 2015, 100, 1254–1266. [Google Scholar] [CrossRef] [PubMed]
- Lyman, G.H.; Carrier, M.; Ay, C.; Di Nisio, M.; Hicks, L.K.; Khorana, A.A.; Leavitt, A.D.; Lee, A.Y.Y.; Macbeth, F.; Morgan, R.L.; et al. American Society of Hematology 2021 guidelines for management of venous thromboembolism: Prevention and treatment in patients with cancer. Blood. Adv. 2021, 5, 927–974. [Google Scholar] [CrossRef]
- Baker, H.A.; Brown, A.R.; Mahnken, J.D.; Shireman, T.I.; Webb, C.E.; Lipe, B.-C. Application of risk factors for venous thromboembolism in patients with multiple myeloma starting chemotherapy, a real-world evaluation. Cancer Med. 2019, 8, 455–462. [Google Scholar] [CrossRef]
- Sanfilippo, K.M.; Luo, S.; Wang, T.F.; Fiala, M.; Schoen, M.; Wildes, T.M.; Mikhael, J.; Kuderer, N.M.; Calverley, D.C.; Keller, J.; et al. Predicting venous thromboembolism in multiple myeloma: Development and validation of the IMPEDE VTE score. Am. J. Hematol. 2019, 94, 1176–1184. [Google Scholar] [CrossRef]
- Li, A.; Wu, Q.; Luo, S.; Warnick, G.S.; Zakai, N.A.; Libby, E.N.; Gage, B.F.; Garcia, D.A.; Lyman, G.H.; Sanfilippo, K.M. Derivation and Validation of a Risk Assessment Model for Immunomodulatory Drug-Associated Thrombosis Among Patients With Multiple Myeloma. J. Natl. Compr. Cancer Netw. 2019, 17, 840–847. [Google Scholar] [CrossRef]
- Fotiou, D.; Gavriatopoulou, M.; Terpos, E. Multiple Myeloma and Thrombosis: Prophylaxis and Risk Prediction Tools. Cancers 2020, 12, 191. [Google Scholar] [CrossRef] [PubMed]
- Baz, R.; Li, L.; Kottke-Marchant, K.; Srkalovic, G.; McGowan, B.; Yiannaki, E.; Karam, M.A.; Faiman, B.; Abou Jawde, R.; Andresen, S.; et al. The role of aspirin in the prevention of thrombotic complications of thalidomide and anthracycline-based chemotherapy for multiple myeloma. Mayo. Clin. Proc. 2005, 80, 1568–1574. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, A.; Cavo, M.; Bringhen, S.; Zamagni, E.; Romano, A.; Patriarca, F.; Rossi, D.; Gentilini, F.; Crippa, C.; Galli, M.; et al. Aspirin, warfarin, or enoxaparin thromboprophylaxis in patients with multiple myeloma treated with thalidomide: A phase III, open-label, randomized trial. J. Clin. Oncol. 2011, 29, 986–993. [Google Scholar] [CrossRef]
- Larocca, A.; Cavallo, F.; Bringhen, S.; Di Raimondo, F.; Falanga, A.; Evangelista, A.; Cavalli, M.; Stanevsky, A.; Corradini, P.; Pezzatti, S.; et al. Aspirin or enoxaparin thromboprophylaxis for newly-diagnosed multiple myeloma patients treated with lenalidomide. Blood 2012, 119, 933–939. [Google Scholar] [CrossRef] [PubMed]
- Cornell, R.F.; Goldhaber, S.Z.; Engelhardt, B.G.; Moslehi, J.; Jagasia, M.; Harrell, S.; Rubinstein, S.M.; Hall, R.; Wyatt, H.; Piazza, G. Primary prevention of venous thromboembolism with apixaban for multiple myeloma patients receiving immunomodulatory agents. Br. J. Haematol. 2020, 190, 555–561. [Google Scholar] [CrossRef]
- Storrar, N.P.F.; Mathur, A.; Johnson, P.R.E.; Roddie, P.H. Safety and efficacy of apixaban for routine thromboprophylaxis in myeloma patients treated with thalidomide- and lenalidomide-containing regimens. Br. J. Haematol. 2018, 185, 142–144. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, M.; Saccullo, G.; Marietta, M.; Carpenedo, M.; Castaman, G.; Cerchiara, E.; Chistolini, A.; Contino, L.; De Stefano, V.; Falanga, A.; et al. Platelet cut-off for anticoagulant therapy in thrombocytopenic patients with blood cancer and venous thromboembolism: An expert consensus. Blood Transfus. 2018, 17, 171–178. [Google Scholar] [CrossRef]
- Lutz, J.; Jurk, K.; Schinzel, H. Direct oral anticoagulants in patients with chronic kidney disease: Patient selection and special considerations. Int. J. Nephrol. Renovasc. Dis. 2017, 10, 135–143. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaireti, R.; Nahi, H. Risk Factors and Risk Stratification of Thromboembolic Risk in Patients with Multiple Myeloma. Hemato 2022, 3, 518-526. https://doi.org/10.3390/hemato3030036
Chaireti R, Nahi H. Risk Factors and Risk Stratification of Thromboembolic Risk in Patients with Multiple Myeloma. Hemato. 2022; 3(3):518-526. https://doi.org/10.3390/hemato3030036
Chicago/Turabian StyleChaireti, Roza, and Hareth Nahi. 2022. "Risk Factors and Risk Stratification of Thromboembolic Risk in Patients with Multiple Myeloma" Hemato 3, no. 3: 518-526. https://doi.org/10.3390/hemato3030036
APA StyleChaireti, R., & Nahi, H. (2022). Risk Factors and Risk Stratification of Thromboembolic Risk in Patients with Multiple Myeloma. Hemato, 3(3), 518-526. https://doi.org/10.3390/hemato3030036