Valorization of Wheat Bran by Co-Cultivation of Fungi with Integrated Hydrolysis to Provide Sugars and Animal Feed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Media
2.2. Preculture Preparation in Shaking Flasks
2.3. Integrated Enzyme Production and Hydrolysis Process on the 25 L Scale
2.4. Preculture Preparation in Stirred Tank Bioreactors for Cultivation on the 1000 L Scale
2.5. Integrated Enzyme Production and Hydrolysis Process on the 1000 L Scale
2.6. Analytical Methods
2.6.1. Sampling and Sample Treatment
2.6.2. Hydrolytic Enzyme Activities
2.6.3. Quantification of Sugars and Organic Acids
2.6.4. Calculation of Carbon Dioxide Evolution Rate (CER)
3. Results
3.1. Integrated Enzyme Production and Hydrolysis of Wheat Bran on a 25 L Scale
3.2. Integrated Enzyme Production and Hydrolysis of Wheat Bran on a 1000 L Scale
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Höök, M.; Tang, X. Depletion of fossil fuels and anthropogenic climate change—A review. Energy Policy 2013, 52, 797–809. [Google Scholar] [CrossRef]
- Parfitt, J.; Barthel, M.; Macnaughton, S. Food waste within food supply chains: Quantification and potential for change to 2050. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3065–3081. [Google Scholar] [CrossRef] [PubMed]
- Gavrilescu, M.; Chisti, Y. Biotechnology—A sustainable alternative for chemical industry. Biotechnol. Adv. 2005, 23, 471–499. [Google Scholar] [CrossRef] [PubMed]
- Yaashikaa; Kumar, P.S.; Varjani, S. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. Bioresour. Technol. 2022, 343, 126126. [Google Scholar] [CrossRef] [PubMed]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; López-Felices, B.; Román-Sánchez, I.M. Circular economy in agriculture. An analysis of the state of research based on the life cycle. Sustain. Prod. Consum. 2022, 34, 257–270. [Google Scholar] [CrossRef]
- Toop, T.A.; Ward, S.; Oldfield, T.; Hull, M.; Kirby, M.E.; Theodorou, M.K. AgroCycle–developing a circular economy in agriculture. Energy Procedia 2017, 123, 76–80. [Google Scholar] [CrossRef]
- Prueckler, M.; Siebenhandl-Ehn, S.; Apprich, S.; Hoeltinger, S.; Haas, C.; Schmid, E.; Kneifel, W. Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. LWT-Food Sci. Technol. 2014, 56, 211–221. [Google Scholar] [CrossRef]
- Apprich, S.; Tirpanalan, Ö.; Hell, J.; Reisinger, M.; Böhmdorfer, S.; Siebenhandl-Ehn, S.; Novalin, S.; Kneifel, W. Wheat bran-based biorefinery 2: Valorization of products. LWT-Food Sci. Technol. 2014, 56, 222–231. [Google Scholar] [CrossRef]
- Singhania, R.; Patel, A.; Pandey, A. Biotechnology for Agricultural Waste Recycling. In Current Developments in Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2017; pp. 223–240. [Google Scholar]
- Babu, C.R.; Ketanapalli, H.; Beebi, S.K.; Kolluru, V.C. Wheat bran-composition and nutritional quality: A review. Adv. Biotechnol. Microbiol 2018, 9, 1–7. [Google Scholar]
- Izydorczyk, M.; Dexter, J. Barley β-glucans and arabinoxylans: Molecular structure, physicochemical properties, and uses in food products–a Review. Food Res. Int. 2008, 41, 850–868. [Google Scholar] [CrossRef]
- Schooneveld-Bergmans, M.; Beldman, G.; Voragen, A. Structural features of (glucurono) arabinoxylans extracted from wheat bran by barium hydroxide. J. Cereal Sci. 1999, 29, 63–75. [Google Scholar] [CrossRef]
- Rudjito, R.C.; Ruthes, A.C.; Jiménez-Quero, A.; Vilaplana, F. Feruloylated arabinoxylans from wheat bran: Optimization of extraction process and validation at pilot scale. ACS Sustain. Chem. Eng. 2019, 7, 13167–13177. [Google Scholar] [CrossRef]
- Polizeli, M.D.L.T.D.M.; Rizzatti, A.; Monti, R.; Terenzi, H.F.; Jorge, J.A.; Amorim, D.d.S. Xylanases from fungi: Properties and industrial applications. Appl. Microbiol. Biotechnol. 2005, 67, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.; Tan, L.; Saddler, J.N. Multiplicity of beta-1, 4-xylanase in microorganisms: Functions and applications. Microbiol. Rev. 1988, 52, 305–317. [Google Scholar] [CrossRef] [PubMed]
- van Peij, N.N.; Brinkmann, J.; Vršanská, M.; Visser, J.; de Graaff, L.H. β-Xylosidase activity, encoded by xlnD, is essential for complete hydrolysis of xylan by Aspergillus niger but not for induction of the xylanolytic enzyme spectrum. Eur. J. Biochem. 1997, 245, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Beg, Q.; Kapoor, M.; Mahajan, L.; Hoondal, G. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 2001, 56, 326–338. [Google Scholar] [CrossRef] [PubMed]
- Saranraj, P.; Stella, D. Fungal amylase—A review. Int. J. Microbiol. Res. 2013, 4, 203–211. [Google Scholar]
- Chiba, S. Molecular mechanism in α-glucosidase and glucoamylase. Biosci. Biotechnol. Biochem. 1997, 61, 1233–1239. [Google Scholar] [CrossRef]
- Hernández, M.S.; Rodríguez, M.R.; Guerra, N.P.; Rosés, R.P. Amylase production by Aspergillus niger in submerged cultivation on two wastes from food industries. J. Food Eng. 2006, 73, 93–100. [Google Scholar] [CrossRef]
- Kelly, S.; Grimm, L.H.; Hengstler, J.; Schultheis, E.; Krull, R.; Hempel, D.C. Agitation effects on submerged growth and product formation of Aspergillus niger. Bioprocess Biosyst. Eng. 2004, 26, 315–323. [Google Scholar] [CrossRef]
- Rosés, R.P.; Guerra, N.P. Optimization of amylase production by Aspergillus niger in solid-state fermentation using sugarcane bagasse as solid support material. World J. Microbiol. Biotechnol. 2009, 25, 1929–1939. [Google Scholar] [CrossRef]
- Gupta, R.; Gigras, P.; Mohapatra, H.; Goswami, V.K.; Chauhan, B. Microbial α-amylases: A biotechnological perspective. Process Biochem. 2003, 38, 1599–1616. [Google Scholar] [CrossRef]
- Bhat, M.; Bhat, S. Cellulose degrading enzymes and their potential industrial applications. Biotechnol. Adv. 1997, 15, 583–620. [Google Scholar] [CrossRef] [PubMed]
- Lynd, L.R.; Weimer, P.J.; Van Zyl, W.H.; Pretorius, I.S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 2002, 66, 506–577. [Google Scholar] [CrossRef] [PubMed]
- Kleman-Leyer, K.M.; SiiKa-Aho, M.; Teeri, T.T.; Kirk, T.K. The cellulases endoglucanase I and cellobiohydrolase II of Trichoderma reesei act synergistically to solubilize native cotton cellulose but not to decrease its molecular size. Appl. Environ. Microbiol. 1996, 62, 2883–2887. [Google Scholar] [CrossRef]
- Wu, S.; Wu, S. Processivity and the mechanisms of processive endoglucanases. Appl. Biochem. Biotechnol. 2020, 190, 448–463. [Google Scholar] [CrossRef] [PubMed]
- Duff, S.J.; Cooper, D.G.; Fuller, O.M. Cellulase and beta-glucosidase production by mexied culture of trichoderma reesei rut C30 and aspergillus phoenicis. Biotechnol. Lett. 1985, 7, 185–190. [Google Scholar] [CrossRef]
- Mittermeier, F.; Bäumler, M.; Arulrajah, P.; García Lima, J.d.J.; Hauke, S.; Stock, A.; Weuster-Botz, D. Artificial microbial consortia for bioproduction processes. Eng. Life Sci. 2023, 23, e2100152. [Google Scholar] [CrossRef] [PubMed]
- Kolasa, M.; Ahring, B.K.; Lübeck, P.S.; Lübeck, M. Co-cultivation of Trichoderma reesei RutC30 with three black Aspergillus strains facilitates efficient hydrolysis of pretreated wheat straw and shows promises for on-site enzyme production. Bioresour. Technol. 2014, 169, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Mittermeier, F.; Hafner, N.; Xypolia Vasila, K.; Weuster-Botz, D. Co-Cultivation of Aspergillus niger and Trichoderma reesei Enables Efficient Production of Enzymes for the Hydrolysis of Wheat Bran. Chem. Ing. Tech. 2023, 95, 565–575. [Google Scholar] [CrossRef]
- Cairns, T.C.; Nai, C.; Meyer, V. How a fungus shapes biotechnology: 100 years of Aspergillus niger research. Fungal Biol. Biotechnol. 2018, 5, 13. [Google Scholar] [CrossRef]
- Meyer, V.; Andersen, M.R.; Brakhage, A.A.; Braus, G.H.; Caddick, M.X.; Cairns, T.C.; de Vries, R.P.; Haarmann, T.; Hansen, K.; Hertz-Fowler, C. Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: A white paper. Fungal Biol. Biotechnol. 2016, 3, 6. [Google Scholar] [CrossRef] [PubMed]
- Meyer, V.; Basenko, E.Y.; Benz, J.P.; Braus, G.H.; Caddick, M.X.; Csukai, M.; De Vries, R.P.; Endy, D.; Frisvad, J.C.; Gunde-Cimerman, N. Growing a circular economy with fungal biotechnology: A white paper. Fungal Biol. Biotechnol. 2020, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Andersen, M.R.; Salazar, M.P.; Schaap, P.J.; van de Vondervoort, P.J.; Culley, D.; Thykaer, J.; Frisvad, J.C.; Nielsen, K.F.; Albang, R.; Albermann, K. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88. Genome Res. 2011, 21, 885–897. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, D.; Schmitz, K.; Weuster-Botz, D.; Benz, J.P. Comparative evaluation of Aspergillus niger strains for endogenous pectin-depolymerization capacity and suitability for d-galacturonic acid production. Bioprocess Biosyst. Eng. 2020, 43, 1549–1560. [Google Scholar] [CrossRef] [PubMed]
- Mandels, M.; Reese, E.T. Induction of cellulase in Trichoderma viride as influenced by carbon sources and metals. J. Bacteriol. 1957, 73, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Reese, E.T. Enzymatic hydrolysis of cellulose. Appl. Microbiol. 1956, 4, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Peterson, R.; Nevalainen, H. Trichoderma reesei RUT-C30–thirty years of strain improvement. Microbiology 2012, 158, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Montenecourt, B.S.; Eveleigh, D.E. Selective Screening Methods for the Isolation of High Yielding Cellulase Mutants of Trichoderma reesei; ACS Publications: Washington, DC, USA, 1979. [Google Scholar]
- Bisaria, V.S.; Ghose, T.K. Biodegradation of cellulosic materials: Substrates, microorganisms, enzymes and products. Enzym. Microb. Technol. 1981, 3, 90–104. [Google Scholar] [CrossRef]
- Hendy, N.A.; Wilke, C.R.; Blanch, H.W. Enhanced cellulase production in fed-batch culture of Trichoderma reesei C30. Enzym. Microb. Technol. 1984, 6, 73–77. [Google Scholar] [CrossRef]
- Singhania, R.R.; Sukumaran, R.K.; Pandey, A. Improved cellulase production by Trichoderma reesei RUT C30 under SSF through process optimization. Appl. Biochem. Biotechnol. 2007, 142, 60–70. [Google Scholar] [CrossRef] [PubMed]
- Bendig, C.; Weuster-Botz, D. Reaction engineering analysis of cellulase production with Trichoderma reesei RUT-C30 with intermittent substrate supply. Bioprocess Biosyst. Eng. 2013, 36, 893–900. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, C.; Bai, F.; Zhao, X. Overproduction of cellulase by Trichoderma reesei RUT C30 through batch-feeding of synthesized low-cost sugar mixture. Bioresour. Technol. 2016, 216, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Peterson, R.; Grinyer, J.; Nevalainen, H. Extracellular hydrolase profiles of fungi isolated from koala faeces invite biotechnological interest. Mycol. Prog. 2011, 10, 207–218. [Google Scholar] [CrossRef]
- Herpoël-Gimbert, I.; Margeot, A.; Dolla, A.; Jan, G.; Mollé, D.; Lignon, S.; Mathis, H.; Sigoillot, J.-C.; Monot, F.; Asther, M. Comparative secretome analyses of two Trichoderma reesei RUT-C30 and CL847 hypersecretory strains. Biotechnol. Biofuels 2008, 1, 18. [Google Scholar] [CrossRef] [PubMed]
- Maheshwari, D.; Gohade, S.; Paul, J.; Varma, A. Paper mill sludge as a potential source for cellulase production by Trichoderma reesei QM 9123 and Aspergillus niger using mixed cultivation. Carbohydr. Polym. 1994, 23, 161–163. [Google Scholar] [CrossRef]
- Ahamed, A.; Vermette, P. Enhanced enzyme production from mixed cultures of Trichoderma reesei RUT-C30 and Aspergillus niger LMA grown as fed batch in a stirred tank bioreactor. Biochem. Eng. J. 2008, 42, 41–46. [Google Scholar] [CrossRef]
- Gutierrez-Correa, M.; Portal, L.; Moreno, P.; Tengerdy, R.P. Mixed culture solid substrate fermentation of Trichoderma reesei with Aspergillus niger on sugar cane bagasse. Bioresour. Technol. 1999, 68, 173–178. [Google Scholar] [CrossRef]
- Deshpande, S.; Bhotmange, M.; Chakrabarti, T.; Shastri, P. Production of cellulase and xylanase by Trichoderma reesei (QM 9414 mutant), Aspergillus niger and mixed culture by solid state fermentation (SSF) of water hyacinth (Eichhornia crassipes). Indian J. Chem. Technol. 2008, 15, 449–456. [Google Scholar]
- Zhao, C.; Deng, L.; Fang, H. Mixed culture of recombinant Trichoderma reesei and Aspergillus niger for cellulase production to increase the cellulose degrading capability. Biomass Bioenergy 2018, 112, 93–98. [Google Scholar] [CrossRef]
- Knesebeck, M.; Schäfer, D.; Schmitz, K.; Rüllke, M.; Benz, J.P.; Weuster-Botz, D. Enzymatic One-Pot Hydrolysis of Extracted Sugar Beet Press Pulp after Solid-State Fermentation with an Engineered Aspergillus niger Strain. Fermentation 2023, 9, 582. [Google Scholar] [CrossRef]
- Maehara, L.; Pereira, S.C.; Silva, A.J.; Farinas, C.S. One-pot strategy for on-site enzyme production, biomass hydrolysis, and ethanol production using the whole solid-state fermentation medium of mixed filamentous fungi. Biotechnol. Prog. 2018, 34, 671–680. [Google Scholar] [CrossRef] [PubMed]
- Pirota, R.D.; Baleeiro, F.C.; Farinas, C.S. Saccharification of biomass using whole solid-state fermentation medium to avoid additional separation steps. Biotechnol. Prog. 2013, 29, 1430–1440. [Google Scholar] [CrossRef] [PubMed]
- Palmarola-Adrados, B.; Chotěborská, P.; Galbe, M.; Zacchi, G. Ethanol production from non-starch carbohydrates of wheat bran. Bioresour. Technol. 2005, 96, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Favaro, L.; Basaglia, M.; van Zyl, W.H.; Casella, S. Using an efficient fermenting yeast enhances ethanol production from unfiltered wheat bran hydrolysates. Appl. Energy 2013, 102, 170–178. [Google Scholar] [CrossRef]
- Cripwell, R.; Favaro, L.; Rose, S.H.; Basaglia, M.; Cagnin, L.; Casella, S.; van Zyl, W. Utilisation of wheat bran as a substrate for bioethanol production using recombinant cellulases and amylolytic yeast. Appl. Energy 2015, 160, 610–617. [Google Scholar] [CrossRef]
- Farkas, C.; Rezessy-Szabó, J.M.; Gupta, V.K.; Truong, D.H.; Friedrich, L.; Felföldi, J.; Nguyen, Q.D. Microbial saccharification of wheat bran for bioethanol fermentation. J. Clean. Prod. 2019, 240, 118269. [Google Scholar] [CrossRef]
- Shen, X.; Xia, L. Lactic acid production from cellulosic waste by immobilized cells of Lactobacillus delbrueckii. World J. Microbiol. Biotechnol. 2006, 22, 1109–1114. [Google Scholar] [CrossRef]
- Li, Z.; Han, L.; Ji, Y.; Wang, X.; Tan, T. Fermentative production of L-lactic acid from hydrolysate of wheat bran by Lactobacillus rhamnosus. Biochem. Eng. J. 2010, 49, 138–142. [Google Scholar] [CrossRef]
- Tirpanalan, Ö.; Reisinger, M.; Smerilli, M.; Huber, F.; Neureiter, M.; Kneifel, W.; Novalin, S. Wheat bran biorefinery–an insight into the process chain for the production of lactic acid. Bioresour. Technol. 2015, 180, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Vishniac, W.; Santer, M. The thiobacilli. Bacteriol. Rev. 1957, 21, 195–213. [Google Scholar] [CrossRef] [PubMed]
- Takors, R.; Weuster-Botz, D. Prozessmodelle. In Bioprozesstechnik; Chmiel, H., Takors, R., Weuster-Botz, D., Eds.; Springer: Berlin, Germany, 2018; Volume 4, pp. 73–106. [Google Scholar]
- Pribowo, A.; Arantes, V.; Saddler, J.N. The adsorption and enzyme activity profiles of specific Trichoderma reesei cellulase/xylanase components when hydrolyzing steam pretreated corn stover. Enzym. Microb. Technol. 2012, 50, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Bonner, J.T. A study of the temperature and humidity requirements of Aspergillus niger. Mycologia 1948, 40, 728–738. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.-T.; Guo, N. The steam explosion pretreatment and enzymatic hydrolysis of wheat bran. Energy Sources Part A Recovery Util. Environ. Eff. 2016, 38, 295–299. [Google Scholar] [CrossRef]
- Aktas-Akyildiz, E.; Masatcioglu, M.T.; Köksel, H. Effect of extrusion treatment on enzymatic hydrolysis of wheat bran. J. Cereal Sci. 2020, 93, 102941. [Google Scholar] [CrossRef]
- Liu, Z.; Ying, Y.; Li, F.; Ma, C.; Xu, P. Butanol production by Clostridium beijerinckii ATCC 55025 from wheat bran. J. Ind. Microbiol. Biotechnol. 2010, 37, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Oppelt, A.; Rückel, A.; Rupp, M.; Weuster-Botz, D. Mixotrophic Syngas Conversion Enables the Production of meso-2, 3-butanediol with Clostridium autoethanogenum. Fermentation 2024, 10, 102. [Google Scholar] [CrossRef]
- Schuster, E.; Dunn-Coleman, N.; Frisvad, J.; Van Dijck, P. On the safety of Aspergillus niger–a review. Appl. Microbiol. Biotechnol. 2002, 59, 426–435. [Google Scholar] [PubMed]
- Nevalainen, H.; Suominen, P.; Taimisto, K. On the safety of Trichoderma reesei. J. Biotechnol. 1994, 37, 193–200. [Google Scholar] [CrossRef]
- Ghorai, S.; Banik, S.P.; Verma, D.; Chowdhury, S.; Mukherjee, S.; Khowala, S. Fungal biotechnology in food and feed processing. Food Res. Int. 2009, 42, 577–587. [Google Scholar] [CrossRef]
- Chuang, W.Y.; Hsieh, Y.C.; Lee, T.-T. The effects of fungal feed additives in animals: A review. Animals 2020, 10, 805. [Google Scholar] [CrossRef] [PubMed]
- Osama, A.S.; Khaled, M.A.; Abir, M.H. Bioconversion of some agricultural wastes into animal feed by Trichoderma spp. J. Am. Sci. 2013, 9, 203–212. [Google Scholar]
Raw Wheat Bran | Fermentation Residues | ||
---|---|---|---|
Protein | g kg−1 | 156 | 231 |
Sugar | g kg−1 | 29 | 84 |
Fat | g kg−1 | 33 | 61 |
Phosphate (P2O5) | g kg−1 | 33.9 | 20.9 |
Energy content (ruminants) | MJ kg−1 | 9.69 | 12.52 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mittermeier, F.; Fischer, F.; Hauke, S.; Hirschmann, P.; Weuster-Botz, D. Valorization of Wheat Bran by Co-Cultivation of Fungi with Integrated Hydrolysis to Provide Sugars and Animal Feed. BioTech 2024, 13, 15. https://doi.org/10.3390/biotech13020015
Mittermeier F, Fischer F, Hauke S, Hirschmann P, Weuster-Botz D. Valorization of Wheat Bran by Co-Cultivation of Fungi with Integrated Hydrolysis to Provide Sugars and Animal Feed. BioTech. 2024; 13(2):15. https://doi.org/10.3390/biotech13020015
Chicago/Turabian StyleMittermeier, Fabian, Fabienne Fischer, Sebastian Hauke, Peter Hirschmann, and Dirk Weuster-Botz. 2024. "Valorization of Wheat Bran by Co-Cultivation of Fungi with Integrated Hydrolysis to Provide Sugars and Animal Feed" BioTech 13, no. 2: 15. https://doi.org/10.3390/biotech13020015
APA StyleMittermeier, F., Fischer, F., Hauke, S., Hirschmann, P., & Weuster-Botz, D. (2024). Valorization of Wheat Bran by Co-Cultivation of Fungi with Integrated Hydrolysis to Provide Sugars and Animal Feed. BioTech, 13(2), 15. https://doi.org/10.3390/biotech13020015