Challenges for the Post-Market Environmental Monitoring in the European Union Imposed by Novel Applications of Genetically Modified and Genome-Edited Organisms
Abstract
:1. Introduction
2. Concepts and Guidelines for PMEM
3. Biodiversity Monitoring Programs in Germany
4. Monitoring Requirements of Novel GMO Applications
4.1. Example 1: GM Applications in Fruit Orchards
Potential Environmental Effects and Consequences for Monitoring
4.2. Example 2: GM Freshwater Fish
Potential Environmental Effects and Consequences for Monitoring
4.3. Example 3: GM Microalgae
Potential Environmental Effects and Consequences for Monitoring
5. Discussion and Recommendations
5.1. Limitations of GMO Monitoring Concepts and Guidelines for PMEM for Novel GMO Applications
5.2. Complement Existing Biodiversity Monitoring Programs for Monitoring the Effects of Novel GMO Applications
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. The European Green Deal: Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions COM/2019/640 Final. 2019. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 15 December 2023).
- Salvan, M.G.; Bertoni, D.; Cavicchioli, D.; Bocchi, S. Agri-Environmental Indicators: A Selected Review to Support Impact Assessment of New EU Green Deal Policies. Agronomy 2022, 12, 798. [Google Scholar] [CrossRef]
- Directive 2001/18/EC of the European Parliament and of the Council of 12 March 2001 on the Deliberate Release into the Environment of Genetically Modified Organisms and Repealing Council Directive 90/220/EC. 2001. Available online: https://eur-lex.europa.eu/eli/dir/2001/18/oj (accessed on 13 May 2024).
- European Commission. GMO Register. Available online: https://ec.europa.eu/food/plants/genetically-modified-organisms/gmo-register_en (accessed on 15 December 2023).
- Ku, H.-K.; Ha, S.-H. Improving Nutritional and Functional Quality by Genome Editing of Crops: Status and Perspectives. Front. Plant Sci. 2020, 11, 577313. [Google Scholar] [CrossRef] [PubMed]
- Modrzejewski, D.; Hartung, F.; Sprink, T.; Menz, J.; Kohl, C.; Delventhal, R.; Wilhelm, R. Übersicht über Nutz- und Zierpflanzen, die Mittels Neuer Molekularbiologischer Techniken für die Bereiche Ernährung, Landwirtschaft und Gartenbau Erzeugt Wurden—Marktorientierte Anwendungen (Version 20.03.2020). 2020. Available online: https://www.bmel.de/EN/Home/home_node.html (accessed on 14 March 2022).
- Metje-Sprink, J.; Sprink, T.; Hartung, F. Genome-edited plants in the field. Curr. Opin. Biotechnol. 2020, 61, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Hua, K.; Lang, Z. Genome editing for horticultural crop improvement. Hortic. Res. 2019, 6, 113. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, D.; Wang, G.; Wang, F.; Kunjal, M.; Joldersma, D.; Liu, Z. Application and future perspective of CRISPR/Cas9 genome editing in fruit crops. J. Integr. Plant Biol. 2020, 62, 269–286. [Google Scholar] [CrossRef] [PubMed]
- Gratacap, R.L.; Wargelius, A.; Edvardsen, R.B.; Houston, R.D. Potential of Genome Editing to Improve Aquaculture Breeding and Production. Trends Genet. 2019, 35, 672–684. [Google Scholar] [CrossRef] [PubMed]
- Sovová, T.; Kerins, G.; Demnerová, K.; Ovesná, J. Genome Editing with Engineered Nucleases in Economically Important Animals and Plants: State of the Art in the Research Pipeline. Curr. Issues Mol. Biol. 2017, 21, 41–62. [Google Scholar] [CrossRef] [PubMed]
- Tait-Burkard, C.; Doeschl-Wilson, A.; McGrew, M.J.; Archibald, A.L.; Sang, H.M.; Houston, R.D.; Whitelaw, C.B.; Watson, M. Livestock 2.0—Genome editing for fitter, healthier, and more productive farmed animals. Genome Biol. 2018, 19, 204. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lai, L.; Ji, W.; Zhou, Q. Genome editing in large animals: Current status and future prospects. Natl. Sci. Rev. 2019, 6, 402–420. [Google Scholar] [CrossRef]
- van der Vlugt, C.J. Horizon Scan of Synthetic Biology Developments for Microorganisms with application in the Agri-Food Sector. EFSA Support. Publ. 2020, 17, 3. [Google Scholar] [CrossRef]
- Patel, V.K.; Soni, N.; Prasad, V.; Sapre, A.; Dasgupta, S.; Bhadra, B. CRISPR-Cas9 System for Genome Engineering of Photosynthetic Microalgae. Mol. Biotechnol. 2019, 61, 541–561. [Google Scholar] [CrossRef]
- Ellison, E.E.; Nagalakshmi, U.; Gamo, M.E.; Huang, P.-J.; Dinesh-Kumar, S.; Voytas, D.F. Multiplexed heritable gene editing using RNA viruses and mobile single guide RNAs. Nat. Plants 2020, 6, 620–624. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.-C.; Liang, M.-H.; Jiang, J.-G. Transgenic microalgae as bioreactors. Crit. Rev. Food Sci. Nutr. 2020, 60, 3195–3213. [Google Scholar] [CrossRef] [PubMed]
- Naduthodi, M.I.S.; Barbosa, M.J.; van der Oost, J. Progress of CRISPR-Cas Based Genome Editing in Photosynthetic Microbes. Biotechnol. J. 2018, 13, e1700591. [Google Scholar] [CrossRef] [PubMed]
- Bewg, W.P.; Ci, D.; Tsai, C.-J. Genome Editing in Trees: From Multiple Repair Pathways to Long-Term Stability. Front. Plant Sci. 2018, 9, 1732. [Google Scholar] [CrossRef] [PubMed]
- Eckerstorfer, M.F.; Dolezel, M.; Heissenberger, A.; Miklau, M.; Reichenbecher, W.; Steinbrecher, R.A.; Waßmann, F. An EU Perspective on Biosafety Considerations for Plants Developed by Genome Editing and Other New Genetic Modification Techniques (nGMs). Front. Bioeng. Biotechnol. 2019, 7, 31. [Google Scholar] [CrossRef]
- Eckerstorfer, M.; Dolezel, M.; Greiter, A.; Miklau, M.; Heissenberger, A.; Steinbrecher, R. Risk assessment of plants developed by new genetic modification techniques (nGMs). In Biosafety Considerations for Plants Developed by Genome Editing and Other New Genetic Modification Techniques (nGMs) and Considerations for Their Regulation: Final Report of the R&D Project (FKZ: 3516 89 0400); BfN Skripten: Bonn, Germany, 2020; 592; Available online: https://www.bfn.de/publikationen/bfn-schriften/bfn-schriften-592-risk-assessment-plants-developed-by-new-genetic (accessed on 14 March 2022).
- European Commission. Deliberate Release of GMOs into the Environment: Register of Directive 2001/18/EC. Available online: https://webgate.ec.europa.eu/fip/GMO_Registers/ (accessed on 14 March 2022).
- European Commission. Deliberate Release into the Environment of Plants GMOs for Any Other Purposes Than Placing on the Market (Experimental Releases). Available online: https://webgate.ec.europa.eu/fip/GMO_Registers/GMO_Part_B_Plants.php (accessed on 14 March 2022).
- European Court of Justice. C-528/16. Confédération Paysanne and Others. 2018. Available online: https://curia.europa.eu/juris/liste.jsf?language=en&td=ALL&num=C-528/16 (accessed on 10 March 2022).
- Proposal for a Regulation of the European Parliament and of the Council on Plants Obtained by Certain New Genomic Techniques and Their Food and Feed and Amending Regulation (EU) 2017/625. 2023. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52023PC0411 (accessed on 13 May 2024).
- Eckerstorfer, M.F.; Dolezel, M.; Engelhard, M.; Giovannelli, V.; Grabowski, M.; Heissenberger, A.; Lener, M.; Reichenbecher, W.; Simon, S.; Staiano, G.; et al. Recommendations for the Assessment of Potential Environmental Effects of Genome-Editing Applications in Plants in the EU. Plants 2023, 12, 1764. [Google Scholar] [CrossRef]
- EFSA GMO Panel. Guidance on the Post-Market Environmental Monitoring (PMEM) of genetically modified plants. EFSA J. 2011, 9, 2316. [Google Scholar] [CrossRef]
- Tinland, B.; Janssens, J.; Lecoq, E.; Legris, G.; Matzk, A.; Pleysier, A.; Wandelt, C.; Willekens, H. Implementation of General Surveillance in Europe: The Industry Perspective. J. Verbr. Lebensm. 2006, 1, 42–44. [Google Scholar] [CrossRef]
- Bertho, L.; Schmidt, K.; Schmidtke, J.; Brants, I.; Cantón, R.F.; Novillo, C.; Head, G. Results from ten years of post-market environmental monitoring of genetically modified MON 810 maize in the European Union. PLoS ONE 2020, 15, e0217272. [Google Scholar] [CrossRef]
- Chvátalová, V. The post-market environmental monitoring of GM maize in the EU has a limited capacity to identify adverse effects. Environ. Sci. Policy 2021, 121, 11–17. [Google Scholar] [CrossRef]
- Züghart, W.; Raps, A.; Wust-Saucy, A.-G.; Dolezel, M.; Eckerstorfer, M. Monitoring of Genetically Modified Organisms: A Policy Paper Representing the View of the National Environment Agencies in Austria and Switzerland and the Federal Agency for Nature Conservation in Germany; Umweltbundesamt Report; 2011, REP-0305. Available online: www.umweltbundesamt.at (accessed on 22 March 2022).
- Dolezel, M.; Lang, A.; Eckerstorfer, M.; Greiter, A.; Miklau, M.; Heissenberger, A. Genome Editing—Neue Anforderungen an das Monitoring von Umweltwirkungen: Endbericht des F + E Vorhabens FKZ 3520 84 0300; BfN Schriften: Bonn, Germany, in press.
- Züghart, W.; Benzler, A.; Berhorn, F.; Sukopp, U.; Graef, F. Determining indicators, methods and sites for monitoring potential adverse effects of genetically modified plants to the environment: The legal and conceptional framework for implementation. Euphytica 2008, 164, 845–852. [Google Scholar] [CrossRef]
- Zünd, J.; Wüst-Saucy, A.G.; Züghart, W.; Bühler, C. Monitoring of Spontaneous Populations of Genetically Modified Plant Species in the Environment—Experiences and Recommendations for the Design of a Monitoring Program: Technical Report for the IGGMO of the EPA-ENCA Network. 2019. Available online: https://www.encanetwork.eu/library (accessed on 14 March 2024).
- Meier, M.S.; Hilbeck, A. Faunistische Indikatoren für das Monitoring der Umwelteinwirkungen Genetisch Veränderter Organismen (GVO): Verfahren zur Beurteilung und Auswahl; Naturschutz und Biologische Vielfalt: Bonn, Germany, 2006; ISBN 978-3-7843-3929-0. [Google Scholar]
- Hilbeck, A.; Meier, M.; Benzler, A. Identifying indicator species for post-release monitoring of genetically modified, herbicide resistant crops. Euphytica 2008, 164, 903–912. [Google Scholar] [CrossRef]
- Hilbeck, A.; Weiss, G.; Oehen, B.; Römbke, J.; Jänsch, S.; Teichmann, H.; Lang, A.; Otto, M.; Tappeser, B. Ranking matrices as operational tools for the environmental risk assessment of genetically modified crops on non-target organisms. Ecol. Indic. 2014, 36, 367–381. [Google Scholar] [CrossRef]
- Hilbeck, A.; Bundschuh, R.; Bundschuh, M.; Hofmann, F.; Oehen, B.; Otto, M.; Schulz, R.; Trtikova, M. Procedure to select test organisms for environmental risk assessment of genetically modified crops in aquatic systems. Integr. Environ. Assess. Manag. 2017, 13, 974–979. [Google Scholar] [CrossRef]
- Lang, A.; Bühler, C.; Roth, T.; Dolek, M. Nutzungsmöglichkeiten des Tagfalter-Monitorings Deutschland (TMD) für das Monitoring der Umweltwirkungen Gentechnisch Veränderter Pflanzen: Fachliche Anforderungen an ein GVO-Monitoring von Tagfaltern; BfN Skripten: Bonn, Germany, 2014; ISBN 978-3-89624-118-4. [Google Scholar]
- Römbke, J.; Jänsch, S.; Roß-Nickoll, M.; Toschki, A. Nutzungsmöglichkeiten der Boden-Dauerbeobachtung der Länder für das Monitoring der Umweltwirkungen Gentechnisch Veränderter Pflanzen; BfN Skripten: Bonn, Germany, 2014; ISBN 978-3-89624-104-7. [Google Scholar]
- Sudfeldt, C.; Trautmann, S. Eignung des Bundesweiten Vogelmonitorings für die Erfassung Schädlicher Auswirkungen eines GVP-Anbaus auf die Biodiversität; BfN Skripten: Bonn, Germany, 2015; ISBN 978-3-89624-151-1. [Google Scholar]
- Wedlich, K.V.; Franzaring, J.; Fangmeier, A. Entwicklung und Erprobung eines Konzepts für ein Monitoring von für den Import Zugelassenem Transgenem Raps Nach Richtlinie 2001/18/EG: Ergebnisse eines F + E-Vorhabens (FKZ 3511 89 0100) des Bundesamtes für Naturschutz; BfN Skripten: Bonn, Germany, 2016; ISBN 978-3-89624-166-5. [Google Scholar]
- Schulz, R. Abschätzung von GVO Effekten auf Aquatische Ökosysteme; Unveröffentlichter Bericht des FKZ 3512 89 0100 an das BfN: Bonn, Germany, 2015. [Google Scholar]
- Bundschuh, R.; Kuhn, U.; Bundschuh, M.; Naegele, C.; Elsaesser, D.; Schlechtriemen, U.; Oehen, B.; Hilbeck, A.; Otto, M.; Schulz, R.; et al. Prioritizing stream types according to their potential risk to receive crop plant material-A GIS-based procedure to assist in the risk assessment of genetically modified crops and systemic insecticide residues. Sci. Total Environ. 2016, 547, 226–233. [Google Scholar] [CrossRef] [PubMed]
- Züghart, W.; Beismann, H.; Schroeder, W. Tools for a scientifically rigorous and efficient monitoring of genetically modified organisms (GMOs)—VDI Guidelines to ensure high quality of GMO-monitoring data. BioRisk 2013, 8, 3–13. [Google Scholar] [CrossRef]
- VDI the Association of German Engineers. Monitoring the Ecological Effects of Genetically Modified Organisms—Genetically Modified Plants—Basic Principles and Strategies. VDI Richtlinien 2006, 4330/1, p. 19. Available online: www.vdi.de/richtlinien (accessed on 15 April 2024).
- VDI the Association of German Engineers. Monitoring the Effects of the Cultivation of Genetically Modified Organisms (GMOs)—Standardised Sampling Methods for Wild Bees. VDI Richtlinien 2016, 4332/1, p. 39. Available online: www.vdi.de/richtlinien (accessed on 15 March 2024).
- VDI the Association of German Engineers. Monitoring the Effects of Genetically Modified Organisms (GMO)—Assessment of the Diversity of Ferns and Flowering Plants—Vegetation Surveys. VDI Richtlinien 2008, 4330/9, p. 28. Available online: www.vdi.de/richtlinien (accessed on 15 March 2024).
- VDI the Association of German Engineers. Monitoring the Effects of Genetically Modified Organisms (GMO)—Standardised Monitoring of Butterflies and Moths (Lepidoptera)—Transect Method, Light Trap, and Larval Survey. VDI Richtlinien 2010, 4330/13, p. 52. Available online: www.vdi.de/richtlinien (accessed on 15 March 2024).
- VDI the Association of German Engineers. Monitoring the Effects of Genetically Modified Organisms (GMO)—Pollen Monitoring—Biological Pollen Sampling Using Bee Colonies. VDI Richtlinien 2006, 4330/4, p. 18. Available online: www.vdi.de/richtlinien (accessed on 15 March 2024).
- VDI the Association of German Engineers. Monitoring the Effects of Genetically Modified Organisms (GMO)—Pollen Monitoring—Technical Pollen Sampling Using Pollen Mass Filter (PMF) and Sigma-2 Sampler VDI Richtlinien 2007, 4330/3, p. 54. Available online: www.vdi.de/richtlinien (accessed on 15 March 2024).
- VDI the Association of German Engineers. Monitoring the Effects of the Cultivation of Genetically Modified Organisms (GMOs)—Standardised Sampling Methods for Amphibians VDI Richtlinien 2014, 4333/1, p. 56. Available online: www.vdi.de/richtlinien (accessed on 15 March 2024).
- VDI the Association of German Engineers. Monitoring the Effects of Genetically Modified Organisms—Effects on Soil Organisms. VDI Richtlinien 2014, 4331/1, p. 72. Available online: www.vdi.de/richtlinien (accessed on 15 April 2024).
- VDI the Association of German Engineers. Monitoring the Effects of Genetically Modified Organisms (GMOs)—Floristic Mapping of Genetically Modified Plants (GM Plants), Their Crossing Partners, and Their Hybrid Offspring 4330/10, 2019, p. 15. Available online: www.vdi.de/richtlinien (accessed on 15 April 2024).
- VDI the Association of German Engineers. Monitoring the Effects of Genetically Modified Organisms (GMOs)—Guidelines for the Collection and Preparation of Plant Samples for Molecular Biological Analysis 4330/5, 2015, p. 15. Available online: www.vdi.de/richtlinien (accessed on 15 April 2024).
- VDI the Association of German Engineers. Monitoring the Effects of Genetically Modified Organisms (GMO)—Qualitative Methods for the Detection of Genetically Engineered Nucleic Acids in the Environment 4330/7, 2006, p. 20. Available online: www.vdi.de/richtlinien (accessed on 15 April 2024).
- VDI the Association of German Engineers. Monitoring the Effects of Genetically Modified Organisms (GMO)—Immunochemical Detection of Insecticidal Bt Proteins from Genetically Modified Crops in Soil Samples and Plant Residues, 4330/11, 2015, p. 12. Available online: www.vdi.de/richtlinien (accessed on 15 April 2024).
- Grüneberg, C.; Dröschmeister, R.; Fuchs, D.; Frederking, W.; Gerlach, B.; Hauswirth, M.; Karthäuser, J.; Schuster, B.; Sudfeldt, C.; Trautmann, S.; et al. Vogelschutzbericht 2013: Naturschutz und Biologische Vielfalt; Bundesamt für Naturschutz: Bonn, Germany, 2017; ISBN 978-3-7843-9178-6.
- Bundesamt für Naturschutz. Rastende Wasservögel. Available online: www.bfn.de/rastende-wasservoegel (accessed on 2 November 2022).
- Bundesamt für Naturschutz. Vogelmonitoring. Available online: https://www.bfn.de/vogelmonitoring (accessed on 12 January 2022).
- Sudfeldt, C.; Dröschmeister, R.; Wahl, J.; Berlin, K.; Gottschalk, T.; Grüneberg, C.; Mitschke, A.; Trautmann, S. Vogelmonitoring in Deutschland: Programme und Anwendungen. In Naturschutz und Biologische Vielfalt; Bundesamt für Naturschutz (BfN): Bonn, Germany, 2012; ISBN 978-3-7843-4019-7. [Google Scholar]
- Hünig, C.; Benzler, A. Das Monitoring der Landwirtschaftsflächen Mit Hohem Naturwert in Deutschland; BfN-Schriften: Bonn, Germany, 2017; ISBN 978-3-89624-213-6. [Google Scholar]
- Bundesamt für Naturschutz. Monitoring von Landwirtschaftsflächen mit hohem Naturwert. Available online: https://www.bfn.de/monitoring-von-landwirtschaftsflaechen-mit-hohem-naturwert (accessed on 18 November 2021).
- Bundesamt für Naturschutz. Monitoring FFH-Richtlinie. Available online: www.bfn.de/monitoring-ffh-richtlinie (accessed on 19 November 2021).
- Sachteleben, J.; Behrens, M.; Ackermann, W. Konzept zum Monitoring des Erhaltungszustandes von Lebensraumtypen und Arten der FFH-Richtlinie in Deutschland: Erarbeitet im Rahmen des F + E-Vorhabens “Konzeptionelle Umsetzung der EU-Vorgaben zum FFH-Monitoring und Berichtspflichten in Deutschland“; BfN-Skripten: Bonn, Germany, 2010; ISBN 978-3-89624-013-2. [Google Scholar]
- Schnitter, P.; Eichen, C.; Ellwanger, G.; Neukirchen, M.; Schröder, E. Empfehlungen für die Erfassung und Bewertung von Arten als Basis für das Monitoring nach Artikel 11 und 17 der FFH-Richtlinie in Deutschland; Berichte des Landesamtes für Umweltschutz Sachsen-Anhalt: Halle, Germany, 2006; Volume 2, pp. 1–370. Available online: https://www.bfn.de/sites/default/files/2021-05/sh_2-06_Bewertung-Arten.pdf (accessed on 13 May 2024).
- Bundesamt für Naturschutz. Einheitlicher Methodenleitfaden Insektenmonitoring. Available online: https://www.bfn.de/sites/default/files/2021-08/methodenleitfaden_insektenmonitoring_2019_0.pdf (accessed on 19 May 2021).
- Bundesamt für Naturschutz. Insektenmonitoring. Available online: www.bfn.de/insektenmonitoring (accessed on 19 November 2021).
- Streitberger, M.; Stuhldreher, G.; Fartmann, T.; Ackermann, W.; Ludwig, H.; Züghart, W. Bundesweites Insektenmonitoring: Aktueller Stand der Konzeptentwicklung. Nat. Landsch. 2022, 4, 204–206. [Google Scholar]
- Bundesamt für Naturschutz. Ökosystem-Monitoring—Die Entwicklung Unserer Landschaft Beobachten. 2021. Available online: https://www.bfn.de/themen/biologische-vielfalt/nationale-strategie/projekt-des-monats/oekosystem-monitoring.html (accessed on 16 July 2021).
- Ackermann, W.; Fuchs, D.; Tschiche, J. Ökosystem-Monitoring auf Bundesweit Repräsentativen Stichprobenflächen (ÖSM-I); BfN-Skripten: Bonn, Germany, 2020; ISBN 978-3-89624-347-8. [Google Scholar]
- Ackermann, W.; Fuchs, D.; Freitag, M.; Stenzel, S.; Züghart, W. Das Ökosystem-Monitoring: Entwicklung eines Programms zur Erfassung des Landschaftswandels in Deutschland. Nat. Landsch. 2023, 11, 498–506. [Google Scholar]
- Bundesamt für Naturschutz. Nationales Naturerbe. Available online: https://www.bfn.de/nationales-naturerbe (accessed on 22 November 2021).
- Bundesamt für Naturschutz. Monitoring auf Flächen des Nationalen Naturerbes: Beiträge der Tagung “Erfahrungsaustausch zu Monitoringkonzepten auf Flächen des Nationalen Naturerbes“ des Bundesamts für Naturschutz vom 1—4 Juli 2019 an der Internationalen Naturschutzakademie (INA) Insel Vilm; Züghart, W., Reiter, K., Metzmacher, A., Eds.; Bundesamt für Naturschutz: Bonn, Germany, 2021; ISBN 978-3-89624-348-5.
- International Service for the Acquisition of Agribiotech Applications. GMO Approval Database. Available online: https://www.isaaa.org/gmapprovaldatabase/ (accessed on 11 March 2021).
- BCH. Field Trial with Scab Resistant Cisgenic Apples. Risk Assessment. Available online: https://bch.cbd.int/en/database/103937 (accessed on 10 March 2021).
- Agroscope. Feldversuch mit Cisgenen Apfelbäumen auf der Protected Site in Zürich-Reckenholz. Cisgene Apfelbäume mit Verbesserter Resistenz Gegen Feuerbrand. Available online: https://www.agroscope.admin.ch/agroscope/de/home/themen/umwelt-ressourcen/biosicherheit/gv-pflanzen/protectedsite/projekte/cisgene-apfelbaeume-feuerbrandresistenz.html (accessed on 10 March 2021).
- OECD. Consensus Document on the Biology of Apple (Malus domestica Borkh.); Series on Harmonisation of Regulatory Oversight in Biotechnology; OECD Environment, Health and Safety Publications: Paris, France, 2019; p. 66. Available online: www.oecd.org (accessed on 13 May 2024).
- Krens, F.A.; Schaart, J.G.; van der Burgh, A.M.; Tinnenbroek-Capel, I.E.M.; Groenwold, R.; Kodde, L.P.; Broggini, G.A.L.; Gessler, C.; Schouten, H.J. Cisgenic apple trees; development, characterization, and performance. Front. Plant Sci. 2015, 6, 286. [Google Scholar] [CrossRef]
- Krens, F.A.; Salentijn, E.M.J.; Schaart, J.G.; Schouten, H.J.; Jacobsen, E. Current Progress in Trans- and Cisgenic Apple and Strawberry Breeding. Acta Hortic. 2012, 941, 37–48. [Google Scholar] [CrossRef]
- Charrier, A.; Vergne, E.; Dousset, N.; Richer, A.; Petiteau, A.; Chevreau, E. Efficient Targeted Mutagenesis in Apple and First Time Edition of Pear Using the CRISPR-Cas9 System. Front. Plant Sci. 2019, 10, 40. [Google Scholar] [CrossRef] [PubMed]
- Malnoy, M.; Viola, R.; Jung, M.-H.; Koo, O.-J.; Kim, S.; Kim, J.-S.; Velasco, R.; Nagamangala Kanchiswamy, C. DNA-Free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins. Front. Plant Sci. 2016, 7, 1904. [Google Scholar] [CrossRef] [PubMed]
- Da Graça, J.V.; Douhan, G.W.; Halbert, S.E.; Keremane, M.L.; Lee, R.F.; Vidalakis, G.; Zhao, H. Huanglongbing: An overview of a complex pathosystem ravaging the world’s citrus. J. Integr. Plant Biol. 2016, 58, 373–387. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, S.; Rohrig, E.; Solís, D.; Thomas, M.H. Citrus Greening Disease (Huanglongbing) in Florida: Economic Impact, Management and the Potential for Biological Control. Agric. Res. 2016, 5, 109–118. [Google Scholar] [CrossRef]
- ANSES. Opinion of the French Agency for Food, Environmental and Occupational Health & Safety on a “Pest Risk Analysis for Huanglongbing Disease in the European Union”. 2019. Available online: www.anses.fr (accessed on 4 April 2022).
- Commission Implementing Regulation (EU) 2019/2072 of 28 November 2019 Establishing Uniform Conditions for the Implementation of Regulation (EU) 2016/2031 of the European Parliament and the Council, as Regards Protective Measures against Pests of Plants, and Repealing Commission Regulation (EC) No 690/2008 and Amending Commission Implementing Regulation (EU) 2018/2019. OJ L 319, pp. 1–279. 2019. Available online: https://eur-lex.europa.eu/eli/reg_impl/2019/2072/oj (accessed on 13 May 2024).
- USDA-APHIS. Environmental Impact Statement. Southern Gardens Citrus Nursery, LLC Permit to Release Genetically Engineered Citrus Tristeza Virus. 2020. Available online: https://www.aphis.usda.gov/ (accessed on 12 March 2021).
- Eckerstorfer, M.F.; Dolezel, M.; Miklau, M.; Greiter, A.; Heissenberger, A.; Engelhard, M. Scanning the Horizon for Environmental Applications of Genetically Modified Viruses Reveals Challenges for Their Environmental Risk Assessment. Int. J. Mol. Sci. 2024, 25, 1507. [Google Scholar] [CrossRef] [PubMed]
- More, S.; Bampidis, V.; Benford, D.; Bragard, C.; Halldorsson, T.; Hernández-Jerez, A.; Susanne, H.B.; Koutsoumanis, K.; Machera, K.; Naegeli, H.; et al. Evaluation of Existing Guidelines for Their Adequacy for the Microbial Characterisation and Environmental Risk Assessment of Microorganisms Obtained through Synthetic Biology; Technical Report; European Food Safety Authority: Parma, Italy, 2020; Volume 18, p. e06263. [CrossRef]
- Simon, S.; Otto, M.; Engelhard, M. Synthetic gene drive: Between continuity and novelty: Crucial differences between gene drive and genetically modified organisms require an adapted risk assessment for their use. EMBO Rep. 2018, 19, e45760. [Google Scholar] [CrossRef] [PubMed]
- Botanischer Informationsknoten Bayern. Steckbriefe zu den Gefäßpflanzen Bayerns. Malus sylvestris. Available online: https://daten.bayernflora.de/de/info_pflanzen.php?taxnr=3582 (accessed on 12 March 2021).
- Metzing, D.; Garve, E.; Matzke-Hajek, G. Rote Liste und Gesamtartenliste der Farn- und Blütenpflanzen (Trachaeophyta) Deutschlands. In (Bearb.): Rote Liste der gefährdeten Tiere, Pflanzen und Pilze Deutschlands; Metzing, D., Hofbauer, N., Ludwig, G., Matzke-Hajek, G., Eds.; Band 7: Pflanzen; Naturschutz und Biologische Vielfalt: Bonn, Germany, 2018; Volume 70, pp. 13–358. ISBN 978-3-7843-5612-9. [Google Scholar]
- Dolezel, M.; Simon, S.; Otto, M.; Engelhard, M.; Züghart, W. Gene Drive Organisms: Implications for the Environment and Nature Conservation: A Joint Technical Report of the EPA/ENCA Interest Group on Risk Assessment and Monitoring of GMOs; Umweltbundesamt Report 2020, REP-0705; Umweltbundesamt: Vienna, Austria, 2019. Available online: https://www.umweltbundesamt.at/studien-reports/publikationsdetail?pub_id=2325&cHash=a253b1a7e2200deb0e1bf62b9d48751d (accessed on 12 March 2024).
- Pascher, K.; Gollmann, G. Ökologische Risikoabschätzung von Freisetzungen gentechnisch veränderter Organismen für die spezielle Situation in Österreich. Forschungsberichte 1997, 4, 97. [Google Scholar]
- Fischer, T.C.; Malnoy, M.; Hofmann, T.; Schwab, W.; Palmieri, L.; Wehrens, R.; Schuch, L.A.; Müller, M.; Schimmelpfeng, H.; Velasco, R.; et al. F1 hybrid of cultivated apple (Malus × domestica) and European pear (Pyrus communis) with fertile F2 offspring. Mol. Breed. 2014, 34, 817–828. [Google Scholar] [CrossRef]
- Flachowsky, H.; Hanke, M.-V. Welche Risiken Sind Beim Anbau von Gentechnisch Veränderten Apfelbäumen zu Erwarten? Forschungs Report, p. 1. 2006. Available online: http://www.pflanzenforschung.de/biosicherheit/pdf/dokumente/forschungsreport_apfel_0106.pdf (accessed on 12 March 2024).
- Vogt, I.; Wöhner, T.; Richter, K.; Flachowsky, H.; Sundin, G.W.; Wensing, A.; Savory, E.A.; Geider, K.; Day, B.; Hanke, M.-V.; et al. Gene-for-gene relationship in the host-pathogen system Malus × robusta 5-Erwinia amylovora. New Phytol. 2013, 197, 1262–1275. [Google Scholar] [CrossRef] [PubMed]
- EFSA. Scientific Opinion on the pest categorisation of Citrus tristeza virus (non-European isolates). EFSA J. 2017, 15, 5031. [Google Scholar] [CrossRef] [PubMed]
- Julius-Kühn Institut. Wirkstoffranking Apfel. 2019. Available online: https://papa.julius-kuehn.de/index.php?menuid=54&reporeid=347 (accessed on 11 March 2021).
- Cane, J.H.; Tepedino, V.J. Gauging the Effect of Honey Bee Pollen Collection on Native Bee Communities. Cons. Lett. 2017, 10, 205–210. [Google Scholar] [CrossRef]
- Mallinger, R.E.; Gaines-Day, H.R.; Gratton, C. Do managed bees have negative effects on wild bees? A systematic review of the literature. PLoS ONE 2017, 12, e0189268. [Google Scholar] [CrossRef]
- Goulson, D.; Hughes, W.O. Mitigating the anthropogenic spread of bee parasites to protect wild pollinators. Biol. Cons. 2015, 191, 10–19. [Google Scholar] [CrossRef]
- Roßberg, D.; Harzer, U. Erhebungen zur Anwendung von Pflanzenschutzmitteln im Apfelanbau. J. Kult. 2015, 67, 3. [Google Scholar] [CrossRef]
- Greenpeace. The Bitter Taste of Europe’s Apple Production; Greenpeace: Amsterdam, The Netherlands, 2015; p. 58. Available online: https://www.greenpeace.to/greenpeace/?p=1928 (accessed on 19 January 2022).
- Cowx, I.G.; Bolland, J.D.; Nunn, A.D.; Kerins, G.; Stein, J.; Blackburn, J.; Hart, A.; Henry, C.; Britton, J.R.; Coop, G.; et al. Defining Environmental Risk Assessment Criteria for Genetically Modified Fishes to be Placed on the EU Market. European Food Safety Authority. 2010. Available online: https://www.efsa.europa.eu/en/supporting/pub/en-69 (accessed on 10 March 2022).
- Blix, T.B.; Dalmo, R.A.; Wargelius, A.; Myhr, A.I. Genome editing on finfish: Current status and implications for sustainability. Rev. Aquacult. 2021, 13, 2344–2363. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, Y.; Tay, Y.X.; Yue, G.H. Genome editing and its applications in genetic improvement in aquaculture. Rev. Aquacult. 2022, 14, 178–191. [Google Scholar] [CrossRef]
- Hallerman, E.M.; Dunham, R.; Houston, R.D.; Walton, M.; Wargelius, A.; Wray-Cahen, D. Towards production of genome-edited aquaculture species. Rev. Aquacult. 2023, 15, 404–408. [Google Scholar] [CrossRef]
- Aquabounty. Our Salmon. Available online: https://aquabounty.com/our-salmon (accessed on 23 October 2023).
- GloFish LLC. GloFish. Available online: https://www.glofish.com/ (accessed on 23 October 2023).
- OECD. Developments in Delegations on the Safety Assessment of Novel Foods and Feeds, April 2021–May 2022; Series on the Safety of Novel Foods and Feeds No. 35; OECD Environment, Health and Safety Publications: Paris, France, 2022; Available online: https://one.oecd.org/document/ENV/CBC/MONO(2022)22/en/pdf (accessed on 14 March 2024).
- VKM. Environmental Risk Assessment of Genetically Modified Sterile VIRGIN® Atlantic Salmon for Use in Research Trials in Aquaculture Sea-Cages; Scientific Opinion of the Norwegian Scientific Committee for Food and Environment 06.10.2023. VKM Report, p. 20. 2023. Available online: https://vkm.no/english/riskassessments/allpublications/geneticallymodifiedsterilesalmonriskassessmentoffieldtrials.4.49914e7a18a5261030860bee.html (accessed on 12 March 2024).
- European Food Safety Authority. Guidance on the environmental risk assessment of genetically modified animals. Scientific Opinion. EFSA J. 2013, 11, 3200. [Google Scholar] [CrossRef]
- Zhong, Z.; Niu, P.; Wang, M.; Huang, G.; Xu, S.; Sun, Y.; Xu, X.; Hou, Y.; Sun, X.; Yan, Y.; et al. Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp. Sci. Rep. 2016, 6, 22953. [Google Scholar] [CrossRef] [PubMed]
- Cleveland, B.M.; Yamaguchi, G.; Radler, L.M.; Shimizu, M. Editing the duplicated insulin-like growth factor binding protein-2b gene in rainbow trout (Oncorhynchus mykiss). Sci. Rep. 2018, 8, 16054. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Shi, C.; Gao, Y.; Su, J.; Shu, Y.; Zeng, N.; Zhai, G.; Jin, X.; Han, D.; He, J.; et al. Heterozygous depletion of pik3r1 improves growth and feed conversion efficiency in Gibel carp (Carassius gibelio). Aquaculture 2021, 545, 737207. [Google Scholar] [CrossRef]
- Zhai, G.; Shu, T.; Chen, K.; Lou, Q.; Jia, J.; Huang, J.; Shi, C.; Jin, X.; He, J.; Jiang, D.; et al. Successful Production of an All-Female Common Carp (Cyprinus carpio L.) Population Using cyp17a1-Deficient Neomale Carp. Engineering 2022, 8, 181–189. [Google Scholar] [CrossRef]
- Ma, J.; Fan, Y.; Zhou, Y.; Liu, W.; Jiang, N.; Zhang, J.; Zeng, L. Efficient resistance to grass carp reovirus infection in JAM-A knockout cells using CRISPR/Cas9. Fish Shellfish Immunol. 2018, 76, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Mandal, B.K.; Chen, H.; Si, Z.; Hou, X.; Yang, H.; Xu, X.; Wang, J.; Wang, C. Shrunk and scattered black spots turn out due to MC1R knockout in a white-black Oujiang color common carp (Cyprinus carpio var. color). Aquaculture 2020, 518, 734822. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Z.; Liu, Z.; Shen, J.; Feng, H.; Xue, L. Transgenic red carp (Cyprinus carpio) with LcMSTN1 propeptide: Enhanced growth and unchanged muscle fat content. Aquaculture 2021, 541, 736795. [Google Scholar] [CrossRef]
- Magalhães, A.L.B.; Brito, M.F.G.; Silva, L.G.M. The fluorescent introduction has begun in the southern hemisphere: Presence and life-history strategies of the transgenic zebrafish Danio rerio (Cypriniformes: Danionidae) in Brazil. Stud. Neotrop. Fauna Environ. 2022, 59, 1–13. [Google Scholar] [CrossRef]
- Haas, E. Der Karpfenteich und Seine Fische; Leopold Stocker Verlag: Graz, Austria, 1997; ISBN 978-3-7020-1511-4. [Google Scholar]
- Mihalitsis, M.; Bellwood, D.R. Functional groups in piscivorous fishes. Ecol. Evol. 2021, 11, 12765–12778. [Google Scholar] [CrossRef]
- Färber, B.; Bartel, A.; Dolezel, M.; Ferner, B.; Gabriel, O.; Gaugitsch, H.; Götzl, M.; Greiter, A.; Heuber, A.; Schaufler, K.; et al. Pilostudie 4—Umweltdaten der Aquakultur. Umweltbundesamt Report 2020, REP-0715. Available online: www.umweltbundesamt.at (accessed on 14 March 2024).
- Bojarski, B.; Jakubiak, M.; Szczerbik, P.; Bień, M.; Klaczak, A.; Stański, T.; Witeska, M. The Influence of Fish Ponds on Fish Assemblages of Adjacent Watercourses. Pol. J. Environ. Stud. 2022, 31, 609–617. [Google Scholar] [CrossRef]
- Carpio, A.J.; Miguel, R.J.d.; Oteros, J.; Hillström, L.; Tortosa, F.S. Angling as a source of non-native freshwater fish: A European review. Biol. Invasions 2019, 21, 3233–3248. [Google Scholar] [CrossRef]
- Beardmore, B.; Hunt, L.M.; Haider, W.; Dorow, M.; Arlinghaus, R. Effectively managing angler satisfaction in recreational fisheries requires understanding the fish species and the anglers. Can. J. Fish. Aquat. Sci. 2015, 72, 500–513. [Google Scholar] [CrossRef]
- Adámek, Z.; Anton Pardo, M.; Vilizzi, L.; Roberts, J. Successful reproduction of common carp Cyprinus carpio in irrigation waterways. Fish. Manag. Ecol. 2015, 22, 279–285. [Google Scholar] [CrossRef]
- Mahlum, S.; Vollset, K.W.; Barlaup, B.T.; Skoglund, H.; Velle, G. Salmon on the lam: Drivers of escaped farmed fish abundance in rivers. J. Appl. Ecol. 2021, 58, 550–561. [Google Scholar] [CrossRef]
- Føre, H.M.; Thorvaldsen, T. Causal analysis of escape of Atlantic salmon and rainbow trout from Norwegian fish farms during 2010–2018. Aquaculture 2021, 532, 736002. [Google Scholar] [CrossRef]
- Lindberg, M.; Rivinoja, P.; Eriksson, L.-O.; Alanärä, A. Post-release and pre-spawning behaviour of simulated escaped adult rainbow trout Oncorhynhus mykiss in Lake Ovre Fryken, Sweden. J. Fish Biol. 2009, 74, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Okoli, A.S.; Blix, T.; Myhr, A.I.; Xu, W.; Xu, X. Sustainable use of CRISPR/Cas in fish aquaculture: The biosafety perspective. Transgenic Res. 2022, 31, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Stanković, D.; Crivelli, A.J.; Snoj, A. Rainbow Trout in Europe: Introduction, Naturalization, and Impacts. Rev. Fish. Sci. Aquacult. 2015, 23, 39–71. [Google Scholar] [CrossRef]
- Kohlmann, K.; Kersten, P.; Flajšhans, M. Microsatellite-based genetic variability and differentiation of domesticated, wild and feral common carp (Cyprinus carpio L.) populations. Aquaculture 2005, 247, 253–266. [Google Scholar] [CrossRef]
- Kohlmann, K.; Kersten, P. Deeper insight into the origin and spread of European common carp (Cyprinus carpio carpio) based on mitochondrial D-loop sequence polymorphisms. Aquaculture 2013, 376–379, 97–104. [Google Scholar] [CrossRef]
- Devlin, R.H.; Sundström, L.F.; Leggatt, R.A. Assessing Ecological and Evolutionary Consequences of Growth-Accelerated Genetically Engineered Fishes. BioScience 2015, 65, 685–700. [Google Scholar] [CrossRef]
- Duan, M.; Zhang, T.; Hu, W.; Sundström, L.F.; Wang, Y.; Li, Z.; Zhu, Z. Elevated ability to compete for limited food resources by ‘all-fish’ growth hormone transgenic common carp Cyprinus carpio. J. Fish Biol. 2009, 75, 1459–1472. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Wang, Y.-P.; Pei, D.-S.; Luo, D.-J.; Liao, L.-J.; Zhu, Z.-Y. A one-year investigation of the relationship between serum GH levels and the growth of F(4) transgenic and non-transgenic common carp Cyprinus carpio. J. Fish Biol. 2009, 75, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Vilizzi, L.; Tarkan, A.S.; Copp, G.H. Experimental Evidence from Causal Criteria Analysis for the Effects of Common Carp Cyprinus carpio on Freshwater Ecosystems: A Global Perspective. Rev. Fish. Sci. Aquacult. 2015, 23, 253–290. [Google Scholar] [CrossRef]
- Hasegawa, K. Invasions of rainbow trout and brown trout in Japan: A comparison of invasiveness and impact on native species. Ecol. Freshw. Fish 2020, 29, 419–428. [Google Scholar] [CrossRef]
- Huser, B.J.; Bajer, P.G.; Kittelson, S.; Christenson, S.; Menken, K. Changes to water quality and sediment phosphorus forms in a shallow, eutrophic lake after removal of common carp (Cyprinus carpio). Inland Waters 2021, 12, 1–14. [Google Scholar] [CrossRef]
- Miró, A.; Ventura, M. Introduced fish in Pyrenean high mountain lakes: Impact on amphibians and other organisms, and conservation implications. Limnetica 2020, 39, 283–297. [Google Scholar] [CrossRef]
- Maceda-Veiga, A.; López, R.; Green, A.J. Dramatic impact of alien carp Cyprinus carpio on globally threatened diving ducks and other waterbirds in Mediterranean shallow lakes. Biol. Cons. 2017, 212, 74–85. [Google Scholar] [CrossRef]
- Bouwmeester, M.M.; Goedknegt, M.A.; Poulin, R.; Thieltges, D.W. Collateral diseases: Aquaculture impacts on wildlife infections. J. Appl. Ecol. 2021, 58, 453–464. [Google Scholar] [CrossRef]
- Unger, P.; Palm, H.W. Parasite risk of maricultured rainbow trout (Oncorhynchus mykiss Walbaum, 1792) in the Western Baltic Sea, Germany. Aquacult. Int. 2017, 25, 975–989. [Google Scholar] [CrossRef]
- Dechema. Mikroalgen-Biotechnologie. Gegenwärtiger Stand, Herausforderungen, Ziele. 2016. Available online: https://dechema.de/Gremien+und+Netzwerke/Biotechnologie/Gremien/Algenbiotechnologie.html?highlight=Algenbiotechnologie (accessed on 28 February 2022).
- García, J.L.; Vicente, M.d.; Galán, B. Microalgae, old sustainable food and fashion nutraceuticals. Microb. Biotechnol. 2017, 10, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.; Fu, D.; Chu, H.; Wang, Z.; Qi, H. Biofuel production from microalgae: A review. Environ. Chem. Lett. 2020, 18, 285–297. [Google Scholar] [CrossRef]
- Wijffels, R.H. The need and risks of using transgenic microalgae for the production of food, feed, chemicals and fuels. In Biosafety and the Environmental Uses of Micro-Organisms; OECD: Paris, France, 2015. [Google Scholar] [CrossRef]
- Chen, H.L.; Li, S.S.; Huang, R.; Tsai, H.-J. Conditional production of a functional fish growth hormone in the transgenic line of Nannochloropsis oculata (Eustigmatophyceae). J. Phycol. 2008, 44, 768–776. [Google Scholar] [CrossRef] [PubMed]
- OGTR Office of the Gene Technology Regulator. Limited and Controlled Release of Microalgae Genetically Modified for Increased Production of Fatty Acids. Licence Application No. DIR 169. 2020. Available online: https://www1.health.gov.au/internet/ogtr/publishing.nsf/Content/DIR169 (accessed on 28 February 2022).
- US EPA. TSCA Experimental Release Applications (TERAs) for Five Intergeneric Strains of Photosynthetic Green Algae Scenedesmus dimorphus, R-13-0003 through R-13-0007. 2013. Available online: https://www.epa.gov/regulation-biotechnology-under-tsca-and-fifra/tsca-experimental-release-applications-teras-five (accessed on 28 February 2022).
- Jeon, S.; Lim, J.-M.; Lee, H.-G.; Shin, S.-E.; Kang, N.K.; Park, Y.-I.; Oh, H.-M.; Jeong, W.-J.; Jeong, B.-R.; Chang, Y.K. Current status and perspectives of genome editing technology for microalgae. Biotechnol. Biofuels 2017, 10, 267. [Google Scholar] [CrossRef] [PubMed]
- AlgaeBase. Global Algal Database of Taxonomic, Nomenclatural and Distributional Information. Available online: https://www.algaebase.org/search/genus/detail/?genus_id=43319 (accessed on 28 February 2022).
- Jiang, W.; Brueggeman, A.J.; Horken, K.M.; Plucinak, T.M.; Weeks, D.P. Successful transient expression of Cas9 and single guide RNA genes in Chlamydomonas reinhardtii. Eukaryot. Cell 2014, 13, 1465–1469. [Google Scholar] [CrossRef] [PubMed]
- Baek, K.; Kim, D.H.; Jeong, J.; Sim, S.J.; Melis, A.; Kim, J.-S.; Jin, E.; Bae, S. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci. Rep. 2016, 6, 30620. [Google Scholar] [CrossRef] [PubMed]
- Fawley, K.P.; Fawley, M.W. Observations on the diversity and ecology of freshwater Nannochloropsis (Eustigmatophyceae), with descriptions of new taxa. Protist 2007, 158, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Lubián, L.M.; Montero, O.; Moreno-Garrido, I.; Huertas, I.E.; Sobrino, C.; González-del Valle, M.; Parés, G. Nannochloropsis (Eustigmatophyceae) as source of commercially valuable pigments. J. Appl. Phycol. 2000, 12, 249–255. [Google Scholar] [CrossRef]
- Gouveia, L.; Oliveira, A.C. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 2009, 36, 269–274. [Google Scholar] [CrossRef]
- Ajjawi, I.; Verruto, J.; Aqui, M.; Soriaga, L.B.; Coppersmith, J.; Kwok, K.; Peach, L.; Orchard, E.; Kalb, R.; Xu, W.; et al. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat. Biotechnol. 2017, 35, 647–652. [Google Scholar] [CrossRef]
- Beacham, T.A.; Sweet, J.B.; Allen, M.J. Large scale cultivation of genetically modified microalgae: A new era for environmental risk assessment. Algal Res. 2017, 25, 90–100. [Google Scholar] [CrossRef]
- Wilkinson, D.M.; Koumoutsaris, S.; Mitchell, E.A.D.; Bey, I. Modelling the effect of size on the aerial dispersal of microorganisms. J. Biogeogr. 2012, 39, 89–97. [Google Scholar] [CrossRef]
- Szyjka, S.J.; Mandal, S.; Schoepp, N.G.; Tyler, B.M.; Yohn, C.B.; Poon, Y.S.; Villareal, S.; Burkart, M.D.; Shurin, J.B.; Mayfield, S.P. Evaluation of phenotype stability and ecological risk of a genetically engineered alga in open pond production. Algal Res. 2017, 24, 378–386. [Google Scholar] [CrossRef]
- Gressel, J.; van der Vlugt, C.J.B.; Bergmans, H.E.N. Cultivated microalgae spills: Hard to predict/easier to mitigate risks. Trends Biotechnol. 2014, 32, 65–69. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Lee, Y.K. Genetic engineering of medium-chain-length fatty acid synthesis in Dunaliella tertiolecta for improved biodiesel production. J. Appl. Phycol. 2017, 29, 2811–2819. [Google Scholar] [CrossRef]
- Wichard, T.; Gerecht, A.; Boersma, M.; Poulet, S.A.; Wiltshire, K.; Pohnert, G. Lipid and fatty acid composition of diatoms revisited: Rapid wound-activated change of food quality parameters influences herbivorous copepod reproductive success. Chembiochem 2007, 8, 1146–1153. [Google Scholar] [CrossRef]
- Flynn, K.J.; Mitra, A.; Greenwell, H.C.; Sui, J. Monster potential meets potential monster: Pros and cons of deploying genetically modified microalgae for biofuels production. Interface Focus 2013, 3, 20120037. [Google Scholar] [CrossRef]
- Gomez Barbero, M.; Rodriguez Cerezo, E. Adoption and Impact of the First GM Crop Introduced in EU Agriculture: Bt Maize in Spain; EUR 22778 EN; European Commission: Luxembourg, 2008; p. JRC37046. [Google Scholar]
- BMUB/UBA. Die Wasserrahmenrichtlinie—Deutschlands Gewässer 2015, Bonn, Dessau. 2016. Available online: https://www.umweltbundesamt.de/publikationen/die-wasserrahmenrichtlinie-deutschlands-gewaesser (accessed on 9 January 2024).
- Ribarits, A.; Eckerstorfer, M.; Simon, S.; Stepanek, W. Genome-Edited Plants: Opportunities and Challenges for an Anticipatory Detection and Identification Framework. Foods 2021, 10, 430. [Google Scholar] [CrossRef]
- Teufel, J.; López Hernández, V.; Greiter, A.; Kampffmeyer, N.; Hilbert, I.; Eckerstorfer, M.; Narendja, F.; Heissenberger, A.; Simon, S. Strategies for Traceability to Prevent Unauthorised GMOs (Including NGTs) in the EU: State of the Art and Possible Alternative Approaches. Foods 2024, 13, 369. [Google Scholar] [CrossRef]
- DARWIN. New Genomic Techniques. New Food Systems. 2024. Available online: https://darwin-ngt.eu/ (accessed on 29 April 2024).
- Detective. Detection of NGT Products to Promote Innovation in Europe. 2024. Available online: https://cordis.europa.eu/project/id/101137025 (accessed on 29 April 2024).
Potential Effects | Novel Monitoring Requirements |
---|---|
Occurrence and spread of GM trees or GM viruses outside cultivation areas (including outcrossing of GM trait into wild relatives) | Occurrence of the GM traits in feral/wild apples and wild relatives (Malus sp., Pyrus sp., Sorbus sp.), including species of conservation concern Virus dispersal (incl. vectors) in orchards and host plants if occurring in (semi-) natural habitats |
Changes in pathogen/disease spectrum e.g., due to resistance formation of the target pathogen | Disease incidence in orchards (including relevant vector species) |
Changes in the infectivity, pathogenicity of the GM virus (in comparison with native strains) | Virus biology in orchards |
Intensification of GM tree cultivation including changes in pesticide use | Cultivation intensity and pesticide use of GM fruit trees in orchards |
Effects on non-target organisms and the biodiversity in and in close proximity to fruit orchards | Occurrence of non-target organisms and indicators for biodiversity (e.g., vegetation, pollinators, beneficial insects, birds) in orchards and surroundings |
Potential Effects | Novel Monitoring Requirements |
---|---|
Occurrence and spread of GM freshwater fish to and in natural habitats Hybridization of GM freshwater fish with wild relatives, including native and autochthonous species | Frequency of occurrence of GM fish and hybridization with non-GM fish in diverse freshwater ecosystems |
Effects on species composition in aquatic food webs (fish, invertebrates) | Aquatic food webs and biodiversity in relevant aquatic habitats |
Displacement of native (autochthonous) fish species | Frequency of occurrence of selected fish taxa |
Decrease in water quality | Water quality |
Spread of parasites and diseases to native (autochthonous) populations in natural habitats | Fish disease incidence and parasites |
Intensification of inland aquaculture production | Intensity of freshwater fish production |
Potential Effects | Novel Monitoring Requirements |
---|---|
Occurrence and spread of GM microalgae in natural aquatic habitats Transfer of GM trait to wild-type algae | Frequency of occurrence of GM microalgae in aquatic habitats |
Shifts in composition of microalgae communities | Microalgae communities (e.g., baseline condition, keynote species) |
Effects on biodiversity in aquatic communities (different trophic levels) | Aquatic food webs and biodiversity in relevant aquatic habitats |
Decrease in water quality and of ecosystem services | Water quality (incl. algal blooms) and ecosystem services |
GM Applications in Orchards | Biodiversity Monitoring Program |
---|---|
Spread of GM fruit trees | FFH, Ecosystem, National Heritage |
Effects on NTO, biodiversity | Bird, FFH, Insect, HNV |
Resistance development, disease incidence, viral pathogenicity | - |
Intensification of production, pesticide use | - |
GM Freshwater Species | Biodiversity Monitoring Program |
---|---|
Spread of GM microalgae/GM fish | FFH, WFD |
Aquatic biodiversity and food webs | Bird, FFH, Insect, WFD |
Water quality (incl. algal blooms) | Ecosystem, WFD |
Fish disease incidence and parasites | - |
Intensification of fish production | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dolezel, M.; Lang, A.; Greiter, A.; Miklau, M.; Eckerstorfer, M.; Heissenberger, A.; Willée, E.; Züghart, W. Challenges for the Post-Market Environmental Monitoring in the European Union Imposed by Novel Applications of Genetically Modified and Genome-Edited Organisms. BioTech 2024, 13, 14. https://doi.org/10.3390/biotech13020014
Dolezel M, Lang A, Greiter A, Miklau M, Eckerstorfer M, Heissenberger A, Willée E, Züghart W. Challenges for the Post-Market Environmental Monitoring in the European Union Imposed by Novel Applications of Genetically Modified and Genome-Edited Organisms. BioTech. 2024; 13(2):14. https://doi.org/10.3390/biotech13020014
Chicago/Turabian StyleDolezel, Marion, Andreas Lang, Anita Greiter, Marianne Miklau, Michael Eckerstorfer, Andreas Heissenberger, Eva Willée, and Wiebke Züghart. 2024. "Challenges for the Post-Market Environmental Monitoring in the European Union Imposed by Novel Applications of Genetically Modified and Genome-Edited Organisms" BioTech 13, no. 2: 14. https://doi.org/10.3390/biotech13020014
APA StyleDolezel, M., Lang, A., Greiter, A., Miklau, M., Eckerstorfer, M., Heissenberger, A., Willée, E., & Züghart, W. (2024). Challenges for the Post-Market Environmental Monitoring in the European Union Imposed by Novel Applications of Genetically Modified and Genome-Edited Organisms. BioTech, 13(2), 14. https://doi.org/10.3390/biotech13020014