Flow-FISH as a Tool for Studying Bacteria, Fungi and Viruses
Abstract
:1. Introduction
2. General Principles and Brief Overview of Different Types of Flow-FISH Assays
2.1. Single-Molecule Flow-FISH Utilizing Single Probes
2.2. Single-Molecule Flow-FISH Utilizing Multiple Probes
2.3. Flow-FISH Utilizing Branched Signal Amplification
3. Flow-FISH Applications in Microorganisms
3.1. Bacteria
3.2. Fungi
Species | Sample Type(s) | Application | Reference |
---|---|---|---|
Bacillus cereus | Collection strain | Strain identification | [28] |
Bacteroides vulgatus | Fecal sample | Strain identification | [43] |
Bifidobacterium longum | Fecal sample | Strain identification | [43] |
Carnobacterium spp. | Collection strain | Strain identification | [29] |
Clostridium spp. | Fermentative culture | Strain identification | [30] |
Collinsella aerofaciens | Fecal sample | Strain identification | [43] |
Desulfovibrio gigas | Collection strain | Strain identification | [31] |
Desulfobacter hydrogenophilus | Collection strain | Strain identification | [31] |
Escherichia coli | Collection strain | Growth pattern analysis Strain identification | [17] |
Collection strain | Strain identification | [31] | |
Collection strain | Strain identification | [33] | |
Collection strain | Strain identification | [44] | |
Ex vivo infected blood | Detection of infection | [34] | |
Fecal sample | Strain identification | [43] | |
Lab-infected food (milk) | Food contamination | [35] | |
Faecalibacterium prausnitzii | Fecal sample | Strain identification | [43] |
Klebsiella pneumoniae | Ex vivo infected blood | Detection of infection | [34] |
Lactobacillus brevis | Collection strain | Strain identification | [29] |
Pseudomonas spp. | Collection strain | Growth pattern analysis Strain identification | [17] |
Collection strain | Strain identification | [44] | |
Ex vivo infected blood | Detection of infection | [34] | |
Food (milk) | Food contamination | [32] | |
Lab-infected food (milk) | Food contamination | [35] | |
Ruminococcus productus | Fecal sample | Strain identification | [43] |
Salmonella spp. | Food (tomato) | Food contamination | [36] |
Food (tomato) | Food contamination | [37] | |
Food (alfalfa) | Food contamination | [38] |
3.3. Viruses
3.3.1. EBV
Species | Cell Type(s) | Application | Reference |
---|---|---|---|
BVDV | Bovine lymphoid cells | Detection of infected cells | [48] |
Cell lines | Viral strain identification | [49] | |
Dengue virus | Cell lines | Detection of infected cells | [45] |
HCV | Cell lines | Detection of infected cells | [54] |
γHV | Cell lines | Detection of infected cells | [55] |
KSHV | Cell lines | Detection of infected cells | [56] |
Cell lines | Detection of infected cells | [55] | |
Parvovirus B19 | Cell lines | Detection of infected cells | [57] |
Erythroid progenitor cells | Detection of infected cells Parvovirus B19 biology | [51] | |
Poliovirus | Cell lines | Detection of infected cells Poliovirus biology | [45] |
SV | In vitro model | Detection of infected cells | [22] |
SVV | Cell lines | Detection of infected cells | [50] |
YFV | Cell lines Murine PBMC | Detection of infected cells YFV biology | [46] |
Cell lines | YFV biology | [47] | |
Zika virus | Murine leukocytes | Detection of infected cells | [58] |
Cell lines | Zika biology | [45] |
3.3.2. HIV-1
Cell Type(s) | Application | Reference |
---|---|---|
Cell lines | Detection of infected cells | [69] |
Ex vivo infected PBMCs | Detection of infected cells | [70] |
Ex vivo infected epidermal DCs | Detection of infected cells | [71] |
Ex vivo infected T cells | Detection of infected cells Anti-HIV antibody biology | [72] |
Patient T cells | Detection of infected cells | [3] |
Patient T cells Patient alveolar macrophages | Detection of infected cells | [74] |
Patient T cells | Detection of infected cells Studying HIV biology | [77] |
Patient T cells | Detection of infected cells Studying HIV biology | [19] |
Cell lines Ex vivo infected T cells | Latency reversal Host antiviral factors | [73] |
Patient T cells | Studying HIV biology Translation-competent viral reservoir | [78] |
Ex vivo infected T cells Patient T cells | Studying HIV biology Translation-competent viral reservoir | [76] |
Patient T cells | Studying HIV biology Translation-competent viral reservoir | [6] |
Patient T cells | Translation-competent viral reservoir | [79] |
Patient platelets | Replication-competent viral reservoir | [75] |
Cell lines Patient T cells | Latency reversal | [80] |
Cell lines Patient T cells | Latency reversal | [81] |
Cell lines Ex vivo infected T cells | Latency reversal | [82] |
3.3.3. SARS-CoV-2
4. Conclusions and Outlook
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnson, J.S.; Spakowicz, D.J.; Hong, B.Y.; Petersen, L.M.; Demkowicz, P.; Chen, L.; Leopold, S.R.; Hanson, B.M.; Agresta, H.O.; Gerstein, M.; et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 2019, 10, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porichis, F.; Hart, M.G.; Griesbeck, M.; Everett, H.L.; Baxter, A.E.; Lindqvist, M.; Miller, S.M.; Soghoian, D.Z.; Kavanagh, D.G.; Reynolds, S.; et al. High-throughput detection of miRNAs and gene-specific mRNA at the single-cell level by flow cytometry. Nat. Commun. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Baxter, A.E.; Niessl, J.; Fromentin, R.; Richard, J.; Porichis, F.; Massanella, M.; Brassard, N.; Alsahafi, N.; Routy, J.-P.; Finzi, A.; et al. Multiparametric characterization of rare HIV-infected cells using an RNA-flow FISH technique. Nat. Protoc. 2017, 12, 2029–2049. [Google Scholar] [CrossRef] [PubMed]
- Baxter, A.E.; O’Doherty, U.; Kaufmann, D.E. Beyond the replication-competent HIV reservoir: Transcription and translation-competent reservoirs. Retrovirology 2018, 15, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolet, B.P.; Guislain, A.; Wolkers, M.C. Combined Single-Cell Measurement of Cytokine mRNA and Protein Identifies T Cells with Persistent Effector Function. J. Immunol. 2017, 198, 962–970. [Google Scholar] [CrossRef] [PubMed]
- Baxter, A.E.; Niessl, J.; Fromentin, R.; Richard, J.; Porichis, F.; Charlebois, R.; Massanella, M.; Brassard, N.; Alsahafi, N.; Delgado, G.G.; et al. Single-Cell Characterization of Viral Translation-Competent Reservoirs in HIV-Infected Individuals. Cell Host Microbe 2016, 20, 368–380. [Google Scholar] [CrossRef] [Green Version]
- Batani, G.; Bayer, K.; Böge, J.; Hentschel, U.; Thomas, T. Fluorescence in situ hybridization (FISH) and cell sorting of living bacteria. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuenschwander, S.M.; Salcher, M.M.; Pernthaler, J. Fluorescence in situ hybridization and sequential catalyzed reporter deposition (2C-FISH) for the flow cytometric sorting of freshwater ultramicrobacteria. Front. Microbiol. 2015, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, K.L.; Vora, G.J. Locked nucleic acid and flow cytometry-fluorescence in situ hybridization for the detection of bacterial small noncoding RNAs. Appl. Environ. Microbiol. 2012, 78, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Robertson, K.L.; Vora, G.J. Locked nucleic acid flow cytometry-fluorescence in situ hybridization (LNA flow-FISH): A method for bacterial small RNA detection. J. Vis. Exp. 2012. [Google Scholar] [CrossRef] [Green Version]
- Martínez Gómez, J.M.; Periasamy, P.; Dutertre, C.A.; Irving, A.T.; Ng, J.H.J.; Crameri, G.; Baker, M.L.; Ginhoux, F.; Wang, L.F.; Alonso, S. Phenotypic and functional characterization of the major lymphocyte populations in the fruit-eating bat Pteropus alecto. Sci. Rep. 2016, 6, 1–13. [Google Scholar] [CrossRef]
- Arrigucci, R.; Bushkin, Y.; Radford, F.; Lakehal, K.; Vir, P.; Pine, R.; Martin, D.; Sugarman, J.; Zhao, Y.; Yap, G.S.; et al. FISH-Flow, a protocol for the concurrent detection of mRNA and protein in single cells using fluorescence in situ hybridization and flow cytometry HHS Public Access. Nat. Protoc. 2017, 12, 1245–1260. [Google Scholar] [CrossRef]
- Salerno, F.; Freen-van Heeren, J.J.; Guislain, A.; Nicolet, B.P.; Wolkers, M.C. Costimulation through TLR2 Drives Polyfunctional CD8+ T Cell Responses. J. Immunol. 2019, 202, 714–723. [Google Scholar] [CrossRef] [Green Version]
- Freen-van Heeren, J.J.; Nicolet, B.P.; Wolkers, M.C. Combined Single-Cell Measurement of Cytokine mRNA and Protein in Immune Cells. Methods Mol. Biol. 2020, 2108, 259–271. [Google Scholar] [PubMed]
- Rufer, N.; Dragowska, W.; Thornbury, G.; Roosnek, E.; Lansdorp, P.M. Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat. Biotechnol. 1998, 16, 743–747. [Google Scholar] [CrossRef] [PubMed]
- Reed, J.R.; Vukmanovic-Stejic, M.; Fletcher, J.M.; Soares, M.V.D.; Cook, J.E.; Orteu, C.H.; Jackson, S.E.; Birch, K.E.; Foster, G.R.; Salmon, M.; et al. Telomere erosion in memory T cells induced by telomerase inhibition at the site of antigenic challenge in vivo. J. Exp. Med. 2004, 199, 1433–1443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallner, G.; Amann, R.; Beisker, W. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 1993, 14, 136–143. [Google Scholar] [CrossRef] [PubMed]
- Trnovsky, J.; Merz, W.; Della-Latta, P.; Wu, F.; Arendrup, M.C.; Stender, H. Rapid and accurate identification of Candida albicans isolates by use of PNA FISHFlow. J. Clin. Microbiol. 2008, 46, 1537–1540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Mohsen, M.; Kuri-Cervantes, L.; Grau-Exposito, J.; Spivak, A.M.; Nell, R.A.; Tomescu, C.; Vadrevu, S.K.; Giron, L.B.; Serra-Peinado, C.; Genescà, M.; et al. CD32 is expressed on cells with transcriptionally active HIV but does not enrich for HIV DNA in resting T cells. Sci. Transl. Med. 2018, 10, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Freen-van Heeren, J.J. Addressing HIV-1 Latency with Flow-FISH: Finding, Characterizing and Targeting HIV-1 Infected Cells. Cytom. Part A 2021. [Google Scholar] [CrossRef]
- Freen-van Heeren, J.J.; Nicolet, B.P.; Wolkers, M.C. Measuring T Cell Responses by Flow Cytometry–Based Fluorescence In Situ Hybridization. Crit. Rev. Immunol. 2018, 38, 131–143. [Google Scholar] [CrossRef] [PubMed]
- Robertson, K.L.; Verhoeven, A.B.; Thach, D.C.; Chang, E.L. Monitoring viral RNA in infected cells with LNA flow-FISH. Rna 2010, 16, 1679–1685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.; Piccini, M.E.; Singh, A.K. miRNA detection at single-cell resolution using microfluidic LNA flow-FISH. Methods Mol. Biol. 2014, 1211, 245–260. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Piccini, M.; Koh, C.-Y.; Lam, K.S.; Singh, A.K. Single Cell MicroRNA Analysis Using Microfluidic Flow Cytometry. PLoS ONE 2013, 8. [Google Scholar] [CrossRef]
- Morvan, P.Y.; Picot, C.; Dejour, R.; Gillot, E.; Genetet, B.; Genetet, N. In situ hybridization and cytofluorometric analysis of cytokine mRNA during in vitro activation of human T cells. Eur. Cytokine Netw. 1994, 5, 469–480. [Google Scholar]
- Gaspar, I.; Wippich, F.; Ephrussi, A. Enzymatic production of single-molecule FISH and RNA capture probes. RNA 2017, 23, 1582–1591. [Google Scholar] [CrossRef] [Green Version]
- Henning, A.L.; Levitt, D.E.; Vingren, J.L.; McFarlin, B.K. Measurement of T-Cell telomere length using amplified-signal FISH staining and flow cytometry. Curr. Protoc. Cytom. 2017, 2017, 7–47. [Google Scholar] [CrossRef]
- LaFlamme, C.; Gendron, L.; Turgeon, N.; Filion, G.; Ho, J.; Duchaine, C. Rapid Detection of Germinating Bacillus Cereus Cells Using Fluorescent in Situ Hybridization. J. Rapid Methods Autom. Microbiol. 2008, 17, 80–102. [Google Scholar] [CrossRef]
- Connil, N.; Dousset, X.; Onno, B.; Pilet, M.F.; Breuil, M.F.; Montel, M.C. Enumeration of Carnobacterium divergens V41, Carnobacterium piscicola V1 and Lactobacillus brevis LB62 by in situ hybridization-flow cytometry. Lett. Appl. Microbiol. 1998, 27, 302–306. [Google Scholar] [CrossRef]
- Jen, C.J.; Chou, C.H.; Hsu, P.C.; Yu, S.J.; Chen, W.E.; Lay, J.J.; Huang, C.C.; Wen, F.S. Flow-FISH analysis and isolation of clostridial strains in an anaerobic semi-solid bio-hydrogen producing system by hydrogenase gene target. Appl. Microbiol. Biotechnol. 2007, 74, 1126–1134. [Google Scholar] [CrossRef]
- Amann, R.I.; Binder, B.J.; Olson, R.J.; Chisholm, S.W.; Devereux, R.; Stahl, D.A. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 1990, 56, 1919–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunasekera, T.S.; Dorsch, M.R.; Slade, M.B.; Veal, D.A. Specific detection of Pseudomonas spp. in milk by fluorescence in situ hybridization using ribosomal RNA directed probes. J. Appl. Microbiol. 2003, 94, 936–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manti, A.; Boi, P.; Amalfitano, S.; Puddu, A.; Papa, S. Experimental improvements in combining CARD-FISH and flow cytometry for bacterial cell quantification. J. Microbiol. Methods 2011, 87, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.X.; Urosevic, N.; Inglis, T.J.J. Accelerated bacterial detection in blood culture by enhanced acoustic flow cytometry (AFC) following peptide nucleic acid fluorescence in situ hybridization (PNA-FISH). PLoS ONE 2019, 14, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Gunasekera, T.S.; Veal, D.A.; Attfield, P.V. Potential for broad applications of flow cytometry and fluorescence techniques in microbiological and somatic cell analyses of milk. Int. J. Food Microbiol. 2003, 85, 269–279. [Google Scholar] [CrossRef]
- Bisha, B.; Brehm-Stecher, B.F. Combination of adhesive-tape-based sampling and fluorescence in situ hybridization for rapid detection of Salmonella on fresh produce. J. Vis. Exp. 2010, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Bisha, B.; Brehm-Stecher, B.F. Simple adhesive-tape-based sampling of tomato surfaces combined with rapid fluorescence in situ hybridization for Salmonella detection. Appl. Environ. Microbiol. 2009, 75, 1450–1455. [Google Scholar] [CrossRef] [Green Version]
- Bisha, B.; Brehm-Stecher, B.F. Flow-through imaging cytometry for characterization of Salmonella subpopulations in alfalfa sprouts, a complex food system. Biotechnol. J. 2009, 4, 880–887. [Google Scholar] [CrossRef]
- Bisha, B.; Kim, H.J.; Brehm-Stecher, B.F. Improved DNA-FISH for cytometric detection of Candida spp. J. Appl. Microbiol. 2011, 110, 881–892. [Google Scholar] [CrossRef]
- Hartmann, H.; Stender, H.; Schäfer, A.; Autenrieth, I.B.; Kempf, V.A.J. Rapid Identification of Staphylococcus aureus in blood cultures by a combination of fluorescence in situ hybridization using peptide nucleic acid probes and flow cytometry. J. Clin. Microbiol. 2005, 43, 4855–4857. [Google Scholar] [CrossRef] [Green Version]
- Azevedo, N.F.; Jardim, T.; Almeida, C.; Cerqueira, L.; Almeida, A.J.; Rodrigues, F.; Keevil, C.W.; Vieira, M.J. Application of flow cytometry for the identification of Staphylococcus epidermidis by peptide nucleic acid fluorescence in situ hybridization (PNA FISH) in blood samples. Antonie van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 2011, 100, 463–470. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, N.K.; Scalera, N.M.; Wilson, D.A.; Brehm-Stecher, B.; Procop, G.W. Rapid identification of Staphylococcus aureus and methicillin resistance by flow cytometry using a peptide nucleic acid probe. J. Clin. Microbiol. 2011, 49, 3383–3385. [Google Scholar] [CrossRef] [Green Version]
- Rigottier-Gois, L.; Le Bourhis, A.G.; Gramet, G.; Rochet, V.; Doré, J. Fluorescent hybridisation combined with flow cytometry and hybridisation of total RNA to analyse the composition of microbial communities in human faeces using 16S rRNA probes. FEMS Microbiol. Ecol. 2003, 43, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Meagher, R.J.; Light, Y.K.; Yilmaz, S.; Chakraborty, R.; Arkin, A.P.; Hazen, T.C.; Singh, A.K. Microfluidic fluorescence in situ hybridization and flow cytometry (μFlowFISH). Lab Chip 2011, 11, 2673–2679. [Google Scholar] [CrossRef] [PubMed]
- Abernathy, E.; Mateo, R.; Majzoub, K.; van Buuren, N.; Bird, S.W.; Carette, J.E.; Kirkegaard, K. Differential and convergent utilization of autophagy components by positive-strand RNA viruses. PLoS Biol. 2019, 17, 1–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douam, F.; Hrebikova, G.; Albrecht, Y.E.S.; Sellau, J.; Sharon, Y.; Ding, Q.; Ploss, A. Single-cell tracking of flavivirus RNA uncovers species-specific interactions with the immune system dictating disease outcome. Nat. Commun. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Sinigaglia, L.; Gracias, S.; Décembre, E.; Fritz, M.; Bruni, D.; Smith, N.; Herbeuval, J.P.; Martin, A.; Dreux, M.; Tangy, F.; et al. Immature particles and capsid-free viral RNA produced by Yellow fever virus-infected cells stimulate plasmacytoid dendritic cells to secrete interferons. Sci. Rep. 2018, 8, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falkenberg, S.M.; Dassanayake, R.P.; Neill, J.D.; Ridpath, J.F. Improved detection of bovine viral diarrhea virus in bovine lymphoid cell lines using PrimeFlow RNA assay. Virology 2017, 509, 260–265. [Google Scholar] [CrossRef] [PubMed]
- Silveira, S.; Falkenberg, S.M.; Dassanayake, R.P.; Walz, P.H.; Ridpath, J.F.; Canal, C.W.; Neill, J.D. In vitro method to evaluate virus competition between BVDV-1 and BVDV-2 strains using the PrimeFlow RNA assay. Virology 2019, 536, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Mahalingam, R.; Kaufer, B.B.; Ouwendijk, W.J.D.; Verjans, G.M.G.M.; Coleman, C.; Hunter, M.; Das, A.; Palmer, B.E.; Clambey, E.; Nagel, M.A.; et al. Attenuation of Simian Varicella Virus Infection by Enhanced Green Fluorescent Protein in Rhesus Macaques. J. Virol. 2018, 92. [Google Scholar] [CrossRef] [Green Version]
- Bua, G.; Manaresi, E.; Bonvicini, F.; Gallinella, G. Parvovirus B19 Replication and Expression in Differentiating Erythroid Progenitor Cells. PLoS ONE 2016, 11, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okano, M.; Gross, T.G. A review of Epstein-Barr virus infection in patients with immunodeficiency disorders. Am. J. Med. Sci. 2000, 319, 392–396. [Google Scholar] [CrossRef]
- Farrell, P.J. Epstein–Barr Virus and Cancer. Annu. Rev. Pathol. Mech. Dis. 2019, 14, 29–53. [Google Scholar] [CrossRef] [PubMed]
- van Buuren, N.; Kirkegaard, K. Detection and Differentiation of Multiple Viral RNAs Using Branched DNA FISH Coupled to Confocal Microscopy and Flow Cytometry. BioProtocol 2018, 8, 3058. [Google Scholar] [CrossRef] [PubMed]
- Oko, L.M.; Kimballid, A.K.; Kasparid, R.E.; Knoxid, A.N.; Coleman, C.B.; Rochford, R.; Chang, T.; Alderete, B.; van Dyk, L.F.; Clambey, E.T. Multidimensional analysis of gammaherpesvirus RNA expression reveals unexpected heterogeneity of gene expression. PLoS Pathog. 2019, 15, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Borah, S.; Nichols, L.A.; Hassman, L.M.; Kedes, D.H.; Steitz, J.A. Tracking expression and subcellular localization of RNA and protein species using high-throughput single cell imaging flow cytometry. Rna 2012, 18, 1573–1579. [Google Scholar] [CrossRef] [Green Version]
- Manaresi, E.; Bua, G.; Bonvicini, F.; Gallinella, G. A flow-FISH assay for the quantitative analysis of parvovirus B19 infected cells. J. Virol. Methods 2015, 223, 50–54. [Google Scholar] [CrossRef]
- McDonald, E.M.; Duggal, N.K.; Ritter, J.M.; Brault, A.C. Infection of epididymal epithelial cells and leukocytes drives seminal shedding of Zika virus in a mouse model. PLoS Negl. Trop. Dis. 2018, 12, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Crouch, J.; Leitenberg, D.; Smith, B.R.; Howe, J.G. Epstein-barr virus suspension cell assay using in situ hybridization and flow cytometry. Cytometry 1997, 29, 50–57. [Google Scholar] [CrossRef]
- Stowe, R.P.; Cubbage, M.L.; Sams, C.F.; Pierson, D.L.; Barrett, A.D.T. Detection and quantification of Epstein-Barr virus EBER1 in EBV-infected cells by fluorescent in situ hybridization and flow cytometry. J. Virol. Methods 1998, 75, 83–91. [Google Scholar] [CrossRef]
- Kimura, H.; Miyake, K.; Yamauchi, Y.; Nishiyama, K.; Iwata, S.; Iwatsuki, K.; Gotoh, K.; Seiji, K.; Ito, Y.; Nishiyama, Y. Identification of epstein-barr virus (EBV)-infected lymphocyte subtypes by how cytometric in situ hybridization in EBV-assodated lymphoproliferative diseases. J. Infect. Dis. 2009, 200, 1078–1087. [Google Scholar] [CrossRef]
- Fournier, B.; Boutboul, D.; Bruneau, J.; Miot, C.; Boulanger, C.; Malphettes, M.; Pellier, I.; Dunogué, B.; Terrier, B.; Suarez, F.; et al. Rapid identification and characterization of infected cells in blood during chronic active Epstein-Barr virus infection. J. Exp. Med. 2020, 217. [Google Scholar] [CrossRef]
- Kawabe, S.; Ito, Y.; Gotoh, K.; Kojima, S.; Matsumoto, K.; Kinoshita, T.; Iwata, S.; Nishiyama, Y.; Kimura, H. Application of flow cytometric in situ hybridization assay to Epstein-Barr virus-associated T/natural killer cell lymphoproliferative diseases. Cancer Sci. 2012, 103, 1481–1488. [Google Scholar] [CrossRef]
- Bernasconi, M.; Ueda, S.; Krukowski, P.; Bornhauser, B.C.; Ladell, K.; Dorner, M.; Sigrist, J.A.; Campidelli, C.; Aslandogmus, R.; Alessi, D.; et al. Early gene expression changes by Epstein-Barr virus infection of B-cells indicate CDKs and survivin as therapeutic targets for post-transplant lymphoproliferative diseases. Int. J. Cancer 2013, 133, 2341–2350. [Google Scholar] [CrossRef]
- Barré-Sinoussi, F.; Chermann, J.C.; Rey, F.; Nugeyre, M.T.; Chamaret, S.; Gruest, J.; Dauguet, C.; Axler-Blin, C.; Vézinet-Brun, F.; Rouzioux, C.; et al. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). Rev. Investig. Clin. 2004, 56, 126–129. [Google Scholar] [CrossRef] [Green Version]
- Gulick, R.M.; Flexner, C. Long-acting HIV drugs for treatment and prevention. Annu. Rev. Med. 2019, 70, 137–150. [Google Scholar] [CrossRef] [PubMed]
- Parekh, B.S.; Ou, C.Y.; Fonjungo, P.N.; Kalou, M.B.; Rottinghaus, E.; Puren, A.; Alexander, H.; Cox, M.H.; Nkengasong, J.N. Diagnosis of human immunodeficiency virus infection. Clin. Microbiol. Rev. 2019, 32, 1–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sannier, G.; Dubé, M.; Kaufmann, D.E. Single-Cell Technologies Applied to HIV-1 Research: Reaching Maturity. Front. Microbiol. 2020, 11, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilburn, K.M.; Mwandumba, H.C.; Jambo, K.C.; Boliar, S.; Solouki, S.; Russell, D.G.; Gludish, D.W. Heterogeneous loss of HIV transcription and proviral DNA from 8E5/LAV lymphoblastic leukemia cells revealed by RNA FISH:FLOW analyses. Retrovirology 2016, 13. [Google Scholar] [CrossRef] [Green Version]
- Hanley, M.B.; Lomas, W.; Mittar, D.; Maino, V.; Park, E. Detection of Low Abundance RNA Molecules in Individual Cells by Flow Cytometry. PLoS ONE 2013, 8. [Google Scholar] [CrossRef]
- Bertram, K.M.; Botting, R.A.; Baharlou, H.; Rhodes, J.W.; Rana, H.; Graham, J.D.; Patrick, E.; Fletcher, J.; Plasto, T.M.; Truong, N.R.; et al. Identification of HIV transmitting CD11c+ human epidermal dendritic cells. Nat. Commun. 2019, 10. [Google Scholar] [CrossRef]
- Richard, J.; Prévost, J.; Baxter, A.E.; Von Bredow, B.; Ding, S.; Medjahed, H. Uninfected Bystander Cells Impact the Measurement of HIV- Specific Antibody-Dependent Cellular Cytotoxicity Responses. MBio 2018, 9, e00358-18. [Google Scholar] [CrossRef] [Green Version]
- Rao, S.; Amorim, R.; Niu, M.; Temzi, A.; Mouland, A.J. The RNA surveillance proteins UPF1, UPF2 and SMG6 affect HIV-1 reactivation at a post-transcriptional level. Retrovirology 2018, 15, 1–20. [Google Scholar] [CrossRef]
- Jambo, K.C.; Banda, D.H.; Kankwatira, A.M.; Sukumar, N.; Allain, T.J.; Heyderman, R.S.; Russell, D.G.; Mwandumba, H.C. Small alveolar macrophages are infected preferentially by HIV and exhibit impaired phagocytic function. Mucosal Immunol. 2014, 7, 1116–1126. [Google Scholar] [CrossRef]
- Real, F.; Capron, C.; Sennepin, A.; Arrigucci, R.; Zhu, A.; Sannier, G.; Zheng, J.; Xu, L.; Massé, J.M.; Greffe, S.; et al. Platelets from HIV-infected individuals on antiretroviral drug therapy with poor CD4+ T cell recovery can harbor replication-competent HIV despite viral suppression. Sci. Transl. Med. 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Grau-Expósito, J.; Serra-Peinado, C.; Miguel, L.; Navarro, J.; Curran, A.; Burgos, J.; Ocaña, I.; Ribera, E.; Torrella, A.; Planas, B.; et al. A novel single-cell FISH-flow assay identifies effector memory CD4+ T cells as a major niche for HIV-1 transcription in HIV-infected patients. MBio 2017, 8, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra-Peinado, C.; Grau-Expósito, J.; Luque-Ballesteros, L.; Astorga-Gamaza, A.; Navarro, J.; Gallego-Rodriguez, J.; Martin, M.; Curran, A.; Burgos, J.; Ribera, E.; et al. Expression of CD20 after viral reactivation renders HIV-reservoir cells susceptible to Rituximab. Nat. Commun. 2019, 10, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardons, M.; Baxter, A.E.; Massanella, M.; Pagliuzza, A.; Fromentin, R.; Dufour, C.; Leyre, L.; Routy, J.P.; Kaufmann, D.E.; Chomont, N. Single-cell characterization and quantification of translation-competent viral reservoirs in treated and untreated HIV infection. PLoS Pathog. 2019, 15, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Niessl, J.; Baxter, A.E.; Morou, A.; Brunet-Ratnasingham, E.; Sannier, G.; Gendron-Lepage, G.; Richard, J.; Delgado, G.G.; Brassard, N.; Turcotte, I.; et al. Persistent expansion and Th1-like skewing of HIV-specific circulating T follicular helper cells during antiretroviral therapy. EBioMedicine 2020, 54. [Google Scholar] [CrossRef] [PubMed]
- Grau-Expósito, J.; Luque-Ballesteros, L.; Navarro, J.; Curran, A.; Burgos, J.; Ribera, E.; Torrella, A.; Planas, B.; Badía, R.; Martin-Castillo, M.; et al. Latency reversal agents affect differently the latent reservoir present in distinct CD4+ T subpopulations. PLoS Pathog. 2019, 15, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, S.; Lungu, C.; Crespo, R.; Steijaert, T.H.; Gorska, A.; Palstra, R.J.; Prins, H.A.B.; van Ijcken, W.; Mueller, Y.M.; van Kampen, J.J.A.; et al. Selective cell death in HIV-1-infected cells by DDX3 inhibitors leads to depletion of the inducible reservoir. Nat. Commun. 2021, 12, 2475. [Google Scholar] [CrossRef] [PubMed]
- Martrus, G.; Niehrs, A.; Cornelis, R.; Rechtien, A.; García-Beltran, W.; Lütgehetmann, M.; Hoffmann, C.; Altfeld, M. Kinetics of HIV-1 Latency Reversal Quantified on the Single-Cell Level Using a Novel Flow-Based Technique. J. Virol. 2016, 90, 9018–9028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiner, G.J. Rituximab: Mechanism of action. Semin. Hematol. 2010, 47, 115–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahin, A.; Sanchez, C.; Bullain, S.; Waterman, P.; Weissleder, R.; Carter, B.S. Development of third generation anti-EGFRvIII chimeric T cells and EGFRvIII-expressing artificial antigen presenting cells for adoptive cell therapy for glioma. PLoS ONE 2018, 13, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Tong, C.; Zhang, Y.; Liu, Y.; Ji, X.; Zhang, W.; Guo, Y.; Han, X.; Ti, D.; Dai, H.; Wang, C.; et al. Optimized tandem CD19/CD20 CAR-engineered T cells in refractory/relapsed B-cell lymphoma. Blood 2020, 136, 1632–1644. [Google Scholar] [CrossRef]
- Richard, J.; Veillette, M.; Ding, S.; Zoubchenok, D.; Alsahafi, N.; Coutu, M.; Brassard, N.; Park, J.; Courter, J.R.; Melillo, B.; et al. Small CD4 Mimetics Prevent HIV-1 Uninfected Bystander CD4+ T Cell Killing Mediated by Antibody-dependent Cell-mediated Cytotoxicity. EBioMedicine 2016, 3, 122–134. [Google Scholar] [CrossRef] [Green Version]
- Kumar, N.A.; Cheong, K.; Powell, D.R.; da Fonseca Pereira, C.; Anderson, J.; Evans, V.A.; Lewin, S.R.; Cameron, P.U. The role of antigen presenting cells in the induction of HIV-1 latency in resting CD4+ T-cells. Retrovirology 2015, 12, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Guo, R.; Kim, S.H.; Shah, H.; Zhang, S.; Liang, J.H.; Fang, Y.; Gentili, M.; Leary, C.N.O.; Elledge, S.J.; et al. SARS-CoV-2 hijacks folate and one-carbon metabolism for viral replication. Nat. Commun. 2021, 12, 1–11. [Google Scholar] [CrossRef]
- Putlyaeva, L.V.; Lukyanov, K.A. Studying sars-cov-2 with fluorescence microscopy. Int. J. Mol. Sci. 2021, 22, 6558. [Google Scholar] [CrossRef]
- Rensen, E.; Pietropaoli, S.; Weber, C.; Souquere, S.; Isnard, P.; Rabant, M.; Gibier, J.-B.; Simon-Loriere, E.; Rameix-Welti, M.-A.; Pierron, G.; et al. Sensitive visualization of SARS-CoV-2 RNA with CoronaFISH. bioRxiv 2021, 2. [Google Scholar]
- Froidure, A.; Mahieu, M.; Hoton, D.; Laterre, P.F.; Yombi, J.C.; Koenig, S.; Ghaye, B.; Defour, J.P.; Decottignies, A. Short telomeres increase the risk of severe COVID-19. Aging (Albany. NY). 2020, 12, 19911–19922. [Google Scholar] [CrossRef]
- Rufer, N.; Brümmendorf, T.H.; Kolvraa, S.; Bischoff, C.; Christensen, K.; Wadsworth, L.; Schulzer, M.; Lansdorp, P.M. Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. J. Exp. Med. 1999, 190, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Modig, K.; Lambe, M.; Ahlbom, A.; Ebeling, M. Excess mortality for men and women above age 70 according to level of care during the first wave of COVID-19 pandemic in Sweden: A population-based study. Lancet Reg. Heal. - Eur. 2021, 4, 100072. [Google Scholar] [CrossRef]
- Franzen, J.; Nüchtern, S.; Tharmapalan, V.; Vieri, M.; Nikolić, M.; Han, Y.; Balfanz, P.; Marx, N.; Dreher, M.; Brümmendorf, T.H.; et al. Epigenetic clocks are not accelerated in COVID-19 patients. medRxiv 2020, 1–13. [Google Scholar]
Species | Sample Type(s) | Application | Reference |
---|---|---|---|
Candida albicans | Clinical isolates | Fungal strain identification | [18] |
Collection strain Ex vivo infected blood | Fungal strain identification Detection of infection | [39] | |
Saccharomyces carlsbergensis | Collection strain | Fungal strain identification | [17] |
Staphylococcus aureus | Ex vivo infected blood | Detection of infection | [40] |
Clinical isolates | Antimycotic resistance | [42] | |
Lab-infected food (milk) | Food contamination | [35] | |
Staphylococcus epidermidis | Collection strain Ex vivo infected blood | Fungal strain identification Detection of infection | [41] |
Cell Type(s) | Application | Reference |
---|---|---|
Cell lines | Detection of infected cells | [59] |
Cell lines Patient primary cells | Detection of infected cells | [60] |
Cell lines Patient primary cells | Detection of infected cells EBV-mediated pathologies | [61] |
Cell lines | Detection of infected cells | [55] |
Cell lines Patient primary cells | Detection of infected cells EBV-mediated pathologies | [62] |
Patient primary cells | Detection of infected cells EBV-mediated pathologies | [63] |
Primary B cells | Detection of in vitro infected cells | [64] |
Cell Type(s) | Application | Reference |
---|---|---|
Cell lines | Detection of infected cells SARS-CoV-2 biology and treatment Host factor–virus interaction | [88] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freen-van Heeren, J.J. Flow-FISH as a Tool for Studying Bacteria, Fungi and Viruses. BioTech 2021, 10, 21. https://doi.org/10.3390/biotech10040021
Freen-van Heeren JJ. Flow-FISH as a Tool for Studying Bacteria, Fungi and Viruses. BioTech. 2021; 10(4):21. https://doi.org/10.3390/biotech10040021
Chicago/Turabian StyleFreen-van Heeren, Julian J. 2021. "Flow-FISH as a Tool for Studying Bacteria, Fungi and Viruses" BioTech 10, no. 4: 21. https://doi.org/10.3390/biotech10040021
APA StyleFreen-van Heeren, J. J. (2021). Flow-FISH as a Tool for Studying Bacteria, Fungi and Viruses. BioTech, 10(4), 21. https://doi.org/10.3390/biotech10040021