Polyglycerol Systems in Additive Manufacturing: Structure, Properties, and Processing
Abstract
1. Introduction
2. Structure-Property Relationships in a PG System
2.1. Synthetic Pathways and Architectural Engineering of PGs
2.2. Influence of Molecular Weight, Branching, and Functional Groups on the Mechanical and Interfacial Properties of PGs
2.3. Strategies to Enhance Mechanical Strength: Crosslinking, Copolymerization, and Filler Addition
3. Thermal Stability and Processing Considerations
3.1. Thermal Decomposition Profiles
3.2. Suitability for High-Temperature AM Platforms
4. Mechanical Performance in 3D-Printed Forms
4.1. Influence of Printing Parameters on Anisotropy and Layer Bonding
4.2. Hybrid Reinforcements
5. Three-Dimensionally Printed Shape Memory PGs
6. Challenges and Opportunities
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agueda, J.R.H.S.; Chen, Q.; Maalihan, R.D.; Ren, J.; Da Silva, Í.G.M.; Dugos, N.P.; Caldona, E.B.; Advincula, R.C. 3D Printing of Biomedically Relevant Polymer Materials and Biocompatibility. MRS Commun. 2021, 11, 197–212. [Google Scholar] [CrossRef]
- Advincula, R.C.; Dizon, J.R.C.; Caldona, E.B.; Viers, R.A.; Siacor, F.D.C.; Maalihan, R.D.; Espera, A.H. On the Progress of 3D-Printed Hydrogels for Tissue Engineering. MRS Commun. 2021, 11, 539–553. [Google Scholar] [CrossRef]
- Maalihan, R.D.; Pajarito, B.B.; Advincula, R.C. 3D-Printing Methacrylate/Chitin Nanowhiskers Composites via Stereolithography: Mechanical and Thermal Properties. Mater. Today: Proc. 2020, 33, 1819–1824. [Google Scholar] [CrossRef]
- Bute, I.; Tarasovs, S.; Vidinejevs, S.; Vevere, L.; Sevcenko, J.; Aniskevich, A. Thermal Properties of 3D Printed Products from the Most Common Polymers. Int. J. Adv. Manuf. Technol. 2023, 124, 2739–2753. [Google Scholar] [CrossRef]
- Safai, L.; Cuellar, J.S.; Smit, G.; Zadpoor, A.A. A Review of the Fatigue Behavior of 3D Printed Polymers. Addit. Manuf. 2019, 28, 87–97. [Google Scholar] [CrossRef]
- Maalihan, R.D. Modelling the Toughness of Nanostructured Polyhedral Oligomeric Silsesquioxane Composites Fabricated by Stereolithography 3D Printing: A Response Surface Methodology and Artificial Neural Network Approach. Mater. Sci. Forum 2022, 1053, 41–46. [Google Scholar] [CrossRef]
- Steyrer, B.; Neubauer, P.; Liska, R.; Stampfl, J. Visible Light Photoinitiator for 3D-Printing of Tough Methacrylate Resins. Materials 2017, 10, 1445. [Google Scholar] [CrossRef]
- Waidi, Y.O. Recent Advances in 4D-Printed Shape Memory Actuators. Macromol. Rapid Commun. 2025, 46, e2401141. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Intini, C.; Dobricic, M.; O’Brien, F.J.; LLorca, J.; Echeverry-Rendon, M. Collagen-Based 3D Printed Poly (Glycerol Sebacate) Composite Scaffold with Biomimicking Mechanical Properties for Enhanced Cartilage Defect Repair. Int. J. Biol. Macromol. 2024, 280, 135827. [Google Scholar] [CrossRef]
- Wu, Z.; Jin, K.; Wang, L.; Fan, Y. A Review: Optimization for Poly(Glycerol Sebacate) and Fabrication Techniques for Its Centered Scaffolds. Macromol. Biosci. 2021, 21, 2100022. [Google Scholar] [CrossRef]
- Ao-Ieong, W.-S.; Chien, S.-T.; Jiang, W.-C.; Yet, S.-F.; Wang, J. The Effect of Heat Treatment toward Glycerol-Based, Photocurable Polymeric Scaffold: Mechanical, Degradation and Biocompatibility. Polymers 2021, 13, 1960. [Google Scholar] [CrossRef]
- Porcarello, M.; Bonardd, S.; Kortaberria, G.; Miyaji, Y.; Matsukawa, K.; Sangermano, M. 3D Printing of Electrically Conductive Objects with Biobased Polyglycerol Acrylic Monomers. ACS Appl. Polym. Mater. 2024, 6, 2868–2876. [Google Scholar] [CrossRef]
- Ruther, F.; Roether, J.A.; Boccaccini, A.R. 3D Printing of Mechanically Resistant Poly (Glycerol Sebacate) (PGS)-Zein Scaffolds for Potential Cardiac Tissue Engineering Applications. Adv. Eng. Mater. 2022, 24, 2101768. [Google Scholar] [CrossRef]
- Touré, A.B.R.; Mele, E.; Christie, J.K. Multi-Layer Scaffolds of Poly(Caprolactone), Poly(Glycerol Sebacate) and Bioactive Glasses Manufactured by Combined 3D Printing and Electrospinning. Nanomaterials 2020, 10, 626. [Google Scholar] [CrossRef]
- Akman, R.; Ramaraju, H.; Hollister, S.J. Development of Photocrosslinked Poly(Glycerol Dodecanedioate)—A Biodegradable Shape Memory Polymer for 3D-Printed Tissue Engineering Applications. Adv. Eng. Mater. 2021, 23, 2100219. [Google Scholar] [CrossRef]
- Godinho, B.; Nogueira, R.; Gama, N.; Ferreira, A. Synthesis and Characterization of Poly(Glycerol Sebacate), Poly(Glycerol Succinate) and Poly(Glycerol Sebacate-Co-Succinate). J. Polym. Environ. 2024, 32, 4330–4347. [Google Scholar] [CrossRef]
- Rosalia, M.; Rubes, D.; Serra, M.; Genta, I.; Dorati, R.; Conti, B. Polyglycerol Sebacate Elastomer: A Critical Overview of Synthetic Methods and Characterisation Techniques. Polymers 2024, 16, 1405. [Google Scholar] [CrossRef]
- Rafiee, Z.; Omidi, S. Modification of Carbon-Based Nanomaterials by Polyglycerol: Recent Advances and Applications. RSC Adv. 2022, 12, 181–192. [Google Scholar] [CrossRef]
- Pouyan, P.; Cherri, M.; Haag, R. Polyglycerols as Multi-Functional Platforms: Synthesis and Biomedical Applications. Polymers 2022, 14, 2684. [Google Scholar] [CrossRef]
- Osterwinter, C.; Schubert, C.; Tonhauser, C.; Wilms, D.; Frey, H.; Friedrich, C. Rheological Consequences of Hydrogen Bonding: Linear Viscoelastic Response of Linear Polyglycerol and Its Permethylated Analogues as a General Model for Hydroxyl-Functional Polymers. Macromolecules 2015, 48, 119–130. [Google Scholar] [CrossRef]
- Haag, R.; Sunder, A.; Stumbé, J.-F. An Approach to Glycerol Dendrimers and Pseudo-Dendritic Polyglycerols. J. Am. Chem. Soc. 2000, 122, 2954–2955. [Google Scholar] [CrossRef]
- Neumann, N.; Abels, G.; Koschek, K.; Boskamp, L. Crosslinked Hyperbranched Polyglycerol-Based Polymer Electrolytes for Lithium Metal Batteries. Batteries 2023, 9, 431. [Google Scholar] [CrossRef]
- Yousefi Talouki, P.; Tamimi, R.; Zamanlui Benisi, S.; Goodarzi, V.; Shojaei, S.; Hesami Tackalou, S.; Samadikhah, H.R. Polyglycerol Sebacate (PGS)-Based Composite and Nanocomposites: Properties and Applications. Int. J. Polym. Mater. Polym. Biomater. 2023, 72, 1360–1374. [Google Scholar] [CrossRef]
- Goyal, S.; Hernández, N.B.; Cochran, E.W. An Update on the Future Prospects of Glycerol Polymers. Polym. Int. 2021, 70, 911–917. [Google Scholar] [CrossRef]
- Božič, M.; Majerič, M.; Denac, M.; Kokol, V. Mechanical and Barrier Properties of Soy Protein Isolate Films Plasticized with a Mixture of Glycerol and Dendritic Polyglycerol. J. Appl. Polym. Sci. 2015, 132, 41837. [Google Scholar] [CrossRef]
- Nakiou, E.A.; Lazaridou, M.; Pouroutzidou, G.K.; Michopoulou, A.; Tsamesidis, I.; Liverani, L.; Arango-Ospina, M.; Beketova, A.; Boccaccini, A.R.; Kontonasaki, E.; et al. Poly(Glycerol Succinate) as Coating Material for 1393 Bioactive Glass Porous Scaffolds for Tissue Engineering Applications. Polymers 2022, 14, 5028. [Google Scholar] [CrossRef]
- Sunder, A.; Hanselmann, R.; Frey, H.; Mülhaupt, R. Controlled Synthesis of Hyperbranched Polyglycerols by Ring-Opening Multibranching Polymerization. Macromolecules 1999, 32, 4240–4246. [Google Scholar] [CrossRef]
- Thomas, A.; Müller, S.S.; Frey, H. Beyond Poly(Ethylene Glycol): Linear Polyglycerol as a Multifunctional Polyether for Biomedical and Pharmaceutical Applications. Biomacromolecules 2014, 15, 1935–1954. [Google Scholar] [CrossRef]
- Abbina, S.; Vappala, S.; Kumar, P.; Siren, E.M.J.; La, C.C.; Abbasi, U.; Brooks, D.E.; Kizhakkedathu, J.N. Hyperbranched Polyglycerols: Recent Advances in Synthesis, Biocompatibility and Biomedical Applications. J. Mater. Chem. B 2017, 5, 9249–9277. [Google Scholar] [CrossRef]
- Dey, P.; Hemmati-Sadeghi, S.; Haag, R. Hydrolytically Degradable, Dendritic Polyglycerol Sulfate Based Injectable Hydrogels Using Strain Promoted Azide–Alkyne Cycloaddition Reaction. Polym. Chem. 2016, 7, 375–383. [Google Scholar] [CrossRef]
- Moncalvo, F.; Lacroce, E.; Franzoni, G.; Altomare, A.; Fasoli, E.; Aldini, G.; Sacchetti, A.; Cellesi, F. Selective Protein Conjugation of Poly(Glycerol Monomethacrylate) and Poly(Polyethylene Glycol Methacrylate) with Tunable Topology via Reductive Amination with Multifunctional ATRP Initiators for Activity Preservation. Macromolecules 2022, 55, 7454–7468. [Google Scholar] [CrossRef]
- Ye, H.; Owh, C.; Loh, X.J. A Thixotropic Polyglycerol Sebacate-Based Supramolecular Hydrogel Showing UCST Behavior. RSC Adv. 2015, 5, 48720–48728. [Google Scholar] [CrossRef]
- Leite, D.B.C.; De Moura, E.M.; Muniz, E.C.; Da Silva Filho, E.C.; Mendes, A.N.; Filgueiras, L.A.; De Abreu Júnior, A.R.; Gonçalves, J.C.R.; Marques, K.K.G.; Sobral, M.V.; et al. Synthesis of Polyglycerol/PolyCaprolactone Nanocopolymers as Innovative Architectures for Drug Delivery. BioNanoScience 2024, 14, 2829–2841. [Google Scholar] [CrossRef]
- Taresco, V.; Suksiriworapong, J.; Creasey, R.; Burley, J.C.; Mantovani, G.; Alexander, C.; Treacher, K.; Booth, J.; Garnett, M.C. Properties of Acyl Modified Poly(Glycerol-Adipate) Comb-like Polymers and Their Self-Assembly into Nanoparticles. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 3267–3278. [Google Scholar] [CrossRef] [PubMed]
- Pin, J.-M.; Valerio, O.; Misra, M.; Mohanty, A. Impact of Butyl Glycidyl Ether Comonomer on Poly(Glycerol–Succinate) Architecture and Dynamics for Multifunctional Hyperbranched Polymer Design. Macromolecules 2017, 50, 732–745. [Google Scholar] [CrossRef]
- Miceli, E.; Wedepohl, S.; Osorio Blanco, E.R.; Rimondino, G.N.; Martinelli, M.; Strumia, M.; Molina, M.; Kar, M.; Calderón, M. Semi-Interpenetrated, Dendritic, Dual-Responsive Nanogels with Cytochrome c Corona Induce Controlled Apoptosis in HeLa Cells. Eur. J. Pharm. Biopharm. 2018, 130, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Janiszewska, N.; Basinska, T.; Gadzinowski, M.; Slomkowski, S.; Makowski, T.; Awsiuk, K. Impact of Polyglycidol Block Architecture in Polystyrene-b-Polyglycidol Copolymers on the Properties of Thin Films and Protein Adsorption. Appl. Surf. Sci. 2024, 669, 160458. [Google Scholar] [CrossRef]
- Son, S.; Park, H.; Shin, E.; Shibasaki, Y.; Kim, B. Architecture-controlled Synthesis of Redox-degradable Hyperbranched Polyglycerol Block Copolymers and the Structural Implications of Their Degradation. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 1752–1761. [Google Scholar] [CrossRef]
- Cherri, M.; Romero, J.F.; Steiner, L.; Dimde, M.; Koeppe, H.; Paulus, B.; Mohammadifar, E.; Haag, R. Power of the Disulfide Bond: An Ideal Random Copolymerization of Biodegradable Redox-Responsive Hyperbranched Polyglycerols. Biomacromolecules 2024, 25, 119–133. [Google Scholar] [CrossRef]
- Domalanta, M.R.B.; Ali, M.R.R.; Maalihan, R.D.; Caldona, E.B. Mechanistic Effects of HFP Content on the Surface Structure and Protective Action of PVDF-HFP Coatings. Prog. Org. Coat. 2025, 198, 108879. [Google Scholar] [CrossRef]
- Schlaich, C.; Wei, Q.; Haag, R. Mussel-Inspired Polyglycerol Coatings with Controlled Wettability: From Superhydrophilic to Superhydrophobic Surface Coatings. Langmuir 2017, 33, 9508–9520. [Google Scholar] [CrossRef]
- Dahlgren, J.; Stafslien, S.J.; Vanderwal, L.; Bahr, J.; Allen, P.; Finlay, J.A.; Clare, A.S.; Webster, D.C. Investigation of Amphiphilic PDMS-Hyperbranched Polyglycerol Copolymers to Tune the Fouling-Release Properties in a Moisture Curable Coating System. Langmuir 2025, 41, 3377–3391. [Google Scholar] [CrossRef] [PubMed]
- Schubert, C.; Schömer, M.; Steube, M.; Decker, S.; Friedrich, C.; Frey, H. Systematic Variation of the Degree of Branching (DB) of Polyglycerol via Oxyanionic Copolymerization of Glycidol with a Protected Glycidyl Ether and Its Impact on Rheological Properties. Macro Chem. Phys. 2018, 219, 1700376. [Google Scholar] [CrossRef]
- Junge, F.; Haag, R. Effect of Fluorophilic- and Hydrophobic-Modified Polyglycerol-Based Coatings on the Wettability of Low Surface Energy Polymers. Langmuir 2025, 41, 3305–3314. [Google Scholar] [CrossRef] [PubMed]
- Godinho, B.; Gama, N.; Ferreira, A. Different Methods of Synthesizing Poly(Glycerol Sebacate) (PGS): A Review. Front. Bioeng. Biotechnol. 2022, 10, 1033827. [Google Scholar] [CrossRef]
- Balser, S.; Zhao, Z.; Zharnikov, M.; Terfort, A. Effect of the Crosslinking Agent on the Biorepulsive and Mechanical Properties of Polyglycerol Membranes. Colloids Surf. B Biointerfaces 2023, 225, 113271. [Google Scholar] [CrossRef]
- Valerio, O.; Misra, M.; Mohanty, A.K. Poly(Glycerol-Co-Diacids) Polyesters: From Glycerol Biorefinery to Sustainable Engineering Applications, A Review. ACS Sustain. Chem. Eng. 2018, 6, 5681–5693. [Google Scholar] [CrossRef]
- Schubert, C.; Dreier, P.; Nguyen, T.; Maciol, K.; Blankenburg, J.; Friedrich, C.; Frey, H. Synthesis of Linear Polyglycerols with Tailored Degree of Methylation by Copolymerization and the Effect on Thermorheological Behavior. Polymer 2017, 121, 328–339. [Google Scholar] [CrossRef]
- Saudi, A.; Zebarjad, S.M.; Salehi, H.; Katoueizadeh, E.; Alizadeh, A. Assessing Physicochemical, Mechanical, and in Vitro Biological Properties of Polycaprolactone/Poly(Glycerol Sebacate)/Hydroxyapatite Composite Scaffold for Nerve Tissue Engineering. Mater. Chem. Phys. 2022, 275, 125224. [Google Scholar] [CrossRef]
- Jafari, M.; Abolmaali, S.S.; Borandeh, S.; Najafi, H.; Zareshahrabadi, Z.; Koohi-Hosseinabadi, O.; Azarpira, N.; Zomorodian, K.; Tamaddon, A.M. Dendritic Hybrid Materials Comprising Polyhedral Oligomeric Silsesquioxane (POSS) and Hyperbranched Polyglycerol for Effective Antifungal Drug Delivery and Therapy in Systemic Candidiasis. Nanoscale 2023, 15, 16163–16177. [Google Scholar] [CrossRef]
- Phetnoi, N.; Amornkitbamrung, L.; Charoensuk, K.; Sapcharoenkun, C.; Jubsilp, C.; Ekgasit, S.; Rimdusit, S. Fast Magnetic-Responsive Shape Memory Composites from Bio-Based Benzoxazine/Polyglycerol Polyglycidyl Ether Copolymers Highly Filled with Iron Oxide Nanoparticles. Compos. Part A Appl. Sci. Manuf. 2024, 186, 108398. [Google Scholar] [CrossRef]
- Risley, B.B.; Ding, X.; Chen, Y.; Miller, P.G.; Wang, Y. Citrate Crosslinked Poly(Glycerol Sebacate) with Tunable Elastomeric Properties. Macromol. Biosci. 2021, 21, e2000301. [Google Scholar] [CrossRef] [PubMed]
- Golbaten-Mofrad, H.; Salehi, M.H.; Jafari, S.H.; Goodarzi, V.; Entezari, M.; Hashemi, M. Preparation and Properties Investigation of Biodegradable Poly (Glycerol Sebacate-Co-gelatin) Containing Nanoclay and Graphene Oxide for Soft Tissue Engineering Applications. J. Biomed. Mater. Res. 2022, 110, 2241–2257. [Google Scholar] [CrossRef] [PubMed]
- Jaberi, N.; Fakhri, V.; Zeraatkar, A.; Jafari, A.; Uzun, L.; Shojaei, S.; Asefnejad, A.; Faghihi Rezaei, V.; Goodarzi, V.; Su, C.; et al. Preparation and Characterization of a New Bio Nanocomposites Based Poly(Glycerol Sebacic-urethane) Containing Nano-clay (Cloisite Na+) and Its Potential Application for Tissue Engineering. J. Biomed. Mater. Res. 2022, 110, 2217–2230. [Google Scholar] [CrossRef] [PubMed]
- Kasza, G.; Stumphauser, T.; Nádor, A.; Osváth, Z.; Szarka, G.; Domján, A.; Mosnáček, J.; Iván, B. Hyperbranched Polyglycerol Nanoparticles Based Multifunctional, Nonmigrating Hindered Phenolic Macromolecular Antioxidants: Synthesis, Characterization and Its Stabilization Effect on Poly(Vinyl Chloride). Polymer 2017, 124, 210–218. [Google Scholar] [CrossRef]
- Tevlek, A.; Agacik, D.T.; Aydin, H.M. Stretchable Poly(Glycerol-sebacate)/Β-tricalcium Phosphate Composites with Shape Recovery Feature by Extrusion. J. Appl. Polym. Sci. 2020, 137, 48689. [Google Scholar] [CrossRef]
- You, A.; Kim, J.; Ryu, S. Synthesis of Acrylate-Functionalized Polyglycerols and an Investigation of Their UV Curing Behaviors. ChemistrySelect 2023, 8, e202203859. [Google Scholar] [CrossRef]
- Barra, G.; Guadagno, L.; Raimondo, M.; Santonicola, M.G.; Toto, E.; Vecchio Ciprioti, S. A Comprehensive Review on the Thermal Stability Assessment of Polymers and Composites for Aeronautics and Space Applications. Polymers 2023, 15, 3786. [Google Scholar] [CrossRef]
- Kroll, D.M.; Croll, S.G. Influence of Crosslinking Functionality, Temperature and Conversion on Heterogeneities in Polymer Networks. Polymer 2015, 79, 82–90. [Google Scholar] [CrossRef]
- Hu, G.; Cao, Z.; Hopkins, M.; Lyons, J.G.; Brennan-Fournet, M.; Devine, D.M. Nanofillers Can Be Used to Enhance the Thermal Conductivity of Commercially Available SLA Resins. Procedia Manuf. 2019, 38, 1236–1243. [Google Scholar] [CrossRef]
- Krumins, E.; George, K.; Taresco, V.; Sun, X.; Hoggett, S.; Duncan, J.; Cuzzucoli Crucitti, V.; Segal, J.; Irvine, D.J.; Khlobystov, A.; et al. Sustainable and Electrically Conductive Poly(Glycerol) (Meth)Acrylate Resins for Stereolithography and Volumetric Additive Manufacturing. In Smart Materials for Opto-Electronic Applications 2025; Rendina, I., Petti, L., Sagnelli, D., Nenna, G., Eds.; SPIE: Prague, Czech Republic, 2025; p. 32. [Google Scholar] [CrossRef]
- Akman, R.; Ramaraju, H.; Hollister, M.; Verga, A.; Hollister, S.J. Thermal Post-Processing of 3D-Printed Poly(Glycerol Dodecanedioate) Controls Mechanics and Shape Memory Properties. Polym. Sci. Technol. 2025, 1, 132–143. [Google Scholar] [CrossRef]
- Liu, Q.; Tian, M.; Ding, T.; Shi, R.; Feng, Y.; Zhang, L.; Chen, D.; Tian, W. Preparation and Characterization of a Thermoplastic Poly(Glycerol Sebacate) Elastomer by Two-step Method. J. Appl. Polym. Sci. 2007, 103, 1412–1419. [Google Scholar] [CrossRef]
- Abdullah, T.; Gzara, L.; Simonetti, G.; Alshahrie, A.; Salah, N.; Morganti, P.; Chianese, A.; Fallahi, A.; Tamayol, A.; Bencherif, S.; et al. The Effect of Poly (Glycerol Sebacate) Incorporation within Hybrid Chitin–Lignin Sol–Gel Nanofibrous Scaffolds. Materials 2018, 11, 451. [Google Scholar] [CrossRef] [PubMed]
- Mohammadbagheri, Z.; Rahmati, A.; Saeedi, S.; Movahedi, B. Bio-Based Nanocomposite Hydrogels Derived from Poly (Glycerol Tartrate) and Cellulose: Thermally Stable and Green Adsorbents for Efficient Adsorption of Heavy Metals. Chemosphere 2024, 349, 140956. [Google Scholar] [CrossRef] [PubMed]
- Hevilla, V.; Sonseca, Á.; Fernández-García, M. Straightforward Enzymatic Methacrylation of Poly(Glycerol Adipate) for Potential Applications as UV Curing Systems. Polymers 2023, 15, 3050. [Google Scholar] [CrossRef] [PubMed]
- Calderon, M.J.P.; Dumancas, G.G.; Gutierrez, C.S.; Lubguban, A.A.; Alguno, A.C.; Malaluan, R.M.; Lubguban, A.A. Producing Polyglycerol Polyester Polyol for Thermoplastic Polyurethane Application: A Novel Valorization of Glycerol, a by-Product of Biodiesel Production. Heliyon 2023, 9, e19491. [Google Scholar] [CrossRef]
- Ramaraju, H.; Solorio, L.D.; Bocks, M.L.; Hollister, S.J. Degradation Properties of a Biodegradable Shape Memory Elastomer, Poly(Glycerol Dodecanoate), for Soft Tissue Repair. PLoS ONE 2020, 15, e0229112. [Google Scholar] [CrossRef]
- Han, J.; Hong, J.; Choi, C.; Cha, C. Physicochemically Tunable Hyperbranched Polyglycerol Copolymerized with Functional Aziridine As a Versatile, Multivalent Cross-Linker for Waterborne Acrylic Adhesives. ACS Appl. Polym. Mater. 2024, 6, 11167–11179. [Google Scholar] [CrossRef]
- Maalihan, R.D.; Briones, L.I.B.; Canarias, E.P.; Lanuza, G.P. On the 3D Printing and Flame Retardancy of Expandable Graphite-Coated Polylactic Acid. Mater. Today Proc. 2023, S2214785323048125. [Google Scholar] [CrossRef]
- Alcantara, K.C.; Lucido, K.V.; Mabilangan, K.H.R.; Magsino, R.M.L.V.; Aquino, A.P.; Sangalang, R.H.; Maalihan, R.D. Copper Removal with Zeolite/Polylactic Acid Beads: Neural Networks and Fixed-Bed Column Insights. Chem. Eng. Technol. 2025, 48, e70024. [Google Scholar] [CrossRef]
- Ji, S.; Stricher, M.; Nadaud, F.; Guenin, E.; Egles, C.; Delbecq, F. Solvent-Free Production by Extrusion of Bio-Based Poly(Glycerol-Co-Diacids) Sheets for the Development of Biocompatible and Electroconductive Elastomer Composites. Polymers 2022, 14, 3829. [Google Scholar] [CrossRef]
- Aleemardani, M.; Johnson, L.; Trikić, M.Z.; Green, N.H.; Claeyssens, F. Synthesis and Characterisation of Photocurable Poly(Glycerol Sebacate)-Co-Poly(Ethylene Glycol) Methacrylates. Mater. Today Adv. 2023, 19, 100410. [Google Scholar] [CrossRef]
- Yeh, Y.-C.; Ouyang, L.; Highley, C.B.; Burdick, J.A. Norbornene-Modified Poly(Glycerol Sebacate) as a Photocurable and Biodegradable Elastomer. Polym. Chem. 2017, 8, 5091–5099. [Google Scholar] [CrossRef]
- Ravi, P.; Wright, J.; Shiakolas, P.S.; Welch, T.R. Three-Dimensional Printing of Poly(Glycerol Sebacate Fumarate) Gadodiamide-Poly(Ethylene Glycol) Diacrylate Structures and Characterization of Mechanical Properties for Soft Tissue Applications. J. Biomed. Mater. Res. Part B: Appl. Biomater. 2019, 107, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Qu, R.; Zhou, D.; Guo, T.; He, W.; Cui, C.; Zhou, Y.; Zhang, Y.; Tang, Z.; Zhang, X.; Wang, Q.; et al. 4D Printing of Shape Memory Inferior Vena Cava Filters Based on Copolymer of Poly(Glycerol Sebacate) Acrylate-Co-Hydroxyethyl Methacrylate (PGSA-HEMA). Mater. Des. 2023, 225, 111556. [Google Scholar] [CrossRef]
- Maalihan, R.D.; Aggari, J.C.V.; Alon, A.S.; Latayan, R.B.; Montalbo, F.J.P.; Javier, A.D. On the Optimized Fused Filament Fabrication of Polylactic Acid Using Multiresponse Central Composite Design and Desirability Function Algorithm. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2024, 09544089241247454. [Google Scholar] [CrossRef]
- Gürbüz, B.; Baran, E.T.; Tahmasebifar, A.; Yilmaz, B. Construction of Aligned Polycaprolactone/Poly(Glycerol Sebacate)/Polysulfone Nanofibrous Scaffolds for Tissue Engineering of the Ventricularis Layer of Heart Valves. Polym. Adv. Technol. 2024, 35, e6629. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, X.; Liu, X.; Guan, X.; Zhang, C.; Niu, Y. Polyglycerol-Based Organic-Inorganic Hybrid Adhesive with High Early Strength. Mater. Des. 2017, 117, 1–6. [Google Scholar] [CrossRef]
- Dos Santos, G.I.; Gaglieri, C.; Alarcon, R.T.; De Moura, A.; Dos Santos, F.B.; Bannach, G. Glycerol and Maleic Anhydride-Based Acrylic Polyester: A Solution for Greener Photocurable Resins for 3D Printing of Renewable Materials. ACS Sustain. Chem. Eng. 2025, 13, 9771–9782. [Google Scholar] [CrossRef]
- Zulkifli, Z.; Tan, J.J.; Ku Marsilla, K.I.; Rusli, A.; Abdullah, M.K.; Shuib, R.K.; Shafiq, M.D.; Abdul Hamid, Z.A. Shape Memory Poly (Glycerol Sebacate)-Based Electrospun Fiber Scaffolds for Tissue Engineering Applications: A Review. J. Appl. Polym. Sci. 2022, 139, 52272. [Google Scholar] [CrossRef]
- Ramaraju, H.; McAtee, A.M.; Akman, R.E.; Verga, A.S.; Bocks, M.L.; Hollister, S.J. Sterilization Effects on Poly(Glycerol Dodecanedioate): A Biodegradable Shape Memory Elastomer for Biomedical Applications. J. Biomed. Mater. Res. 2023, 111, 958–970. [Google Scholar] [CrossRef]
- Wu, T.; Frydrych, M.; O’Kelly, K.; Chen, B. Poly(Glycerol Sebacate Urethane)–Cellulose Nanocomposites with Water-Active Shape-Memory Effects. Biomacromolecules 2014, 15, 2663–2671. [Google Scholar] [CrossRef]
- Cai, W.; Liu, L. Shape-Memory Effect of Poly (Glycerol–Sebacate) Elastomer. Mater. Lett. 2008, 62, 2171–2173. [Google Scholar] [CrossRef]
- Ramaraju, H.; Massarella, D.; Wong, C.; Verga, A.S.; Kish, E.C.; Bocks, M.L.; Hollister, S.J. Percutaneous Delivery and Degradation of a Shape Memory Elastomer Poly(Glycerol Dodecanedioate) in Porcine Pulmonary Arteries. Biomaterials 2023, 293, 121950. [Google Scholar] [CrossRef] [PubMed]
- Gokcekuyu, Y.; Ekinci, F.; Guzel, M.S.; Acici, K.; Aydin, S.; Asuroglu, T. Artificial Intelligence in Biomaterials: A Comprehensive Review. Appl. Sci. 2024, 14, 6590. [Google Scholar] [CrossRef]
- Timofticiuc, I.-A.; Călinescu, O.; Iftime, A.; Dragosloveanu, S.; Caruntu, A.; Scheau, A.-E.; Badarau, I.A.; Didilescu, A.C.; Caruntu, C.; Scheau, C. Biomaterials Adapted to Vat Photopolymerization in 3D Printing: Characteristics and Medical Applications. J. Funct. Biomater. 2024, 15, 7. [Google Scholar] [CrossRef]
- Jiang, P.; Ji, Z.; Wang, X.; Zhou, F. Surface Functionalization—A New Functional Dimension Added to 3D Printing. J. Mater. Chem. C 2020, 8, 12380–12411. [Google Scholar] [CrossRef]
- Delaey, J.; Dubruel, P.; Van Vlierberghe, S. Shape-Memory Polymers for Biomedical Applications. Adv. Funct. Mater. 2020, 30, 1909047. [Google Scholar] [CrossRef]
- Zhang, S.; Vijayavenkataraman, S.; Lu, W.F.; Fuh, J.Y.H. A Review on the Use of Computational Methods to Characterize, Design, and Optimize Tissue Engineering Scaffolds, with a Potential in 3D Printing Fabrication. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 107, 1329–1351. [Google Scholar] [CrossRef]


| Property | LPG | HPG | DPG |
|---|---|---|---|
| DB | ~0 [27] | 0.60–0.63 (methacrylated) [22] | 0.50–0.70 [21] |
| Tg | –30.0 to 30.0 °C (PGS-co-diacids) [16] | –39 °C [22] | –14 to –20 °C (PG-succinate) [26] |
| Tensile strength | 0.2 to 5.0 MPa (PGS) [17] | 1.6 ± 0.4 MPa [22] | ~3.0–10.0 MPa (at 15 to 25 wt% in soy protein isolate films) [25] |
| PG-Based Material | Structural Modification/ Formulation | Tg | Tm | Tonset/Tmax | Char Yield | Reference |
|---|---|---|---|---|---|---|
| PGS | Two-step synthesis with sebacic acid | –22.5 | 5.6 | [63] | ||
| PGS | Electrospun chitin-lignin sol–gel | 63 | [64] | |||
| PG tartrate | Crosslinked with cellulose, reinforced with nanosilica and apple peel | Tmax~300 | 59.5 | [65] | ||
| PG adipate—methacrylate | One-pot two-step enzymatic methacrylation | −41 to −20 | [66] | |||
| PG polyester polyol | Glycerol acetate + coconut oil polyol + phthalic anhydride | −11.4 to −12.2 | [67] | |||
| PGD | Varying curing time and temperature | 35 to 42 | [68] | |||
| PGS-co-succinate | Varying succinate content | −19 to 23 | Tmax~400 | [16] | ||
| Acrylic HPG | Copolymer with aziridine | T10% = 58 to 108 T50% = 354 to 391 | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andal, J.P.M.; Navarro, R.R.; Maalihan, R.D. Polyglycerol Systems in Additive Manufacturing: Structure, Properties, and Processing. Macromol 2025, 5, 48. https://doi.org/10.3390/macromol5040048
Andal JPM, Navarro RR, Maalihan RD. Polyglycerol Systems in Additive Manufacturing: Structure, Properties, and Processing. Macromol. 2025; 5(4):48. https://doi.org/10.3390/macromol5040048
Chicago/Turabian StyleAndal, Julie Pearl M., Roxanne R. Navarro, and Reymark D. Maalihan. 2025. "Polyglycerol Systems in Additive Manufacturing: Structure, Properties, and Processing" Macromol 5, no. 4: 48. https://doi.org/10.3390/macromol5040048
APA StyleAndal, J. P. M., Navarro, R. R., & Maalihan, R. D. (2025). Polyglycerol Systems in Additive Manufacturing: Structure, Properties, and Processing. Macromol, 5(4), 48. https://doi.org/10.3390/macromol5040048

