Chemically Modified Alginate-Based Hydrogel-Matrices in Drug Delivery
Abstract
1. Introduction
2. Alginates
2.1. Sources of Alginates and Compositional Variability
2.2. Conventional Methods of Alginate Extraction and Purification
2.3. Challenges and Future Perspectives of Alginate Extraction and Purification
3. Physicochemical Properties of Alginate
4. Functional Properties of Alginates
4.1. Gelling Properties
4.2. Rheological Properties
4.3. Water Retention, Syneresis, and Swelling Properties
4.4. Release, Biodegradability, and Biocompatibility Properties
5. Alginate Modification Methods
5.1. Physical Modification
5.2. Chemical Modification
5.3. Enzymatic Modification
6. Application of Chemically Modified Alginate in Drug Release
7. Critical Perspectives and Future Directions
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
M | β-D-mannuronic acid |
G | α-L-guluronic acid |
HCl | hydrochloric acid |
H2SO4 | sulfuric acid |
NaOH | sodium hydroxide |
Na2CO3 | sodium carbonate |
CaCl2 | calcium chloride |
NMR | Nuclear Magnetic Resonance |
FTIR | Fourier Transform Infrared Spectroscopy |
MW | molecular weight |
HPSEC | High-Performance Size Exclusion Chromatography |
G′ | viscous modulus |
G″ | elastic modulus |
EDTA | ethylenediaminetetraacetic acid |
CNC | cellulose nanocrystal |
XRD | X-ray diffraction |
ADA | aldehyde alginate |
PEG | polyethylene glycol |
References
- Alpizar-Reyes, E.; Román-Guerrero, A.; Cortés-Camargo, S.; Karina Velázquez-Gutiérrez, S.; Pérez-Alonso, C. Recent Approaches in Alginate-Based Carriers for Delivery of Therapeutics and Biomedicine. In Polysaccharide-Based Biomaterials; RSC: London, UK, 2022; pp. 27–56. [Google Scholar]
- Cortés-Camargo, S.; Román-Guerrero, A.; Alvarez-Ramirez, J.; Alpizar-Reyes, E.; Velázquez-Gutiérrez, S.K.; Pérez-Alonso, C. Microstructural Influence on Physical Properties and Release Profiles of Sesame Oil Encapsulated into Sodium Alginate-Tamarind Mucilage Hydrogel Beads. Carbohydr. Polym. Technol. Appl. 2023, 5, 100302. [Google Scholar] [CrossRef]
- Kumar, A.; Soratur, A.; Kumar, S.; Venmathi Maran, B.A. A Review of Marine Algae as a Sustainable Source of Antiviral and Anticancer Compounds. Macromol 2025, 5, 11. [Google Scholar] [CrossRef]
- Draget, K.I.; Taylor, C. Chemical, Physical and Biological Properties of Alginates and Their Biomedical Implications. Food Hydrocoll. 2011, 25, 251–256. [Google Scholar] [CrossRef]
- Baniasadi, H. State-of-the-Art in Natural Hydrogel-Based Wound Dressings: Design, Functionalization, and Fabrication Approaches. Adv. Colloid Interface Sci. 2025, 342, 103527. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, J.; Leal, E.C.; Gomes, A.; Gomes, P.; Calheiros, D.; Gonçalves, T.; Carvalho, E.; Silva, E.A. Alginate-Based Hydrogels for Sustained Antimicrobial Peptide Delivery to Enhance Wound Healing in Diabetes. Biomater. Adv. 2025, 175, 214337. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Shavandi, A.; Okoro, O.V.; Nie, L. Alginate Modification Via Click Chemistry for Biomedical Applications. Carbohydr. Polym. 2021, 270, 118360. [Google Scholar] [CrossRef]
- Wang, J.; Liu, S.; Huang, J.; Ren, K.; Zhu, Y.; Yang, S. Alginate: Microbial Production, Functionalization, and Biomedical Applications. Int. J. Biol. Macromol. 2023, 242, 125048. [Google Scholar] [CrossRef]
- Sacramento, M.M.A.; Borges, J.; Correia, F.J.S.; Calado, R.; Rodrigues, J.M.M.; Patrício, S.G.; Mano, J.F. Green Approaches for Extraction, Chemical Modification and Processing of Marine Polysaccharides for Biomedical Applications. Front. Bioeng. Biotechnol. 2022, 10, 1–30. [Google Scholar] [CrossRef]
- Lin, Q.; Li, X.; McClements, D.J.; Jin, Z.; Qiu, C.; Li, G. Plant-Based Delivery Systems for Controlled Release of Hydrophilic and Hydrophobic Active Ingredients: Pea Protein-Alginate Bigel Beads. Food Hydrocoll. 2024, 154, 110101. [Google Scholar] [CrossRef]
- Hilal, A.; Florowska, A.; Wroniak, M. Binary Hydrogels: Induction Methods and Recent Application Progress as Food Matrices for Bioactive Compounds Delivery—A Bibliometric Review. Gels 2023, 9, 68. [Google Scholar] [CrossRef]
- Qiu, Y.; Park, K. Environment-Sensitive Hydrogels for Drug Delivery. Adv. Drug Deliv. Rev. 2001, 53, 321–339. [Google Scholar] [CrossRef] [PubMed]
- Gombotz, W.R.; Wee, S.F. Protein Release from Alginate Matrices. Adv. Drug Deliv. Rev. 2012, 64, 194–205. [Google Scholar] [CrossRef]
- Li, H.; Peng, H.; Tang, J.; Hou, M.; Liang, B.; Zhu, Y.; Cheng, Y.; Yang, L.; Zhaoxiang Zhang, Z.; Yi, C. Dual Network Hydrogels Based on PRP and SA Promote the Retention Rate and Vascularization of Transplanted Fat. Aesthetic Plast Surg. 2024, 48, 501–509. [Google Scholar] [CrossRef]
- Lou, J.; Xiang, Z.; Zhu, X.; Song, J.; Huang, N.; Li, J.; Jin, G.; Cui, S.; Xu, P.; Le, X.; et al. Evaluating the Therapeutic Efficacy and Safety of Alginate-Based Dressings in Burn Wound and Donor Site Wound Management Associated with Burn Surgery: A Systematic Review and Meta-Analysis of Contemporary Randomized Controlled Trials. BMC Surg. 2025, 25, 1–26. [Google Scholar] [CrossRef]
- Neves, M.I.; Magalhães, M.V.; Bidarra, S.J.; Moroni, L.; Barrias, C.C. Versatile Click Alginate Hydrogels with Protease-Sensitive Domains as Cell Responsive/Instructive 3D Microenvironments. Carbohydr. Polym. 2023, 320, 21226. [Google Scholar] [CrossRef]
- Liu, Y.; Zong, Q.; Tu, Y.; Zhang, X.; Tan, Q.; Ullah, I.; Yuan, Y. A Tumor Heterogeneity-Independent Antigen-Responsive Nanocarrier Enabled by Bioorthogonal Pre-Targeting and Click-Activated Self-Immolative Polymer. Biomaterials 2025, 319, 123200. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.; Zhou, D.; Wu, D.; Han, Y.; Yu, H.; Shen, H.; Feng, W.; Hou, L.; Chen, Y.; Xu, T. Challenges and Material Innovations in Drug Delivery to Central Nervous System Tumors. Biomaterials 2025, 319, 123180. [Google Scholar] [CrossRef] [PubMed]
- Fertah, M.; Belfkira, A.; Dahmane, E.M.; Taourirte, M.; Brouillette, F. Extraction and Characterization of Sodium Alginate from Moroccan Laminaria Digitata Brown Seaweed. Arab. J. Chem. 2017, 10, S3707–S3714. [Google Scholar] [CrossRef]
- Ali, M.Q.; Azhar, M.A.; Munaim, M.S.A.; Ruslan, N.F.; Ahmad, N.; Noman, A.E. Recent Advances in Edible Seaweeds: Ingredients of Functional Food Products, Potential Applications, and Food Safety Challenges. Food Bioprocess Technol. 2025, 18, 4947–4974. [Google Scholar] [CrossRef]
- Deepika, C.; Ravishankar, G.A.; Rao, A.R. Potential Products from Macroalgae: An Overview. In Sustainable Global Resources of Seaweeds; Springer International Publishing: Cham, Switzerland, 2022; Volume 1, pp. 17–44. [Google Scholar]
- Bixler, H.J.; Porse, H. A Decade of Change in the Seaweed Hydrocolloids Industry. J. Appl. Phycol. 2011, 23, 321–335. [Google Scholar] [CrossRef]
- Davis, T.A.; Volesky, B.; Mucci, A. A Review of the Biochemistry of Heavy Metal Biosorption by Brown Algae. Water Res. 2003, 37, 4311–4330. [Google Scholar] [CrossRef] [PubMed]
- McHugh, D.J. A Guide to the Seaweed Industry; FAO: Rome, Italy, 2003. [Google Scholar]
- Arvizu-Higuera, D.L.; Rodríguez-Montesinos, Y.E.; Murillo-Álvarez, J.I.; Muñoz-Ochoa, M.; Hernández-Carmona, G. Effect of Alkali Treatment Time and Extraction Time on Agar from Gracilaria vermiculophylla. J. Appl. Phycol. 2008, 20, 515–519. [Google Scholar] [CrossRef]
- Gómez-Ordóñez, E.; Rupérez, P. FTIR-ATR Spectroscopy as a Tool for Polysaccharide Identification in Edible Brown and Red Seaweeds. Food Hydrocoll. 2011, 25, 1514–1520. [Google Scholar] [CrossRef]
- Hernández-Carmona, G.; McHugh, D.J.; Arvizu-Higuera, D.L.; Rodríguez-Montesinos, Y.E. Pilot Plant Scale Extraction of Alginate from Macrocystis Pyrifera. 1. Effect of Pre-Extraction Treatments on Yield and Quality of Alginate. J. Appl. Phycol. 1998, 10, 507–513. [Google Scholar] [CrossRef]
- Tang, S.; Dong, X.; Ma, Y.; Zhou, H.; He, Y.; Ren, D.; Li, X.; Cai, Y.; Wang, Q.; Wu, L. Highly Crystalline Cellulose Micro-particles from Dealginated Seaweed Waste Ameliorate High Fat-Sugar Diet-Induced Hyperlipidemia in Mice by Modulating Gut Microbiota. Int. J. Biol. Macromol. 2024, 263, 130485. [Google Scholar] [CrossRef] [PubMed]
- Nøkling-Eide, K.; Langeng, A.-M.; Åslund, A.; Aachmann, F.L.; Sletta, H.; Arlov, Ø. An Assessment of Physical and Chemical Conditions in Alginate Extraction from Two Cultivated Brown Algal Species in Norway: Alaria esculenta and Saccharina latissima. Algal Res. 2023, 69, 102951. [Google Scholar] [CrossRef]
- Hernández-Carmona, G.; McHugh, D.J.; López-Gutiérrez, F. Pilot Plant Scale Extraction of Alginates from Macrocystis Pyrifera. 2. Studies on Extraction Conditions and Methods of Separating the Alkaline-Insoluble Residue. J. Appl. Phycol. 1999, 11, 493–502. [Google Scholar] [CrossRef]
- Smidsrød, O.; Haug, A. Dependence upon Uronic Acid Composition of Some Ion-Exchange Properties of Alginates. Acta Chem. Scand. 1968, 22, 1989–1997. [Google Scholar] [CrossRef]
- Gómez-Díaz, D.; Navaza, J.M. Rheology of Aqueous Solutions of Food Additives: Effect of Concentration, Temperature and Blending. J. Food Eng. 2003, 56, 387–392. [Google Scholar] [CrossRef]
- Kim, M.A.; Do Yoon, S.; Lee, C.-M. A Drug Release System Induced by near Infrared Laser Using Alginate Microparticles Containing Melanin. Int. J. Biol. Macromol. 2017, 103, 839–844. [Google Scholar] [CrossRef]
- Mousavi, S.E.; Hatamipour, M.S.; Yegdaneh, A. Ultrasound-Assisted Extraction of Alginic Acid from Sargassum Angustifolium Harvested from Persian Gulf Shores Using Response Surface Methodology. Int. J. Biol. Macromol. 2023, 226, 660–669. [Google Scholar] [CrossRef]
- Alboofetileh, M.; Jeddi, S.; Abdollahi, M. Sequential Recovery of Alginate from Fucoidan Extraction By-Products of Nizamuddinia Zanardinii Seaweed Using Green Extraction Methods. Ultrason. Sonochem. 2025, 117, 107343. [Google Scholar] [CrossRef]
- Nam, H.B.; Lee, K.H.; Yoo, H.Y.; Park, C.; Lim, J.M.; Lee, J.H. Rapid and High-Yield Recovery of Sodium Alginate from Undaria Pinnatifida via Microwave-Assisted Extraction. Processes 2024, 12, 208. [Google Scholar] [CrossRef]
- Nesic, A.; De Bonis, M.V.; Dal Poggetto, G.; Ruocco, G.; Santagata, G. Microwave Assisted Extraction of Raw Alginate as a Sustainable and Cost-Effective Method to Treat Beach-Accumulated Sargassum Algae. Polymers 2023, 15, 2979. [Google Scholar] [CrossRef] [PubMed]
- Torabi, P.; Hamdami, N.; Keramat, J. Microwave-Assisted Extraction of Sodium Alginate from Brown Macroalgae Nizimuddinia Zanardini, Optimization and Physicochemical Properties. Sep. Sci. Technol. 2022, 57, 872–885. [Google Scholar] [CrossRef]
- Bojorges, H.; Martínez-Abad, A.; Martínez-Sanz, M.; Rodrigo, M.D.; Vilaplana, F.; López, A.; Fabra, M.J. Structural and Functional Properties of Alginate Obtained by Means of High Hydrostatic Pressure-Assisted Extraction. Carbohydr. Polym. 2023, 299, 120175. [Google Scholar] [CrossRef]
- Gao, F.; Liu, X.; Chen, W.; Guo, W.; Chen, L.; Li, D. Hydroxyl Radical Pretreatment for Low-Viscosity Sodium Alginate Production from Brown Seaweed. Algal Res. 2018, 34, 191–197. [Google Scholar] [CrossRef]
- Bojorges, H.; Fabra, M.J.; López-Rubio, A.; Martínez-Abad, A. Alginate Industrial Waste Streams as a Promising Source of Value-Added Compounds Valorization. Sci. Total Environ. 2022, 838, 156394. [Google Scholar] [CrossRef]
- Sari-Chmayssem, N.; Taha, S.; Mawlawi, H.; Guégan, J.P.; Jeftić, J.; Benvegnu, T. Extracted and Depolymerized Alginates from Brown Algae Sargassum vulgare of Lebanese Origin: Chemical, Rheological, and Antioxidant Properties. J. Appl. Phycol. 2016, 28, 1915–1929. [Google Scholar] [CrossRef]
- Khajouei, R.A.; Keramat, J.; Hamdami, N.; Ursu, A.-V.; Delattre, C.; Laroche, C.; Gardarin, C.; Lecerf, D.; Desbriés, J.; Djelveh, G.; et al. Extraction and Characterization of an Alginate from the Iranian Brown Seaweed Nizimuddinia zanardini. Int. J. Biol. Macromol. 2018, 118, 1073–1081. [Google Scholar] [CrossRef]
- Rhein-Knudsen, N.; Ale, M.T.; Ajalloueian, F.; Meyer, A.S. Characterization of Alginates from Ghanaian Brown Seaweeds: Sargassum spp. and Padina spp. Food Hydrocoll. 2017, 71, 236–244. [Google Scholar] [CrossRef]
- Buwalda, S.J. ‘Click’ Hydrogels from Renewable Polysaccharide Resources: Bioorthogonal Chemistry for the Preparation of Alginate, Cellulose and Other Plant-Based Networks with Biomedical Applications. Int. J. Biol. Macromol. 2024, 282, 136695. [Google Scholar] [CrossRef]
- Tao, L.; Shi, C.; Zi, Y.; Zhang, H.; Wang, X.; Zhong, J. A Review on the Chemical Modification of Alginates for Food Research: Chemical Nature, Modification Methods, Product Types, and Application. Food Hydrocoll. 2024, 147, 109338. [Google Scholar] [CrossRef]
- Flórez-Fernández, N.; Domínguez, H.; Torres, M.D. Advances in the Biorefinery of Sargassum Muticum: Valorisation of the Alginate Fractions. Ind. Crops Prod. 2019, 138, 111483. [Google Scholar] [CrossRef]
- Hurtado, A.; Aljabali, A.A.; Mishra, V.; Tambuwala, M.M.; Serrano-Aroca, Á. Alginate: Enhancement Strategies for Advanced Applications. Int. J. Mol. Sci. 2022, 23, 4486. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Ballester, N.M.; Bataille, B.; Soulairol, I. Sodium Alginate and Alginic Acid as Pharmaceutical Excipients for Tablet Formulation: Structure-Function Relationship. Carbohydr. Polym. 2021, 270, 118399. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, J.; Ao, Q. Preparation of Alginate-Based Biomaterials and Their Applications in Biomedicine. Mar. Drugs 2021, 19, 264. [Google Scholar] [CrossRef]
- Qamar, S.; Karim, S.; Aslam, S.; Jahangeer, M.; Nelofer, R.; Nadeem, A.A.; Qamar, S.A.; Jesionowski, T.; Bilal, M. Alginate-based Bio-nanohybrids with Unique Properties for Biomedical Applications. Starch-Stärke 2024, 76, 2200100. [Google Scholar] [CrossRef]
- Pawar, S.N. Chemical Modification of Alginate. Seaweed Polysacch. 2017, 111–155. [Google Scholar]
- Borazjani, N.J.; Tabarsa, M.; You, S.; Rezaei, M. Effects of Extraction Methods on Molecular Characteristics, Antioxidant Properties and Immunomodulation of Alginates from Sargassum angustifolium. Int. J. Biol. Macromol. 2017, 101, 703–711. [Google Scholar] [CrossRef]
- Fawzy, M.A.; Gomaa, M.; Hifney, A.F.; Abdel-Gawad, K.M. Optimization of Alginate Alkaline Extraction Technology from Sargassum Latifolium and Its Potential Antioxidant and Emulsifying Properties. Carbohydr. Polym. 2017, 157, 1903–1912. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Gheda, S.F.; Ribeiro-Claro, P.J. Analysis by Vibrational Spectroscopy of Seaweed Polysaccharides with Potential Use in Food, Pharmaceutical, and Cosmetic Industries. Int. J. Carbohydr. Chem. 2013, 2013, 537202. [Google Scholar] [CrossRef]
- Dodero, A.; Vicini, S.; Alloisio, M.; Castellano, M. Sodium Alginate Solutions: Correlation between Rheological Properties and Spinnability. J. Mater. Sci. 2019, 54, 8034–8046. [Google Scholar] [CrossRef]
- Hernández-González, A.C.; Téllez-Jurado, L.; Rodríguez-Lorenzo, L.M. Alginate Hydrogels for Bone Tissue Engineering, from Injectables to Bioprinting: A Review. Carbohydr. Polym. 2020, 229, 115514. [Google Scholar] [CrossRef]
- Feng, L.; Cao, Y.; Xu, D.; Wang, S.; Zhang, J. Molecular Weight Distribution, Rheological Property and Structural Changes of Sodium Alginate Induced by Ultrasound. Ultrason. Sonochem. 2017, 34, 609–615. [Google Scholar] [CrossRef]
- Dodero, A.; Vicini, S.; Alloisio, M.; Castellano, M. Rheological Properties of Sodium Alginate Solutions in the Presence of Added Salt: An Application of Kulicke Equation. Rheol. Acta 2020, 59, 365–374. [Google Scholar] [CrossRef]
- Abka-Khajouei, R.; Tounsi, L.; Shahabi, N.; Patel, A.K.; Abdelkafi, S.; Michaud, P. Structures, Properties and Applications of Alginates. Mar. Drugs 2022, 20, 364. [Google Scholar] [CrossRef]
- Hentati, F.; Delattre, C.; Ursu, A.V.; Desbrières, J.; Le Cerf, D.; Gardarin, C.; Abdelkafi, S.; Michaud, P.; Pierre, G. Structural Characterization and Antioxidant Activity of Water-Soluble Polysaccharides from the Tunisian Brown Seaweed Cystoseira Compressa. Carbohydr. Polym. 2018, 198, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Hafsa, P.V.; Aswathy, K.N.; Viswanad, V. Alginates in Drug Delivery Systems. In Natural Biopolymers in Drug Delivery and Tissue Engineering; Elsevier: Amsterdam, The Netherlands, 2023; pp. 25–55. [Google Scholar]
- Sarkar, N.; Maity, A. Modified Alginates in Drug Delivery. In Tailor-Made Polysaccharides in Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2023; pp. 291–325. [Google Scholar]
- Goh, C.H.; Heng, P.W.S.; Chan, L.W. Alginates as a Useful Natural Polymer for Microencapsulation and Therapeutic Applications. Carbohydr. Polym. 2012, 88, 1–12. [Google Scholar] [CrossRef]
- Belalia, F.; Djelali, N.-E. Rheological Properties of Sodium Alginate Solutions. Rev. Roum. Chim. 2014, 59, 135–145. [Google Scholar]
- Jørgensen, T.E.; Sletmoen, M.; Draget, K.I.; Stokke, B.T. Influence of Oligoguluronates on Alginate Gelation, Kinetics, and Polymer Organization. Biomacromolecules 2007, 8, 2388–2397. [Google Scholar] [CrossRef] [PubMed]
- Bidarra, S.J.; Barrias, C.C.; Granja, P.L. Injectable Alginate Hydrogels for Cell Delivery in Tissue Engineering. Acta Biomater. 2014, 10, 1646–1662. [Google Scholar] [CrossRef]
- Ching, S.H.; Bansal, N.; Bhandari, B. Alginate Gel Particles–A Review of Production Techniques and Physical Properties. Crit. Rev. Food Sci. Nutr. 2017, 57, 1133–1152. [Google Scholar] [CrossRef]
- Crisóstomo, J.; Pereira, A.M.; Bidarra, S.J.; Gonçalves, A.C.; Granja, P.L.; Coelho, J.F.; Barrias, C.C.; Seiça, R. ECM-Enriched Alginate Hydrogels for Bioartificial Pancreas: An Ideal Niche to Improve Insulin Secretion and Diabetic Glucose Profile. J. Appl. Biomater. Funct. Mater. 2019, 17, 1–13. [Google Scholar] [CrossRef]
- Das, B.; Dutta, S.; Nayak, A.K.; Nanda, U. Zinc Alginate-Carboxymethyl Cashew Gum Microbeads for Prolonged Drug Release: Development and Optimization. Int. J. Biol. Macromol. 2014, 70, 506–515. [Google Scholar] [CrossRef]
- Di, Z.; Zhou, B.; Zhou, L.; Di, Y.; Wang, L.; Di, L. A Gellan Gum/Sodium Alginate-Based Gastric-Protective Hydrogel Loaded with a Combined Herbal Extract Consisting of Panax Notoginseng, Bletilla striata and Dendrobium officinale. Int. J. Biol. Macromol. 2023, 250, 126277. [Google Scholar] [CrossRef]
- Nayak, A.K.; Das, B.; Maji, R. Calcium Alginate/Gum Arabic Beads Containing Glibenclamide: Development and In Vitro Characterization. Int. J. Biol. Macromol. 2012, 51, 1070–1078. [Google Scholar] [CrossRef]
- Baú, R.Z.; Dávila, J.L.; Komatsu, D.; d’Avila, M.A.; Gomes, R.C.; de Rezende Duek, E.A. Influence of Hyaluronic Acid and Sodium Alginate on the Rheology and Simvastatin Delivery in Pluronic-Based Thermosensitive Injectable Hydrogels. J. Drug Deliv. Sci. Technol. 2023, 88, 104888. [Google Scholar] [CrossRef]
- Cadamuro, F.; Piazzoni, M.; Gamba, E.; Sonzogni, B.; Previdi, F.; Nicotra, F.; Ferramosca, A.; Russo, L. Artificial Intelligence Tool for Prediction of ECM Mimics Hydrogel Formulations Via Click Chemistry. Biomater. Adv. 2025, 175, 214323. [Google Scholar] [CrossRef] [PubMed]
- Castillo, T.; Flores, C.; Salgado-Lugo, H.; Peña, C.F.; Galindo, E. Alginate and γ-Polyglutamic Acid Hydrogels: Microbial Production Strategies and Biomedical Applications. A Review of Recent Literature. Electron. J. Biotechnol. 2023, 66, 38–51. [Google Scholar] [CrossRef]
- Jarrah, R.M.; Potes, M.D.A.; Vitija, X.; Durrani, S.; Ghaith, A.K.; Mualem, W.; Zamanian, C.; Bhandarkar, A.R.; Bydon, M. Alginate Hydrogels: A Potential Tissue Engineering Intervention for Intervertebral Disc Degeneration. J. Clin. Neurosci. 2023, 113, 32–37. [Google Scholar] [CrossRef]
- Mehta, P.; Sharma, M.; Devi, M. Hydrogels: An Overview of Its Classifications, Properties, and Applications. J. Mech. Behav. Biomed. Mater. 2023, 147, 106145. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Roy, S.; Hasnain, M.S.; Nayak, A.K. Grafted Alginates in Drug Delivery. In Alginates in Drug Delivery; Elsevier: Amsterdam, The Netherlands, 2020; pp. 71–100. [Google Scholar]
- Putro, J.N.; Soetaredjo, F.E.; Santoso, S.P.; Irawaty, W.; Yuliana, M.; Wijaya, C.J.; Saptoro, A.; Sunarso, J.; Ismadji, S. Jackfruit Peel Cellulose Nanocrystal–Alginate Hydrogel for Doripenem Adsorption and Release Study. Int. J. Biol. Macromol. 2024, 257, 128502. [Google Scholar] [CrossRef]
- Zongrui, T.; Yu, C.; Wei, L. Grafting Derivate from Alginate. In Biopolymer Grafting; Elsevier: Amsterdam, The Netherlands, 2018; pp. 115–173. [Google Scholar]
- Raghav, N.; Vashisth, C.; Mor, N.; Arya, P.; Sharma, M.R.; Kaur, R.; Bhatti, S.P.; Kennedy, J.F. Recent Advances in Cellulose, Pectin, Carrageenan and Alginate-Based Oral Drug Delivery Systems. Int. J. Biol. Macromol. 2023, 244, 125357. [Google Scholar] [CrossRef]
- Matsuura, T.; Sugiyama, M.; Annaka, M.; Hara, Y.; Okano, T. Microscopic Implication of Rapid Shrinking of Comb-Type Grafted Poly (N-Isopropylacrylamide) Hydrogels. Polymer 2003, 44, 4405–4409. [Google Scholar] [CrossRef]
- Fan, L.-H.; Pan, X.-R.; Zhou, Y.; Chen, L.-Y.; Xie, W.-G.; Long, Z.-H.; Zheng, H. Preparation and Characterization of Crosslinked Carboxymethyl Chitosan–Oxidized Sodium Alginate Hydrogels. J. Appl. Polym. Sci. 2011, 122, 2331–2337. [Google Scholar] [CrossRef]
- Goh, K.K.T.; Matia-Merino, L.; Chiang, J.H.; Quek, R.; Soh, S.J.B.; Lentle, R.G. The Physico-Chemical Properties of Chia Seed Polysaccharide and Its Microgel Dispersion Rheology. Carbohydr. Polym. 2016, 149, 297–307. [Google Scholar] [CrossRef] [PubMed]
- Sarker, B.; Rompf, J.; Silva, R.; Lang, N.; Detsch, R.; Kaschta, J.; Fabry, B.; Boccaccini, A.R. Alginate-Based Hydrogels with Improved Adhesive Properties for Cell Encapsulation. Int. J. Biol. Macromol. 2015, 78, 72–78. [Google Scholar] [CrossRef]
- Gimmestad, M.; Steigedal, M.; Ertesvåg, H.; Moreno, S.; Christensen, B.E.; Espín, G.; Valla, S. Identification and Characterization of an Azotobacter Vinelandii Type I Secretion System Responsible for Export of the AlgE-Type Mannuronan C-5-Epimerases. J. Bacteriol. 2006, 188, 5551–5560. [Google Scholar] [CrossRef] [PubMed]
- Kaczmarek, M.B.; Struszczyk-Swita, K.; Li, X.; Szczęsna-Antczak, M.; Daroch, M. Enzymatic Modifications of Chitin, Chitosan, and Chitooligosaccharides. Front. Bioeng. Biotechnol. 2019, 7, 243. [Google Scholar] [CrossRef]
- Saikia, C.; Gogoi, P.; Maji, T.K. Chitosan: A Promising Biopolymer in Drug Delivery Applications. J. Mol. Genet. Med. 2015, S4, 899–910. [Google Scholar] [CrossRef]
- El-Sherbiny, I.M. Enhanced pH-Responsive Carrier System Based on Alginate and Chemically Modified Carboxymethyl Chitosan for Oral Delivery of Protein Drugs: Preparation and in-Vitro Assessment. Carbohydr. Polym. 2010, 80, 1125–1136. [Google Scholar] [CrossRef]
- Rotman, S.G.; Post, V.; Foster, A.L.; Lavigne, R.; Wagemans, J.; Trampuz, A.; Moreno, M.G.; Metsemakers, W.-J.; Grijpma, D.W.; Richards, R.G. Alginate Chitosan Microbeads and Thermos-Responsive Hyaluronic Acid Hydrogel for Phage Delivery. J. Drug Deliv. Sci. Technol. 2023, 79, 103991. [Google Scholar] [CrossRef]
- Paswan, M.; Chandel, A.K.S.; Malek, N.I.; Dholakiya, B.Z. Preparation of Sodium Alginate/Cur-PLA Hydrogel Beads for Curcumin Encapsulation. Int. J. Biol. Macromol. 2024, 254, 128005. [Google Scholar] [CrossRef] [PubMed]
- Laffleura, F.; Kuppersa, P. Adhesive Alginate for Buccal Delivery in Aphthous Stomatitis. Carbohydr. Res. 2019, 477, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Chi, J.; Ai, L.; Zou, M.; Wang, S.; Liu, C.; Hu, R.; Jiang, Z.; Liu, W.; Sun, R.; Han, B. Novel Dopamine-modified Oxidized Sodium Alginate Hydrogels promote Angiogenesis and Accelerate Healing of Chronic Diabetic Wounds. Int. J. Biol. Macromol. 2022, 203, 492–504. [Google Scholar] [CrossRef]
- Nayl, A.A.; El-Fakharany, E.M.; Abd-Elhamid, A.I.; Arafa, W.A.; Alanazi, A.H.; Ahmed, I.M.; Bräse, S. Alginate-modified Graphene Oxide Anchored with Lactoperoxidase as a Novel Bioactive Nanocombination for Colorectal Cancer Therapy. Sci. Rep. 2024, 14, 24804. [Google Scholar] [CrossRef]
- Nezamdoost-Sani, N.; Khaledabad, M.A.; Amiri, S.; Khaneghah, A.M. Alginate and Derivatives Hydrogels in Encapsulation of Probiotic Bacteria: An Updated Review. Food Biosci. 2023, 52, 102433. [Google Scholar] [CrossRef]
- Bialik-Wąs, K.; Pluta, K.; Malina, D.; Majka, T.M. Alginate/PVA-Based Hydrogel Matrices with Echinacea Purpurea Extract as a New Approach to Dermal Wound Healing. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 195–206. [Google Scholar] [CrossRef]
- Ciriza, J.; Rodríguez-Romano, A.; Nogueroles, I.; Gallego-Ferrer, G.; Cabezuelo, R.M.; Pedraz, J.L.; Rico, P. Borax-Loaded Injectable Alginate Hydrogels Promote Muscle Regeneration in Vivo After an Injury. Mater. Sci. Eng. C 2021, 123, 112003. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Y.; Zhen, M.; Wu, Y.; Ma, M.; Cheng, Y.; Jin, Y. Effect of Catechin and Tannins on the Structural and Functional Properties of Sodium Alginate/Gelatin/ Poly(vinylalcohol) Blend Films. Food Hydrocoll. 2023, 135, 108141. [Google Scholar] [CrossRef]
- Wang, M.H. Potential and Metabolic Pathway Analysis of Marine Microorganism Fermentation in Bioethanol Production. J. Energy Biosci. 2024, 15, 267–276. [Google Scholar] [CrossRef]
- Zhu, B.; Ni, F.; Sun, Y.; Yao, Z. Expression and Characterization of a New Heat-stable Endo-type Alginate lyase from Deep-sea Bacterium Flammeovirga sp. NJ-04. Extremophiles 2017, 21, 1027–1036. [Google Scholar] [CrossRef] [PubMed]
- Alhawiti, A.S.; Elsayed, N.H.; Almutairi, F.M.; Alotaibi, F.A.; Monier, M.; Alatwi, G.J. Construction of a Biocompatible Alginate-Based Hydrogel Cross-Linked by Diels–Alder Chemistry for Controlled Drug Release. React. Funct. Polym. 2023, 187, 105578. [Google Scholar] [CrossRef]
- Ghauri, Z.H.; Islam, A.; Qadir, M.A.; Ghaffar, A.; Gull, N.; Azam, M.; Mehmood, A.; Ghauri, A.A.; Khan, R.U. Novel pH-Responsive Chitosan/Sodium Alginate/PEG Based Hydrogels for Release of Sodium Ceftriaxone. Mater. Chem. Phys. 2022, 277, 125456. [Google Scholar] [CrossRef]
- Dantas, L.M.J.; dos Santos, F.B.F.; Tavares, A.A.; Maciel, M.A.; Lucena, B.d.M.L.; Fook, M.V.; de Silva, L.S.M. The Impact of the Ionic Cross-Linking Mode on the Physical and in Vitro Dexamethasone Release Properties of Chitosan/Hydroxyapatite Beads. Molecules 2019, 24, 4510. [Google Scholar] [CrossRef]
- Hadef, I.; Omri, M.; Edwards-Lévy, F.; Bliard, C. Influence of Chemically Modified Alginate Esters on the Preparation of Microparticles by Transacylation with Protein in W/O Emulsions. Carbohydr. Polym. 2017, 157, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Zhou, J.; Zeng, Y.; Wang, Y.; Shi, B. Preparation of Oxidized Sodium Alginate with Different Molecular Weights and Its Application for Crosslinking Collagen Fiber. Carbohydr. Polym. 2017, 157, 1650–1656. [Google Scholar] [CrossRef]
- Emami, Z.; Ehsani, M.; Zandi, M.; Foudazi, R. Controlling Alginate Oxidation Conditions for Making Alginate-Gelatin Hydrogels. Carbohydr. Polym. 2018, 198, 509–517. [Google Scholar] [CrossRef]
- Yi, Y.; Yao, J.; Xu, W.; Wang, L.-M.; Wang, H.-X. Investigation on the Quality Diversity and Quality-FTIR Characteristic Relationship of Sunflower Seed Oils. RSC Adv. 2019, 9, 27347–27360. [Google Scholar] [CrossRef]
- Arlov, Ø.; Skjåk-Bræk, G. Sulfated Alginates as Heparin Analogues: A Review of Chemical and Functional Properties. Molecules 2017, 22, 778. [Google Scholar] [CrossRef]
- Nazemi, Z.; Nourbakhsh, M.S.; Kiani, S.; Daemi, H.; Ashtiani, M.K.; Baharvand, H. Effect of Chemical Composition and Sulfated Modification of Alginate in the Development of Delivery Systems Based on Electrostatic Interactions for Small Molecule Drugs. Mater. Lett. 2020, 263, 127235. [Google Scholar] [CrossRef]
- Tang, Y.; Chen, K.; Li, J.; Feng, Y.; Yu, G.; Wang, L.; Zhao, X.; Peng, Y.; Zhang, Q. Electrolyte and pH-Sensitive Amphiphilic Alginate: Synthesis, Self-Assembly and Controlled Release of Acetamiprid. RSC Adv. 2018, 8, 32193–32199. [Google Scholar] [CrossRef]
- Hunt, N.C.; Hallam, D.; Karimi, A.; Mellough, C.B.; Chen, J.; Steel, D.H.; Lako, M. 3D Culture of Human Pluripotent Stem Cells in RGD-Alginate Hydrogel Improves Retinal Tissue Development. Acta Biomater. 2017, 49, 329–343. [Google Scholar] [CrossRef]
- Carvalho, E.D.; Morais, M.R.; Pêgo, A.P.; Barrias, C.C.; Araújo, M. The Interplay between Chemical Conjugation and Biologic Performance in the Development of Alginate-Based 3D Matrices to Mimic Neural Microenvironments. Carbohydr. Polym. 2024, 323, 121412. [Google Scholar] [CrossRef]
- Perez, R.A.; Kim, H.-W. Core–Shell Designed Scaffolds of Alginate/Alpha-tricalcium Phosphate for the Loading and Delivery of Biological Proteins. J. Biomed. Mater. Res. A 2013, 101A, 1103–1112. [Google Scholar] [CrossRef] [PubMed]
- Markstedt, K.; Mantas, A.; Tournier, I.; Martínez Ávila, H.C.; Hägg, D.; Gatenholm, P. 3D Bioprinting Human Chondrocytes with Nanocellulose–Alginate Bioink for Cartilage Tissue Engineering Applications. Biomacromolecules 2015, 16, 1489–1496. [Google Scholar] [CrossRef]
- Hernandez-Sosa, A.; Mercado-Rico, J.; Usala, E.; Cataldi, G.; Esteban-Arranz, A.; Penott-Chang, E.; Müller, A.J.; González, Z.; Espinosa, E.; Hernández, R. Composite Nano-Fibrillated Cellulose-Alginate Hydrogels: Effect of Chemical Composition on 3D Extrusion Printing and Drug Release. Polymer 2024, 298, 126845. [Google Scholar] [CrossRef]
- Abasalizadeh, F.; Moghaddam, S.V.; Alizadeh, E.; Akbari, E.; Kashani, E.; Fazljou, S.M.B.; Torbati, M.; Akbarzadeh, A. Alginate-Based Hydrogels as Drug Delivery Vehicles in Cancer Treatment and Their Applications in Wound Dressing and 3D Bioprinting. J. Biol. Eng. 2020, 14, 1–22. [Google Scholar] [PubMed]
- Wei, Q.; Zhou, J.; An, Y.; Li, M.; Zhang, J.; Yang, S. Modification, 3D Printing Process and Application of Sodium Alginate Based Hydrogels in Soft Tissue Engineering: A Review. Int. J. Biol. Macromol. 2023, 232, 123450. [Google Scholar] [CrossRef] [PubMed]
- Thanh, T.N.; Laowattanatham, N.; Ratanavaraporn, J.; Sereemaspun, A.; Yodmuang, S. Hyaluronic Acid Crosslinked with Alginate Hydrogel: A Versatile and Biocompatible Bioink Platform for Tissue Engineering. Eur. Polym. J. 2022, 166, 111027. [Google Scholar] [CrossRef]
- Kreller, T.; Distler, T.; Heid, S.; Gerth, S.; Detsch, R.; Boccaccini, A.R. Physico-Chemical Modification of Gelatine for the Improvement of 3D Printability of Oxidized Alginate-Gelatine Hydrogels towards Cartilage Tissue Engineering. Mater. Des. 2021, 208, 109877. [Google Scholar] [CrossRef]
- Moody, C.T.; Palvai, S.; Brudno, Y. Click Cross-Linking Improves Retention and Targeting of Refillable Alginate Depots. Acta Biomater. 2020, 112, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Mukhopadhyay, A.; Rajput, M.; Barui, A.; Chatterjee, S.S.; Pal, N.K.; Chatterjee, J.; Mukherjee, R. Dual Cross-Linked Honey Coupled 3D Antimicrobial Alginate Hydrogels for Cutaneous Wound Healing. Mater. Sci. Eng. C 2020, 116, 111218. [Google Scholar] [CrossRef]
- Sarker, M.D.; Naghieh, S.; McInnes, A.D.; Ning, L.; Schreyer, D.J.; Chen, X. Bio-Fabrication of Peptide-Modified Alginate Scaffolds: Printability, Mechanical Stability and Neurite Outgrowth Assessments. Bioprinting 2019, 14, 00045. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, W.; Liu, T.; Wu, Y.; Guo, H.; Wang, P.; Tian, Q.; Wang, Y.; Yuan, Z. Doxorubicin-Loaded Glycyrrhetinic Acid-Modified Alginate Nanoparticles for Liver Tumor Chemotherapy. Biomaterials 2012, 33, 2187–2196. [Google Scholar] [CrossRef]
- Araújo, M.; Bidarra, S.J.; Alves, P.M.; Valcarcel, J.; Vazquez, J.A.; Barrias, C.C. Coumarin-Grafted Blue-Emitting Fluorescent Alginate as a Potentially Valuable Tool for Biomedical Applications. J. Mater. Chem. B 2020, 8, 813–825. [Google Scholar] [CrossRef]
- Arora, V.; Sood, A.; Kumari, S.; Kumaran, S.S.; Jain, T.K. Hydrophobically Modified Sodium Alginate Conjugated Plasmonic Magnetic Nanocomposites for Drug Delivery & Magnetic Resonance Imaging. Mater. Today Commun. 2020, 25, 101470. [Google Scholar] [CrossRef]
- Somo, S.I.; Langert, K.; Yang, C.-Y.; Vaicik, M.K.; Ibarra, V.; Appel, A.A.; Akar, B.; Cheng, M.-H.; Brey, E.M. Synthesis and Evaluation of Dual Crosslinked Alginate Microbeads. Acta Biomater. 2018, 65, 53–65. [Google Scholar] [CrossRef]
- Li, Q.-Q.; Xu, D.; Dong, Q.-W.; Song, X.-J.; Chen, B.-Y.; Cui, Y.-L. Biomedical Potentials of Alginate Via Physical, Chemical, and Biological Modifications. Int. J. Biol. Macromol. 2024, 277, 134409. [Google Scholar] [CrossRef]
- Banks, S.R.; Enck, K.; Wright, M.; Opara, E.C.; Welker, M.E. Chemical Modification of Alginate for Controlled Oral Drug Delivery. J. Agric. Food Chem. 2019, 67, 10481–10488. [Google Scholar] [CrossRef] [PubMed]
- Hariyadi, D.M.; Islam, N. Current Status of Alginate in Drug Delivery. Adv. Pharmacol. Pharm. Sci. 2020, 2020, 1–16. [Google Scholar] [CrossRef]
- Abourehab, M.A.S.; Rajendran, R.R.; Singh, A.; Pramanik, S.; Shrivastav, P.; Ansari, M.J.; Manne, R.; Amaral, L.S.; Deepak, A. Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art. Int. J. Mol. Sci. 2022, 23, 9035. [Google Scholar] [CrossRef]
- Ghanem, A.M.; Ashour, S.A.; Hussien, R.M. A Review on Recent Advances in Hydrogels as Drug Delivery System. Int. J. Appl. Pharm. 2025, 17, 39–47. [Google Scholar] [CrossRef]
- Liu, B.; Chen, K. Advances in Hydrogel-Based Drug Delivery Systems. Gels 2024, 10, 262. [Google Scholar] [CrossRef]
- Delgado-Pujol, E.J.; Martínez, G.; Casado-Jurado, D.; Vázquez, J.; León-Barberena, J.; Rodríguez-Lucena, D.; Torres, Y.; Alcudia, A.; Begines, B. Hydrogels and Nanogels: Pioneering the Future of Advanced Drug Delivery Systems. Pharmaceutics 2025, 17, 215. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Choi, W.S.; Jeong, J.O. A Review of Advanced Hydrogel Applications for Tissue Engineering and Drug Delivery Systems as Biomaterials. Gels 2024, 10, 693. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, X.; Chen, S. Multi-Material 3D Printing and Computational Design in Pharmaceutical Tablet Manufacturing. J. Comput. Sci. Artif. Intell. 2024, 1, 34–38. [Google Scholar] [CrossRef]
- Troncoso-Afonso, L.; Henríquez-Banegas, Y.M.; Vinnacombe-Willson, G.A.; Gutierrez, J.; Gallastegui, G.; Liz-Marzán, L.M.; García-Astrain, C. Using Thiol–Ene Click Chemistry to Engineer 3D Printed Plasmonic Hydrogel Scaffolds for SERS Biosensing. Biomater. Sci. 2025, 13, 2936. [Google Scholar] [CrossRef] [PubMed]
- Nayak, A.K.; Hasnain, M.S.; Nanda, S.S.; Yi, D.K. Hydroxyapatite-Alginate Based Matrices for Drug Delivery. Curr. Pharm. Des. 2019, 25, 3406–3416. [Google Scholar] [CrossRef]
- Sheikh, M.; Saiyyad, A.; Jirvankar, P. Injectable Hydrogels for Cartilage and Bone Regeneration: Material Properties, Delivery Strategies, and Clinical Applications. Asian J. Pharm. Clin. Res. 2025, 18, 70–81. [Google Scholar] [CrossRef]
- Arora, S. Recent Advancements in Alginate Hydrogels: A Comprehensive Review. Darpan Int. Res. Anal. 2024, 12, 120–130. [Google Scholar] [CrossRef]
Source of Alginate | Extraction Method | Purification Method | Characteristics of Alginate | Reference |
---|---|---|---|---|
Laminaria digitata | Alkaline extraction | Precipitation with ethanol, dialysis | M/G ratio: 0.45, Molecular weight: 200–400 kDa, Viscosity: 200–400 mPa·s (1% solution) | [29] |
Macrocystis pyrifera | Acid extraction | Precipitation with CaCl2, ultrafiltration | M/G ratio: 1.2, Molecular weight: 100–200 kDa, Viscosity: 100–200 mPa·s (1% solution) | [30] |
Ascophyllum nodosum | Alkaline extraction | Precipitation with ethanol, activated carbon treatment | M/G ratio: 0.6, Molecular weight: 150–250 kDa, Viscosity: 150–250 mPa·s (1% solution) | [31] |
Lessonia trabeculata | Alkaline extraction | Membrane filtration, dialysis | M/G ratio: 0.8, Molecular weight: 300–500 kDa, Viscosity: 500–700 mPa·s (1% solution) | [26] |
Sargassum muticum | Enzymatic extraction | Precipitation with isopropanol, ion exchange | M/G ratio: 0.9, Molecular weight: 80–120 kDa, Viscosity: 50–100 mPa·s (1% solution) | [32] |
Ecklonia cava | Acid extraction | Ultrafiltration, diafiltration | M/G ratio: 1.1, Molecular weight: 50–100 kDa, Viscosity: 20–50 mPa·s (1% solution) | [33] |
Source of Alginate | Extraction Method | Purification Method | Yield (%)/(M/G) ratio | Reference |
---|---|---|---|---|
Sargassum angustifolium | Ultrasound | Precipitation with ethanol | 45.0/2.99 | [34] |
Nizamuddinia zanardinii | Ultrasound Microwave extraction | Precipitation with Na2CO3 | 11.88–15.36 | [35] |
Undaria pinnatifida | Microwave extraction | NA | 37.79 | [36] |
Sargassum Algae | Microwave extraction | Precipitation with ethanol | 36.0 | [37] |
Nizimuddinia zanardini | Microwave extraction | Precipitation with ethanol | 31.39 | [38] |
Ascophyllum nodosum | Hydrostatic pressure-assisted extraction | 0.2 M HCl, 12 h at room temperature | 14.0 | [39] |
Laminaria digitata | Acid extraction | Precipitation with Na2CO3 | 51.8/1.12 | [19] |
Macrocystis pyrifera | Acid extraction | Precipitation with Na2CO3 | 23.2 | [40] |
Ascophyllum nodosum | Alkaline extraction | Precipitation with NaHCO3 | 13.8 | [41] |
Sargassum vulgare | Acid extraction | Precipitation with Na2CO3 | 40.0 | [42] |
Nizimuddinia zanardini | Acid extraction | Precipitation with Na2CO3 | 24.0/1.1 | [43] |
Sargassum natans | Acid extraction | Precipitation with Na2CO3 | 23.0/0.6 | [44] |
Method | Description | Results | Reference |
---|---|---|---|
Chemical | Mixture of sodium alginate and chemically modified chitosan for the oral delivery of protein drugs | Development of hydrogel microspheres with protein-trapping capacity, sustained drug delivery profiles, and controlled biodegradation. | [89] |
Chemical | Hyaluronic acid-pNIPAM and alginate-chitosan thermo-sensitive hydrogels as phage delivery systems for the treatment of infections. | Modified alginate showed the most consistent and sustained delivery of bacteriophages over a 21-day period, highlighting the potential of these materials for both rapid, controlled, and extended local delivery of bacteriophages. | [90] |
Chemical | Sodium alginate hydrogel/Cur-PLA microspheres for the encapsulation of curcumin. | The new material is hemocompatible, cytocompatible, and antimicrobial, with improved swelling capacity and prolonged curcumin delivery time. It proved to be an option for improving curcumin bioavailability and its effective oral delivery. | [91] |
Chemical | Alginate modified by a sulfhydryl bond for oral administration in aphthous stomatitis | The formation of the sulfhydryl bond between the carboxylic group of alginates and the cysteine thiol groups of the drug ambroxol allowed improvement of the release profile and its adhesiveness in the mouth. | [92] |
Chemical | Modified sodium alginate hydrogels with dopamine graft for diabetic wound treatment | Dopamine was grafted onto sodium alginate oxidized by a Schiff base reduction reaction, improving the hydrogel’s adhesion and biocompatibility. Its application in wound healing reduced inflammation and promoted collagen deposition. | [93] |
Chemical | Alginate-modified graphene oxide anchored with lactoperoxidase for the treatment of colorectal cancer. | LPO is a protein that, when coated with alginate-modified graphene oxide (GO-SA), provides stability and anticancer selectivity, enhancing the immune response. | [94] |
Physicochemical | PEG-modified calcium alginate microspheres for encapsulation of probiotic bacteria | Greater protection of probiotic bacteria under extreme conditions and greater bioavailability that improves their survival, transport, and controlled release. | [95] |
Physicochemical | Addition of Aloe vera to a hydrogel composed of sodium alginate/polyvinyl alcohol | The composite hydrogel improves the release properties of active substances because it forms a rigid three-dimensional structure, is thermally stable, and can be applied in wound dressings. | [96] |
Physical | Injectable borax-loaded alginate hydrogels for activation of borate transporter NaBC1 and fibronectin-binding integrins for in vivo muscle regeneration | Increased formation of focal adhesions, increased area of cell expansion, and improved myofiber fusion; enhanced and accelerated muscle regeneration was promoted. | [97] |
Physical | Sodium alginate/gelatin/poly(vinyl alcohol) blend films added with polyphenols | Alginate films with polyphenols added as multifunctional crosslinkers improve the mechanical properties and antioxidant activity of the film, which can be useful in edible packaging. | [98] |
Enzymatic | Enzymatic modification of alginate from marine biomass | Sphingomonas sp. A1 has been genetically modified to convert alginate, derived from algae, into ethanol using enzymes such as lyases, sulfatases, and glycoside hydrolases. | [99] |
Enzymatic | Enzymatic modification of alginate for the production of oligosaccharides | Serratia marcescens NJ-07 was used to isolate polyM-specific alginate lyase, AlgNJ-07, with high degradation efficiency to produce mannuronic acid oligosaccharides used as humectants in cosmetics. | [100] |
Coupled Substance | Alginate (ALG) Modified Matrix | Main Results | Application | References |
---|---|---|---|---|
RGD-peptides | Carboxy coupling of carbodiimide and ALG to introduce peptides as alginate side chains. | Improve cell attachment, survival, and proliferation of fibroblasts, and facilitate the expression of vascular growth factors. | Scaffolds for prosthesis | [117] |
Hyaluronic acid (HA) | Hyaluronic acid-ALG crosslinked with the aldehyde through a covalent bond. | The HA-ALG hydrogel 5:5 exhibited a more rigid matrix, shear-thinning behavior, constant degradation profile for 35 d, and biological properties. | Bioink in a 3D-bioprinter for tissue engineering in cartilage tissue. | [118] |
Gelatine (GEL) | ALG-dialdehyde was oxidized using (meta)periodate, then was added to a GEL solution for hydrogel formation (ADA-GEL). | ADA-GEL (3.75%:7.5%) at 80 °C for 3 h reached scaffold heights of over 1 cm. | Bioink in a 3D-bioprinter for tissue engineering in cartilage tissue for scaffolds. | [119] |
Tetrabicyclo-nonyne (tBCN) | Azide-ALG crosslinked with tBCN depots using multi-arm cyclooctyne cross-linkers and tBCN by “click” reaction. | Improvement in mechanical resistance and refillable depot stability (4–10% of doses) of hydrogel for applications at intramuscular sites. | Tissue engineering and drug administration through refillable depots. | [120] |
Honey | Double cross-linking (ionic and covalent) with CaCl2 and maleic anhydride and was embedded with honey (HSAG). | In vivo wound contraction in murine models with HSAG-4% was: 94.5% with good re-epithelialization and antimicrobial potential to S. aureus and E. coli. | Cutaneous wound healing (dermal reconstruction) with antimicrobial property. | [121] |
Peptides RGD and YIGSR | With peptides such as: arginine-glycine-aspartate (RGD) or tyrosine-isoleucine-glycine-serine-arginine (YIGSR). | Peptides-ALG scaffolds have an initial biofabricated porous structure for 3 weeks and promote superior directional neurite outgrowth. | Scaffolds for support and regeneration of neuronal cells. | [122] |
Drug | Alginate (ALG) Modified Matrix | Release Profile | Application | Reference |
---|---|---|---|---|
Doxorubicin (DOX) | By adding glycyrrhetinic acid, a metabolite of glycyrrhic, to obtain nanoparticles (GA-ALG NPs). | Approximately 35% of DOX was released in 96 h (pH = 7.4). | Controlled release of the anticancer agent (DOX) in liver tumor using NPs. | [123] |
Coumarin fluorophore | Coumarin grafted blue-emitting fluorescent ALG by aqueous conjugation through a coupling with carbodiimide and then, an alkyne–azide click reaction. | Hydrogels maintained 80% of their initial fluorescence upon long periods of incubation under physiologic conditions. | Allows in vitro and in vivo screening since the hydrogel is biocompatible in 3D cell cultures. | [124] |
Paclitaxel | Hydrofobically modified ALG using thiol and grafted with amine-terminated poly butyl methacrylate (PBMA-NH2). | Nanocomposites coated with modified ALG increased 9% the encapsulation efficiency and ~10% the efficacy against carcinoma cells. | In photothermal cancer treatments, hyperthermia and in computed tomography. | [125] |
Islets of Langerhans cells | Crosslinked ALG microbeads using 2-aminoethyl methacrylate hydrochloride (AEMA) to add groups, when photoactivated, produce covalent bonds. | Alginate methacrylate produced stable microbeads in vivo for 3 weeks (without inflammation) and maintained viable cells after encapsulation. | Treatment of type 1 diabetes. | [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Román-Guerrero, A.; Cortés-Camargo, S.; Alpizar-Reyes, E.; Fabela-Morón, M.F.; Cruz-Olivares, J.; Velázquez-Gutiérrez, S.K.; Pérez-Alonso, C. Chemically Modified Alginate-Based Hydrogel-Matrices in Drug Delivery. Macromol 2025, 5, 36. https://doi.org/10.3390/macromol5030036
Román-Guerrero A, Cortés-Camargo S, Alpizar-Reyes E, Fabela-Morón MF, Cruz-Olivares J, Velázquez-Gutiérrez SK, Pérez-Alonso C. Chemically Modified Alginate-Based Hydrogel-Matrices in Drug Delivery. Macromol. 2025; 5(3):36. https://doi.org/10.3390/macromol5030036
Chicago/Turabian StyleRomán-Guerrero, Angélica, Stefani Cortés-Camargo, Erik Alpizar-Reyes, Miriam Fabiola Fabela-Morón, Julian Cruz-Olivares, Sandra Karina Velázquez-Gutiérrez, and César Pérez-Alonso. 2025. "Chemically Modified Alginate-Based Hydrogel-Matrices in Drug Delivery" Macromol 5, no. 3: 36. https://doi.org/10.3390/macromol5030036
APA StyleRomán-Guerrero, A., Cortés-Camargo, S., Alpizar-Reyes, E., Fabela-Morón, M. F., Cruz-Olivares, J., Velázquez-Gutiérrez, S. K., & Pérez-Alonso, C. (2025). Chemically Modified Alginate-Based Hydrogel-Matrices in Drug Delivery. Macromol, 5(3), 36. https://doi.org/10.3390/macromol5030036