Investigation on Rare Nuclear Processes in Hf Nuclides
Abstract
:Simple Summary
Abstract
1. Introduction
2. Searching for Double Beta Decay in Hafnium Isotopes
3. Searching for Alpha Decays in Hafnium Isotopes
Nuclide Transition | Q | T (y) | |||||
---|---|---|---|---|---|---|---|
Parent→ | (%) | (keV) | Theoretical | ||||
Daughter Nuclei | [31] | [26] | Experimental | ||||
and Its Level (keV) | [32] | [33] | [34] | ||||
HfYb | , g.s. | 0.156(6) [27] | 2494.5(2.3) | [27] | |||
, 84.2 | ⩾ [30] | ||||||
HfYb | , g.s. | 5.26(70) | 2254.2(1.5) | ⩾ [27] | |||
, 78.7 | ⩾ [35] | ||||||
HfYb | , g.s. | 18.60(16) | 2245.7(1.4) | ⩾ [27] | |||
, 78.6 | ⩾ [35] | ||||||
HfYb | , g.s. | 27.28(28) | 2084.4(1.4) | ⩾ [27] | |||
, 76.5 | ⩾ [30] | ||||||
HfYb | , g.s. | 13.62(11) | 1807.7(1.4) | ⩾ [27] | |||
, 104.5 | ⩾ [30] | ||||||
HfYb | , g.s. | 35.08(33) | 1287.1(1.4) | – | |||
, 82.1 | ⩾ [35] |
4. Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Belli, P.; Bernabei, R.; Caracciolo, V. Status and Perspectives of 2ϵ, ϵβ+ and 2β+ Decays. Particles 2021, 4, 241–274. [Google Scholar] [CrossRef]
- Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Incicchitti, A.; Merlo, V. Double Beta Decay to Excited States of Daughter Nuclei. Universe 2020, 6, 239. [Google Scholar] [CrossRef]
- Belli, P.; Bernabei, R.; Danevich, F.A.; Incicchitti, A.; Tretyak, V.I. Experimental searches for rare alpha and beta decays. Eur. Phys. J. A 2019, 55, 140. [Google Scholar] [CrossRef] [Green Version]
- Van Duppen, P.; Andreyev, A.N. Alpha Decay and Beta-Delayed Fission: Tools for Nuclear Physics Studies. The Euroschool on Exotic Beams. Lect. Notes Phys. 2018, 948, 65–116. [Google Scholar]
- Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Di Marco, A.; Incicchitti, A.; Poda, D.V.; Polischuk, O.G.; et al. Investigation of rare nuclear decays with BaF2 crystal scintillator contaminated by radium. Eur. Phys. J. A 2014, 50, 134. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A.S.; Belli, P.; Bernabei, R.; Borovlev, Y.A.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kobychev, V.V.; et al. Improvement of radiopurity level of enriched 116CdWO4 and ZnWO4 crystal scintillators by recrystallization. Nucl. Instrum. Meth. A 2016, 833, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Danevich, F.A.; Barabash, A.S.; Belli, P.; Bernabei, R.; Boiko, R.S.; Brudanin, V.B.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Incicchitti, A.; et al. Development of radiopure cadmium tungstate crystal scintillators from enriched 106Cd and 116Cd to search for double beta decay. AIP Conf. Proc. 2013, 1549, 201–204. [Google Scholar]
- Belli, P.; Bernabei, R.; Brudanin, V.B.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kasperovich, D.V.; Klavdiienko, V.R.; et al. Search for Double Beta Decay of 106Cd with an Enriched 106CdWO4 Crystal Scintillator in Coincidence with CdWO4 Scintillation Counters. Universe 2020, 6, 182. [Google Scholar] [CrossRef]
- Leoncini, A.; Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kasperovich, D.V.; Klavdiienko, V.; et al. New results on search for 2β decay processes in 106Cd using 106CdWO4 scintillator. Phys. Scr. 2022, 97, 064006. [Google Scholar] [CrossRef]
- Belli, P.; Bernabei, R.; Borovlev, Y.A.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Degoda, V.Y.; Incicchitti, A.; Kasperovych, D.V.; et al. Optical, luminescence, and scintillation properties of advanced ZnWO4 crystal scintillators. Nucl. Instrum. Meth. A 2022, 1029, 166400. [Google Scholar] [CrossRef]
- Barabash, A.S.; Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D.M.; Danevich, F.A.; d’Angelo, S.; Incicchitti, A.; et al. Final results of the Aurora experiment to study 2β decay of 116Cd with enriched 116CdWO4 crystal scintillators. Phys. Rev. D 2018, 98, 092007. [Google Scholar] [CrossRef] [Green Version]
- Belli, P.; Bernabei, R.; Boiko, R.S.; Brudanin, V.B.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D.M.; Danevich, F.A.; d’Angelo, S.; et al. Search for double-β decay processes in 106Cd with the help of 106CdWO4 crystal scintillator. Phys. Rev. C 2012, 85, 044610. [Google Scholar] [CrossRef] [Green Version]
- Belli, P.; Bernabei, R.; Borovlev, Y.A.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kasperovych, D.V.; Polischuk, O.G.; et al. New development of radiopure ZnWO4 crystal scintillators. Nucl. Instrum. Meth. A 2019, 935, 89–94. [Google Scholar] [CrossRef]
- Bernabei, R.; Belli, P.; Cappella, F.; Caracciolo, V.; Castellano, S.; Cerulli, R.; Boiko, R.S.; Chernyak, D.M.; Danevich, F.A.; Incicchitti, A.; et al. Crystal scintillators for low background measurements. AIP Conf. Proc. 2013, 1549, 189–196. [Google Scholar]
- Barucci, M.; Beeman, J.W.; Caracciolo, V.; Pagnanini, L.; Pattavina, L.; Pessina, G.; Pirro, S.; Rusconi, C.; Schäffnerfc, K. Cryogenic light detectors with enhanced performance for rare event physics. Nucl. Instrum. Meth. A 2019, 935, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D.M.; Danevich, F.A.; di Vacri, M.L.; Incicchitti, A.; et al. First search for 2ϵ and ϵβ+ processes in 168Yb. Nucl. Phys. A 2019, 990, 64–78. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A.S.; Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Di Marco, A.; Incicchitti, A.; et al. Double beta decay of 150Nd to the first excited 0+ level of 150Sm: Preliminary results. Nucl. Phys. Atom. Energy 2018, 19, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kropivyansky, B.N.; Laubenstein, M.; et al. First search for 2ϵ and ϵβ+ decay of 162Er and new limit on 2β- decay of 170Er to the first excited level of 170Yb. J. Phys. G 2018, 45, 095101. [Google Scholar] [CrossRef] [Green Version]
- Barabash, A.S.; Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Di Marco, A.; Incicchitti, A.; Kasperovych, D.V.; et al. Low background scintillators to investigate rare processes. J. Instrum. 2020, 15, C07037. [Google Scholar] [CrossRef]
- Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Di Marco, A.; Incicchitti, A.; Kropivyansky, B.N.; et al. First direct search for 2ϵ and ϵβ+ decay of 144Sm and 2β- decay of 154Sm. Eur. Phys. J. A 2019, 55, 201. [Google Scholar] [CrossRef] [Green Version]
- Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kasperovych, D.V.; Kobychev, V.; Kovtun, G.P.; et al. Search for α decay of naturally occurring osmium nuclides accompanied by γ quanta. Phys. Rev. C 2020, 102, 024605. [Google Scholar] [CrossRef]
- Caracciolo, V.; Cappella, F.; Cerulli, R.; Di Marco, A.; Laubenstein, M.; Nagorny, S.S.; Safonova, O.E.; Shlegelh, N.G. Limits and performances of a BaWO4 single crystal. Nucl. Instrum. Meth. A 2019, 901, 150–155. [Google Scholar] [CrossRef]
- Azzolin, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; Carniti, P.; et al. Measurement of 216Po half-life with the CUPID-0 experiment. Phys. Lett. B 2021, 822, 136642. [Google Scholar] [CrossRef]
- Belli, P.; Bernabei, R.; Boiko, R.S.; Danevich, F.A.; Di Marco, A.; Incicchitti, A.; Kasperovych, D.V.; Cappella, F.; Caracciolo, V.; Kobychev, V.V.; et al. Half-life measurements of 212Po with thorium-loaded liquid scintillator. Nucl. Phys. Atom. Energy 2018, 19, 220–226. [Google Scholar] [CrossRef] [Green Version]
- Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kasperovych, D.V.; Kobychev, V.; Kovtun, G.P.; et al. New experimental limits on double-beta decay of osmium. J. Phys. G 2021, 48, 085104. [Google Scholar] [CrossRef]
- Wang, M.; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. The AME 2020 atomic mass evaluation (II). Tables, graphs and references. Chin. Phys. C 2021, 41, 030003. [Google Scholar] [CrossRef]
- Caracciolo, V.; Nagorny, S.S.; Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Inchicchitti, A.; Laubenstein, M.; Merlo, V.; Nisi, S.; et al. Search for α decay of naturally occurring Hf-nuclides using a Cs2HfCl6 scintillator. Nucl. Phys. A 2020, 1002, 121941. [Google Scholar] [CrossRef]
- Mirea, M.; Pahomi, T.; Stoica, S. Values of the phase space factors involved in double beta decay. Rom. Rep. Phys. 2015, 67, 872–889. [Google Scholar]
- Danevich, F.A.; Hult, M.; Kasperovych, D.V.; Kovtunc, G.P.; Kovtun, K.W.; Lutter, G.; Marissens, G.; Polischuk, O.G.; Stetsenko, S.P.; Tretyak, V.I. First search for 2ϵ and ϵβ+ decay of 174Hf. Nucl. Phys. A 2020, 996, 121703. [Google Scholar] [CrossRef] [Green Version]
- Broerman, B.; Laubenstein, M.; Nagorny, S.; Songac, N.; Vincent, A.C. A search for rare and induced nuclear decays in hafnium. Nucl. Phys. A 2021, 1012, 122212. [Google Scholar] [CrossRef]
- Meija, J.; Coplen, T.B.; Berglund, M.; Brand, W.A.; De Bièvre, P.; Gröning, M.; Holden, N.E.; Irrgeher, J.; Loss, R.D.; Walczyk, T.; et al. Atomic weights of the elements 2013. Pure Appl. Chem. 2016, 88, 293. [Google Scholar] [CrossRef] [Green Version]
- Buck, B.; Merchant, A.C.; Perez, S.M. Ground state to ground state alpha decays of heavy even-even nuclei. Physica G 1991, 17, 1223. [Google Scholar] [CrossRef]
- Poenaru, D.N.; Ivascu, M. Estimation of the alpha decay half-lives. J. Phys. 1983, 44, 791. [Google Scholar] [CrossRef]
- Denisov, V.Y.; Khudenko, A.A. α-decay half-lives: Empirical relations. Rhys. Rev. C 2015, 92, 014602. [Google Scholar] [CrossRef]
- Danevich, F.A.; Hult, M.; Kasperovych, D.V.; Kovtunc, G.P.; Kovtun, K.W.; Lutter, G.; Marissens, G.; Polischuk, O.G.; Stetsenko, S.P.; Tretyak, V.I. First search for α decays of naturally occurring Hf nuclides with emission of γ quanta. Eur. Phys. J. A 2020, 56, 5. [Google Scholar] [CrossRef]
- Abzouzi, A.; Antony, M.S.; Ndocko Ndongué, V.B. Precision measurements of the half-lives of nuclides. J. Rad. Nucl. Chem. Lett. 1998, 135, 1–7. [Google Scholar] [CrossRef]
- Achterberg, E.; Capurro, O.A.; Marti, G.V. Nuclear Data Sheets for A = 178. Nucl. Data Sheets 2009, 110, 1473. [Google Scholar] [CrossRef]
- Van Klinken, J.; Venema, V.Z.; Janssens, R.V.F.; Emery, G.T. K-forbidden decays in 178Hf; M4 decay of an Yrast state. Nucl. Phys. A 1980, 339, 189. [Google Scholar] [CrossRef]
- Macfarlane, R.D.; Kohman, T.P. Natural alpha radioactivity in medium-heavy elements. Phys. Rev. 1961, 121, 1758. [Google Scholar] [CrossRef]
- Cardenas, C.; Burger, A.; Goodwin, B.; Groza, M.; Laubenstein, M.; Nagorny, S.; Rowe, E. Pulse-shape discrimination with Cs2HfCl6 crystal scintillator. Nucl. Inst. Met. A 2017, 869, 63–67. [Google Scholar] [CrossRef]
- Tretyak, V.I. Semi-empirical calculation of quenching factors for ions in scintillators. Astropart. Phys. 2010, 33, 40. [Google Scholar] [CrossRef] [Green Version]
- van Loef, E.V.; Higgins, W.M.; Glodo, J.; Brecher, C.; Lempicki, A.; Venkataramani, V.; Moses, W.W.; Derenzo, E.S.; Shah, K.S. Scintillation Properties of SrHfO3(Ce) and BaHfO3(Ce) Ceramics. IEEE Trans. Nucl. Sci. 2007, 54, 741–743. [Google Scholar] [CrossRef]
- Derenzo, S.; Bizarri, G.; Borade, R.; Bourret-Courchesne, E.; Boutchko, R.; Canning, A.; Chaudhry, A.; Eagleman, Y.; Gundiah, G.; Hanrahan, S.; et al. New scintillators discovered by high-throughput screening. Nucl. Instr. Meth. A 2011, 652, 247–250. [Google Scholar] [CrossRef]
- Derenzo, S.E.; Moses, W.W.; Cahoon, J.L.; Perera, R.C.C.; Litton, J.E. Prospects for New Inorganic Scintillators. IEEE Trans. Nucl. Sci. 1990, 37, 203–208. [Google Scholar] [CrossRef] [Green Version]
- LeLuyer, C.; Villanueva-Ibanez, M.; Pillonnet, A.; Dujardin, C. HfO2:X (X = Eu3+, Ce3+, Y3+) Sol Gel Powders for Ultradense Scintillating Materials. J. Phys. Chem. A 2008, 112, 10152–10155. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.M.; Jiang, D.Y.; Shi, J.L. La2Hf2O7:Ti4+ ceramic scintillator for x-ray imaging. J. Mater. Rese. 2005, 20, 567–570. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Saeki, K.; Nakauchi, D.; Yanagida, T.; Koshimizu, M.; Asai, K. New Intrinsic Scintillator with Large Effective Atomic Number: Tl2HfCl6 and Tl2ZrCl6 Crystals for X-ray and Gamma-ray Detections. Sens. Mater. 2018, 30, 1577–1583. [Google Scholar] [CrossRef]
- Vuong, P.Q.; Tyagi, M.; Kim, S.H.; Kim, H.J. Crystal growth of a novel and efficient Tl2HfCl6 scintillator with improved scintillation characteristics. Cryst. Eng. Comm. 2019, 21, 5898–5904. [Google Scholar] [CrossRef]
- Dumoulin, L.; Giuliani, A.; Kandel, R.; Khalife, H.; Kuznetsov, S.V.; Nagorny, S.S.; Nahorna, V.V.; Nishchev, K.N.; Nones, C.; Olivieri, E.; et al. Assessment of Cs2HfCl6 crystal applicability as low-temperature scintillating bolometers by their thermodynamic characteristics. J. Mater. Chem. C 2022, 10, 5218–5229. [Google Scholar] [CrossRef]
Channel of the Decay | Decay Mode | Level of Daughter Nucleus | E (keV) | Detection Efficiency (%) | |
---|---|---|---|---|---|
J, Energy (keV) | [29] | [30] | |||
, 76.5 | 76.5 | ||||
g.s. | 977.4 | ||||
g.s. | 1028.9 | ||||
g.s. | 1080.4 | ||||
, 76.5 | 900.9 | ||||
, 76.5 | 952.4 | ||||
, 76.5 | 1003.9 | ||||
g.s. | 511 | ||||
g.s. | 511 |
Channel of the Decay | Decay Mode | Level of Daughter Nucleus | Experimental Limit of T (90% C.L. (y)) | |
---|---|---|---|---|
J, Energy (keV) | [29] | [30] | ||
g.s. | ≥ | ≥ | ||
g.s. | ≥ | ≥ | ||
, 76.5 | ≥ | ≥ | ||
, 76.5 | ≥ | ≥ | ||
, 76.5 | ≥ | ≥ | ||
g.s. | ≥ | ≥ | ||
g.s. | ≥ | ≥ | ||
g.s. | ≥ | ≥ | ||
, 76.5 | ≥ | ≥ | ||
, 76.5 | ≥ | ≥ | ||
, 76.5 | ≥ | ≥ | ||
g.s. | ≥ | ≥ | ||
g.s. | ≥ | ≥ |
Scintillator | Percentage of Hf in Weight (%) | Density (g/cm) | L.Y. (phe/MeV) | Main Decay Time (ns) | Main Emission Peak (nm) |
---|---|---|---|---|---|
BaHfO(Ce) | 49 | 8.3 | ∼40,000 | ∼25 | ∼400 |
CaHfO | 67 | 6.9 | ∼10,000 | ∼33 | ∼439 |
CsHfCl | 31 | 3.8 | ∼50,000 | ∼10,000 | ∼400 |
HfF | 70 | 7.1 | ∼300 | ∼29 | ∼350 |
HfO | 85 | 9.7 | ∼30,000 | ∼9500 | ∼480 |
LaHfO(Ti) | 23 | 7.9 | ∼13,000 | ∼10,000 | ∼475 |
SrHfO(Ce) | 57 | 6.7 | ∼40,000 | ∼42 | ∼410 |
∼36 (89%); | |||||
TlHfCl | 22 | 5.3 | ∼25,000 | ∼217 (6%); | ∼380 |
∼1500 (11%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caracciolo, V.; Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Incicchitti, A.; Laubenstein, M.; Leoncini, A.; Merlo, V.; Nagorny, S.; et al. Investigation on Rare Nuclear Processes in Hf Nuclides. Radiation 2022, 2, 234-247. https://doi.org/10.3390/radiation2020017
Caracciolo V, Belli P, Bernabei R, Cappella F, Cerulli R, Incicchitti A, Laubenstein M, Leoncini A, Merlo V, Nagorny S, et al. Investigation on Rare Nuclear Processes in Hf Nuclides. Radiation. 2022; 2(2):234-247. https://doi.org/10.3390/radiation2020017
Chicago/Turabian StyleCaracciolo, Vincenzo, Pierluigi Belli, Rita Bernabei, Fabio Cappella, Riccardo Cerulli, Antonella Incicchitti, Matthias Laubenstein, Alice Leoncini, Vittorio Merlo, Serge Nagorny, and et al. 2022. "Investigation on Rare Nuclear Processes in Hf Nuclides" Radiation 2, no. 2: 234-247. https://doi.org/10.3390/radiation2020017
APA StyleCaracciolo, V., Belli, P., Bernabei, R., Cappella, F., Cerulli, R., Incicchitti, A., Laubenstein, M., Leoncini, A., Merlo, V., Nagorny, S., Nisi, S., & Wang, P. (2022). Investigation on Rare Nuclear Processes in Hf Nuclides. Radiation, 2(2), 234-247. https://doi.org/10.3390/radiation2020017