Use of Biological Dosimetry for Monitoring Medical Workers Occupationally Exposed to Ionizing Radiation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Occupational Radiation Exposure to Medical Workers
2.1. Radiation Protection Recommendations
2.2. Occupational Radiation Doses over the Years
2.3. Compliance with Radiation Protection Measures
3. Biological Methods of Dose Estimation
3.1. Alkaline Comet Assay
3.2. Scoring of Chromosomal Aberrations
3.3. Scoring of Sister Chromatid Exchange
3.4. Cytokinesis-Block Micronucleus Assay
3.5. Other Candidate Methods for Biological Dosimetry
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). Sources and Effects of Ionizing Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes Volume I: Sources; United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR): New York, NY, USA, 2000. [Google Scholar]
- National Council on Radiation Protection and Measurements. Deriving Organ Doses and Their Uncertainty for Epidemiologic Studies (with a Focus on the One Million U.S. Workers and Veterans Study of Low-Dose Radiation Health Effects); NCRP Report no 178; National Council on Radiation Protection and Measurements: Bethesda, MD, USA, 2018; p. 1.
- Organisation for Economic Co-Operation and Development. OECD Health Care Utilisation Database. Available online: https://stats.oecd.org/Index.aspx?DataSetCode=HEALTH_PROC (accessed on 11 December 2020).
- Bordoli, S.J.; Carsten, C.G., 3rd; Cull, D.L.; Johnson, B.L.; Taylor, S.M. Radiation safety education in vascular surgery training. J. Vasc. Surg. 2014, 59, 860–864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehani, M.M.; Ciraj-Bjelac, O.; Vano, E.; Miller, D.L.; Walsh, S.; Giordano, B.D.; Persliden, J. ICRP Publication 117. Radiological protection in fluoroscopically guided procedures performed outside the imaging department. Ann. ICRP 2010, 40, 1–102. [Google Scholar] [CrossRef]
- Lynskey, G.E., 3rd; Powell, D.K.; Dixon, R.G.; Silberzweig, J.E. Radiation protection in interventional radiology: Survey results of attitudes and use. J. Vasc. Interv. Radiol. 2013, 24, 1547–1551.e3. [Google Scholar] [CrossRef]
- Vano, E.; Kleiman, N.J.; Duran, A.; Romano-Miller, M.; Rehani, M.M. Radiation-associated lens opacities in catheterization personnel: Results of a survey and direct assessments. J. Vasc. Interv. Radiol. 2013, 24, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Ruhm, W.; Woloschak, G.E.; Shore, R.E.; Azizova, T.V.; Grosche, B.; Niwa, O.; Akiba, S.; Ono, T.; Suzuki, K.; Iwasaki, T.; et al. Dose and dose-rate effects of ionizing radiation: A discussion in the light of radiological protection. Radiat. Environ. Biophys. 2015, 54, 379–401. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto-Hojo, E.T. Lessons from the accident with (137)Cesium in Goiania, Brazil: Contributions to biological dosimetry in case of human exposure to ionizing radiation. Mutat Res. Genet. Toxicol. Environ. Mutagen. 2018, 836, 72–77. [Google Scholar] [CrossRef]
- Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment; International Atomic Energy Agency: Vienna, Austria, 1986.
- Cytogenetic Analysis for Radiation Dose Assessment; International Atomic Energy Agency: Vienna, Austria, 2001.
- Waselenko, J.K.; MacVittie, T.J.; Blakely, W.F.; Pesik, N.; Wiley, A.L.; Dickerson, W.E.; Tsu, H.; Confer, D.L.; Coleman, C.N.; Seed, T.; et al. Medical management of the acute radiation syndrome: Recommendations of the Strategic National Stockpile Radiation Working Group. Ann. Intern. Med. 2004, 140, 1037–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Council Directive 2013/59/Euratom on basic safety standards for protection against the dangers arising from exposure to ionising radiation and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Council of the European Union. Official Journal of the European Union, 17 January 2014.
- ICRP. The 2007 Recommendations of the International Commission on Radiological Protection. ICRP publication 103. Ann. ICRP 2007, 37, 1–332. [Google Scholar]
- Stewart, F.A.; Akleyev, A.V.; Hauer-Jensen, M.; Hendry, J.H.; Kleiman, N.J.; Macvittie, T.J.; Aleman, B.M.; Edgar, A.B.; Mabuchi, K.; Muirhead, C.R.; et al. ICRP publication 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs—Threshold doses for tissue reactions in a radiation protection context. Ann. ICRP 2012, 41, 1–322. [Google Scholar] [CrossRef]
- Lopez, P.O.; Dauer, L.T.; Loose, R.; Martin, C.J.; Miller, D.L.; Vano, E.; Doruff, M.; Padovani, R.; Massera, G.; Yoder, C.; et al. ICRP Publication 139: Occupational Radiological Protection in Interventional Procedures. Ann. ICRP 2018, 47, 1–118. [Google Scholar] [CrossRef]
- Jacob, S.; Boveda, S.; Bar, O.; Brezin, A.; Maccia, C.; Laurier, D.; Bernier, M.O. Interventional cardiologists and risk of radiation-induced cataract: Results of a French multicenter observational study. Int. J. Cardiol. 2013, 167, 1843–1847. [Google Scholar] [CrossRef]
- International Atomic Energy Agency. Radiation Protection of Medical Staff in Interventional Fluoroscopy. Available online: https://www.iaea.org/resources/rpop/health-professionals/interventional-procedures/radiation-protection-of-medical-staff-in-interventional-fluoroscopy (accessed on 22 January 2020).
- United Nations; Scientific Committee on the Effects of Atomic Radiation. Sources and Effects of Ionizing Radiation: United Nations Scientific Committee on the Effects of Atomic Radiation: UNSCEAR 2008 Report to the General Assembly, with Scientific Annexes; United Nations: New York, NY, USA, 2010. [Google Scholar]
- Mettler, F.A., Jr.; Bhargavan, M.; Faulkner, K.; Gilley, D.B.; Gray, J.E.; Ibbott, G.S.; Lipoti, J.A.; Mahesh, M.; McCrohan, J.L.; Stabin, M.G.; et al. Radiologic and nuclear medicine studies in the United States and worldwide: Frequency, radiation dose, and comparison with other radiation sources—1950–2007. Radiology 2009, 253, 520–531. [Google Scholar] [CrossRef]
- National Council on Radiation Protection and Measurements; Scientific Committee 6-2 on Radiation Exposure of the U.S. Population. Ionizing Radiation Exposure of the Population of the United States: Recommendations of the National Council on Radiation Protection and Measurements. Available online: https://ncrponline.org/publications/reports/ncrp-report-160-2/ (accessed on 1 December 2020).
- Zielinski, J.M.; Garner, M.J.; Band, P.R.; Krewski, D.; Shilnikova, N.S.; Jiang, H.; Ashmore, P.J.; Sont, W.N.; Fair, M.E.; Letourneau, E.G.; et al. Health outcomes of low-dose ionizing radiation exposure among medical workers: A cohort study of the Canadian national dose registry of radiation workers. Int. J. Occup. Med. Environ. Health 2009, 22, 149–156. [Google Scholar] [CrossRef]
- Linet, M.S.; Kim, K.P.; Miller, D.L.; Kleinerman, R.A.; Simon, S.L.; Berrington de Gonzalez, A. Historical review of occupational exposures and cancer risks in medical radiation workers. Radiat. Res. 2010, 174, 793–808. [Google Scholar] [CrossRef] [Green Version]
- Simon, S.L.; Weinstock, R.M.; Doody, M.M.; Neton, J.; Wenzl, T.; Stewart, P.; Mohan, A.K.; Yoder, R.C.; Hauptmann, M.; Freedman, D.M.; et al. Estimating historical radiation doses to a cohort of U.S. radiologic technologists. Radiat. Res. 2006, 166, 174–192. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, D.; Chang, H.; Zhang, W.; Dai, G.; Ku, M.; Zhao, Y.; Zhang, C.; Aoyama, T.; Noriuma, T.; et al. A retrospective dosimetry method for occupational dose for Chinese medical diagnostic X-ray workers. Radiat. Prot. Dosim. 1998, 77, 69–72. [Google Scholar] [CrossRef]
- Choi, Y.; Shil Cha, E.; Jin Bang, Y.; Ko, S.; Ha, M.; Lee, C.; Jin Lee, W. Estimation of Organ Doses among Diagnostic Medical Radiation Workers in South Korea. Radiat. Prot. Dosim. 2018, 179, 142–150. [Google Scholar] [CrossRef]
- Dauer, L.T.; Bouville, A.; Toohey, R.E.; Boice, J.D., Jr.; Beck, H.L.; Eckerman, K.F.; Hagemeyer, D.; Leggett, R.W.; Mumma, M.T.; Napier, B.; et al. Dosimetry and uncertainty approaches for the million person study of low-dose radiation health effects: Overview of the recommendations in NCRP Report No. 178. Int. J. Radiat. Biol. 2018, 1–10. [Google Scholar] [CrossRef]
- Kim, K.P.; Miller, D.L.; Balter, S.; Kleinerman, R.A.; Linet, M.S.; Kwon, D.; Simon, S.L. Occupational radiation doses to operators performing cardiac catheterization procedures. Health Phys. 2008, 94, 211–227. [Google Scholar] [CrossRef] [PubMed]
- Niklason, L.T.; Marx, M.V.; Chan, H.P. The estimation of occupational effective dose in diagnostic radiology with two dosimeters. Health Phys. 1994, 67, 611–615. [Google Scholar] [CrossRef]
- Kim, K.P.; Miller, D.L.; Berrington de Gonzalez, A.; Balter, S.; Kleinerman, R.A.; Ostroumova, E.; Simon, S.L.; Linet, M.S. Occupational radiation doses to operators performing fluoroscopically-guided procedures. Health Phys. 2012, 103, 80–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sethi, S.; Barakat, M.T.; Friedland, S.; Banerjee, S. Radiation Training, Radiation Protection, and Fluoroscopy Utilization Practices Among US Therapeutic Endoscopists. Dig. Dis. Sci. 2019, 64, 2455–2466. [Google Scholar] [CrossRef] [PubMed]
- Van Papendorp, L.W.A.; Suleman, F.E.; Hanekom, H. The knowledge, awareness and practices of radiation safety amongst orthopaedic surgeons. SA J. Radiol. 2020, 24, 1806. [Google Scholar] [CrossRef]
- Friedman, A.A.; Ghani, K.R.; Peabody, J.O.; Jackson, A.; Trinh, Q.D.; Elder, J.S. Radiation safety knowledge and practices among urology residents and fellows: Results of a nationwide survey. J. Surg. Educ. 2013, 70, 224–231. [Google Scholar] [CrossRef]
- Soylemez, H.; Sancaktutar, A.A.; Silay, M.S.; Penbegul, N.; Bozkurt, Y.; Atar, M.; Altunoluk, B.; Bodakci, M.N.; Hatipoglu, N.K. Knowledge and attitude of European urology residents about ionizing radiation. Urology 2013, 81, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Rydberg, B. Radiation-induced DNA damage and chromatin structure. Acta Oncol. 2001, 40, 682–685. [Google Scholar] [CrossRef] [Green Version]
- Pantelias, A.; Zafiropoulos, D.; Cherubini, R.; Sarchiapone, L.; De Nadal, V.; Pantelias, G.E.; Georgakilas, A.G.; Terzoudi, G.I. Interphase Cytogenetic Analysis of G0 Lymphocytes Exposed to alpha-Particles, C-Ions, and Protons Reveals their Enhanced Effectiveness for Localized Chromosome Shattering-A Critical Risk for Chromothripsis. Cancers 2020, 12, 2336. [Google Scholar] [CrossRef] [PubMed]
- Aguiar Torres, L.; Dos Santos Rodrigues, A.; Linhares, D.; Camarinho, R.; Nunes Pascoa Soares Rego, Z.M.; Ventura Garcia, P. Buccal epithelial cell micronuclei: Sensitive, non-invasive biomarkers of occupational exposure to low doses of ionizing radiation. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 838, 54–58. [Google Scholar] [CrossRef]
- Ceppi, M.; Biasotti, B.; Fenech, M.; Bonassi, S. Human population studies with the exfoliated buccal micronucleus assay: Statistical and epidemiological issues. Mutat. Res. 2010, 705, 11–19. [Google Scholar] [CrossRef]
- Martinez, A.; Coleman, M.; Romero-Talamas, C.A.; Frias, S. An assessment of immediate DNA damage to occupationally exposed workers to low dose ionizing radiation by using the comet assay. Rev. Invest. Clin. 2010, 62, 23–30. [Google Scholar]
- Wang, Y.; Xu, C.; Du, L.Q.; Cao, J.; Liu, J.X.; Su, X.; Zhao, H.; Fan, F.Y.; Wang, B.; Katsube, T.; et al. Evaluation of the comet assay for assessing the dose-response relationship of DNA damage induced by ionizing radiation. Int. J. Mol. Sci. 2013, 14, 22449–22461. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Muruzabal, D.; Collins, A.; Azqueta, A. The enzyme-modified comet assay: Past, present and future. Food Chem. Toxicol. 2021, 147, 111865. [Google Scholar] [CrossRef] [PubMed]
- Holt, S.M.; Georgakilas, A.G. Detection of complex DNA damage in gamma-irradiated acute lymphoblastic leukemia Pre-b NALM-6 cells. Radiat. Res. 2007, 168, 527–534. [Google Scholar] [CrossRef]
- Mikloš, M.; Gajski, G.; Garaj-Vrhovac, V. Usage of the standard and modified comet assay in assessment of DNA damage in human lymphocytes after exposure to ionizing radiation. J. Radiol. Oncol. 2009, 43, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Moller, P.; Loft, S.; Ersson, C.; Koppen, G.; Dusinska, M.; Collins, A. On the search for an intelligible comet assay descriptor. Front. Genet. 2014, 5, 217. [Google Scholar] [CrossRef] [Green Version]
- Moller, P.; Azqueta, A.; Boutet-Robinet, E.; Koppen, G.; Bonassi, S.; Milic, M.; Gajski, G.; Costa, S.; Teixeira, J.P.; Costa Pereira, C.; et al. Minimum Information for Reporting on the Comet Assay (MIRCA): Recommendations for describing comet assay procedures and results. Nat. Protoc. 2020, 15, 3817–3826. [Google Scholar] [CrossRef] [PubMed]
- Geric, M.; Popic, J.; Gajski, G.; Garaj-Vrhovac, V. Cytogenetic status of interventional radiology unit workers occupationally exposed to low-dose ionising radiation: A pilot study. Mutat. Res. 2019, 843, 46–51. [Google Scholar] [CrossRef]
- Fang, L.; Li, J.; Li, W.; Mao, X.; Ma, Y.; Hou, D.; Zhu, W.; Jia, X.; Qiao, J. Assessment of Genomic Instability in Medical Workers Exposed to Chronic Low-Dose X-Rays in Northern China. Dose Response 2019, 17. [Google Scholar] [CrossRef] [Green Version]
- Dobrzynska, M.M.; Pachocki, K.A.; Gajowik, A.; Radzikowska, J.; Sackiewicz, A. The effect occupational exposure to ionizing radiation on the DNA damage in peripheral blood leukocytes of nuclear medicine personnel. J. Occup. Health 2014, 56, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Sakly, A.; Gaspar, J.F.; Kerkeni, E.; Silva, S.; Teixeira, J.P.; Chaari, N.; Ben Cheikh, H. Genotoxic damage in hospital workers exposed to ionizing radiation and metabolic gene polymorphisms. J. Toxicol. Environ. Health A 2012, 75, 934–946. [Google Scholar] [CrossRef] [PubMed]
- Ainsbury, E.A.; Bakhanova, E.; Barquinero, J.F.; Brai, M.; Chumak, V.; Correcher, V.; Darroudi, F.; Fattibene, P.; Gruel, G.; Guclu, I.; et al. Review of retrospective dosimetry techniques for external ionising radiation exposures. Radiat. Prot. Dosim. 2011, 147, 573–592. [Google Scholar] [CrossRef] [Green Version]
- Shafiee, M.; Borzoueisileh, S.; Rashidfar, R.; Dehghan, M.; Jaafarian Sisakht, Z. Chromosomal aberrations in C-arm fluoroscopy, CT-scan, lithotripsy, and digital radiology staff. Mutat. Res. 2020, 849, 503131. [Google Scholar] [CrossRef]
- Zakeri, F.; Hirobe, T. A cytogenetic approach to the effects of low levels of ionizing radiations on occupationally exposed individuals. Eur. J. Radiol. 2010, 73, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Zakeri, F.; Assaei, R.G. Cytogenetic monitoring of personnel working in angiocardiography laboratories in Iran hospitals. Mutat. Res. 2004, 562, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Maffei, F.; Angelini, S.; Forti, G.C.; Violante, F.S.; Lodi, V.; Mattioli, S.; Hrelia, P. Spectrum of chromosomal aberrations in peripheral lymphocytes of hospital workers occupationally exposed to low doses of ionizing radiation. Mutat. Res. 2004, 547, 91–99. [Google Scholar] [CrossRef]
- Cardoso, R.S.; Takahashi-Hyodo, S.; Peitl, P., Jr.; Ghilardi-Neto, T.; Sakamoto-Hojo, E.T. Evaluation of chromosomal aberrations, micronuclei, and sister chromatid exchanges in hospital workers chronically exposed to ionizing radiation. Teratog. Carcinog. Mutagen. 2001, 21, 431–439. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.M., 3rd; Thompson, L.H. Molecular mechanisms of sister-chromatid exchange. Mutat. Res. 2007, 616, 11–23. [Google Scholar] [CrossRef]
- Eken, A.; Aydin, A.; Erdem, O.; Akay, C.; Sanal, H.T.; Soykut, B.; Sayal, A.; Somuncu, I. Cytogenetic analysis of peripheral blood lymphocytes of hospital staff occupationally exposed to low doses of ionizing radiation. Toxicol. Ind. Health 2010, 26, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Tug, E.; Kayhan, G.; Kan, D.; Guntekin, S.; Ergun, M.A. The evaluation of long-term effects of ionizing radiation through measurement of current sister chromatid exchange (SCE) rates in radiology technologists, compared with previous SCE values. Mutat. Res. 2013, 757, 28–30. [Google Scholar] [CrossRef]
- Sahin, A.; Tatar, A.; Oztas, S.; Seven, B.; Varoglu, E.; Yesilyurt, A.; Ayan, A.K. Evaluation of the genotoxic effects of chronic low-dose ionizing radiation exposure on nuclear medicine workers. Nucl. Med. Biol. 2009, 36, 575–578. [Google Scholar] [CrossRef] [PubMed]
- Mrdjanovic, J.; Jakimov, D.; Tursijan, S.; Bogdanovic, G. Evaluation of sister chromatid exchanges, micronuclei, and proliferating rate index in hospital workers chronically exposed to ionizing radiation. J. BUON 2005, 10, 99–103. [Google Scholar] [PubMed]
- Engin, A.B.; Ergun, M.A.; Yurtcu, E.; Kan, D.; Sahin, G. Effect of ionizing radiation on the pteridine metabolic pathway and evaluation of its cytotoxicity in exposed hospital staff. Mutat. Res. 2005, 585, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Chaudhuri, J.P. A schedule to demonstrate radiation-induced sister chromatid exchanges in human lymphocytes. Radiat. Environ. Biophys. 1982, 20, 223–229. [Google Scholar] [CrossRef]
- Sommer, S.; Buraczewska, I.; Kruszewski, M. Micronucleus Assay: The State of Art, and Future Directions. Int. J. Mol. Sci. 2020, 21, 1534. [Google Scholar] [CrossRef] [Green Version]
- Sari-Minodier, I.; Orsiere, T.; Auquier, P.; Martin, F.; Botta, A. Cytogenetic monitoring by use of the micronucleus assay among hospital workers exposed to low doses of ionizing radiation. Mutat. Res. 2007, 629, 111–121. [Google Scholar] [CrossRef]
- Bouraoui, S.; Mougou, S.; Drira, A.; Tabka, F.; Bouali, N.; Mrizek, N.; Elghezal, H.; Saad, A. A cytogenetic approach to the effects of low levels of ionizing radiation (IR) on the exposed Tunisian hospital workers. Int. J. Occup. Med. Environ. Health 2013, 26, 144–154. [Google Scholar] [CrossRef]
- Ropolo, M.; Balia, C.; Roggieri, P.; Lodi, V.; Nucci, M.C.; Violante, F.S.; Silingardi, P.; Colacci, A.; Bolognesi, C. The micronucleus assay as a biological dosimeter in hospital workers exposed to low doses of ionizing radiation. Mutat. Res. 2012, 747, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Dai, Q.; Zhang, Q.; Yan, P.; Wang, A.; Qu, L.; Jin, Y.; Zhang, D. The relationship among occupational irradiation, DNA methylation status, and oxidative damage in interventional physicians. Medicine 2019, 98, e17373. [Google Scholar] [CrossRef] [PubMed]
- Rogakou, E.P.; Boon, C.; Redon, C.; Bonner, W.M. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J. Cell Biol. 1999, 146, 905–916. [Google Scholar] [CrossRef] [Green Version]
- Ivashkevich, A.; Redon, C.E.; Nakamura, A.J.; Martin, R.F.; Martin, O.A. Use of the gamma-H2AX assay to monitor DNA damage and repair in translational cancer research. Cancer Lett. 2012, 327, 123–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raavi, V.; Basheerudeen, S.A.; Jagannathan, V.; Joseph, S.; Chaudhury, N.K.; Venkatachalam, P. Frequency of gamma H2AX foci in healthy volunteers and health workers occupationally exposed to X-irradiation and its relevance in biological dosimetry. Radiat. Environ. Biophys. 2016, 55, 339–347. [Google Scholar] [CrossRef]
- El-Sayed, T.; Patel, A.S.; Cho, J.S.; Kelly, J.A.; Ludwinski, F.E.; Saha, P.; Lyons, O.T.; Smith, A.; Modarai, B.; Tyrrell, M.; et al. Radiation-Induced DNA Damage in Operators Performing Endovascular Aortic Repair. Circulation 2017, 136, 2406–2416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bigbee, W.L.; Jensen, R.H.; Veidebaum, T.; Tekkel, M.; Rahu, M.; Stengrevics, A.; Auvinen, A.; Hakulinen, T.; Servomaa, K.; Rytomaa, T.; et al. Biodosimetry of Chernobyl cleanup workers from Estonia and Latvia using the glycophorin A in vivo somatic cell mutation assay. Radiat. Res. 1997, 147, 215–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kyoizumi, S.; Nakamura, N.; Hakoda, M.; Awa, A.A.; Bean, M.A.; Jensen, R.H.; Akiyama, M. Detection of somatic mutations at the glycophorin A locus in erythrocytes of atomic bomb survivors using a single beam flow sorter. Cancer Res. 1989, 49, 581–588. [Google Scholar]
- Ha, M.; Yoo, K.Y.; Cho, S.H. Glycophorin A mutant frequency in radiation workers at the nuclear power plants and a hospital. Mutat Res. 2002, 501, 45–56. [Google Scholar] [CrossRef]
- Straume, T.; Lucas, J.N.; Tucker, J.D.; Bigbee, W.L.; Langlois, R.G. Biodosimetry for a radiation worker using multiple assays. Health Phys. 1992, 62, 122–130. [Google Scholar] [CrossRef]
- Kleinerman, R.A.; Romanyukha, A.A.; Schauer, D.A.; Tucker, J.D. Retrospective assessment of radiation exposure using biological dosimetry: Chromosome painting, electron paramagnetic resonance and the glycophorin a mutation assay. Radiat. Res. 2006, 166, 287–302. [Google Scholar] [CrossRef]
- Kim, J.; Cha, E.S.; Choi, Y.; Lee, W.J. Work Procedures and Radiation Exposure among Radiologic Technologists in South Korea. Radiat Prot. Dosim. 2018, 178, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Torgovnick, A.; Schumacher, B. DNA repair mechanisms in cancer development and therapy. Front. Genet. 2015, 6, 157. [Google Scholar] [CrossRef] [Green Version]
Author | Population | Parameter Measured | Mean ± S.D. | |||
---|---|---|---|---|---|---|
Study Group | Control Group | |||||
Gerić et al. [47] | Control: 24 Study: 24 | TL (μm) | 15.46 ± 1.47 * | 14.05 ± 1.36 | ||
TI (%) | 1.57 ± 0.47 | 1.49 ± 0.89 | ||||
Fang et al. [48] | Control: 159 Study: 175 | TDNA% | Significantly higher in study group than in control group ** | |||
TM | Significantly higher in study group than in control group ** | |||||
OTM | Significantly higher in study group than in control group * | |||||
Dobrzyńska et al. [49] | Control: 40 Study: 46 | TM | 0.90 ± 1.09 * | 0.30 ± 0.44 | ||
TDNA% | 1.60 ± 1.50 * | 0.78 ± 0.54 | ||||
Sakly et al. [50] | Control: 33 Study: 31 | TL (μm) | 24.98 ± 1.07 * | 22.44 ± 0.57 | ||
Martinez et al. [39] | Control: 20 NM: 6 RT: 4 RX: 31 | TL (μm) | Before work shift | After work shift | Before work shift | After work shift |
NM: 54.05 ± 3.7 | NM: 92.5 ± 19.02 * | 15.5 ± 2.4 | 15.2 ± 1.9 | |||
RT: 35.9 ± 17.1 | RT: 63.4 ± 15.4 * | |||||
RX: 15.8 ± 2.6 | RX: 28.6 ± 3.5 * |
Author | Population | Parameter Measured | Mean ± S.D. | |
---|---|---|---|---|
Study Group | Control Group | |||
Shafiee et al. [52] | Control: 35 Study: 46 | CA/100 cells | 1.43 *** | 0.56 |
Fang et al. [48] | Control: 159 Study: 175 | CA Rate (%) | 0.18 * | 0.13 |
Zakeri et al. [53] | Control: 35 IC: 32 NM: 36 R: 33 | acentrics/100 cells | IC: 3.23 ± 2.6 ** | 1.28 ± 0.5 |
NM: 2.87 ± 1.4 ** | ||||
R: 2.18 ± 0.9 ** | ||||
dicentrics/100 cells | IC: 0.21 *** | 0.04 | ||
NM: 0.14 *** | ||||
R: 0.13 *** | ||||
Zakeri et al. [54] | Control: 36 Card: 35; NT: 36 | acentrics/100 cells | Card: 3.27 ± 3.03 *** | 1.14 ± 0.50 |
NT: 5.50 ± 3.80 *** | ||||
dicentrics/100 cells | Card: 0.06 | 0.04 | ||
NT: 0.07 | ||||
Maffei et al. [55] | Control: 35 Study: 34 | aberrant cells/100 cells | 2.87 ± 3.10 ** | 1.08 ± 1.03 |
gaps/100 cells | 1.28 ± 1.70 | 0.51 ± 0.70 | ||
chromatid breaks/100 cells | 1.24 ± 1.57 | 0.77 ± 0.66 | ||
chromosome breaks/100 cells | 1.65 ± 2.38 ** | 0.26 ± 0.74 | ||
dicentrics/100 cells | 0.041 ± 0.080 | 0.017 ± 0.057 | ||
Cardoso et al. [56] | Control: 8 Study: 8 | CA/100 cells | 3.2 * | 2.4 |
Author | Population | Parameter Measured | Mean ± S.D. | |
---|---|---|---|---|
Study Group | Control Group | |||
Eken et al. [58] | Control: 30; Study: 40 | SCE frequency/cell | 6.86 ± 0.44 | 6.70 ± 0.53 |
Proliferation index | 1.90 ± 0.17 | 1.91 ± 0.13 | ||
Tug et al. [59] | Control: 35; Study: 39 | SCE frequency/cell | 5.19 ± 1.06 * | 3.38 ± 1.13 |
Sahin et al. [60] | Study: 21 | SCE frequency/cell | After exposure: 7.52 ± 0.27 *** | After vacation: 6.25 ± 0.17 |
Mrdjanovic et al. [61] | Control: 15; Study: 30 | SCE frequency/cell | No significant difference between the study group and the control group | |
Cardoso et al. [56] | Control: 8 Study: 8 | SCE frequency/cell | 6.2 * | 5.8 |
Proliferation index | 1.16 | 1.16 | ||
Engin et al. [62] | Control: 22 X-ray-exposed: 20 γ-ray exposed: 33 | SCE frequency/cell | X-ray: 10.5 ± 0.41 | 4.17 ± 0.32 |
γ-ray: 11.4 ± 0.68 | ||||
Author | Population | Parameter Measured | Mean ± S.D. | |
---|---|---|---|---|
Study Group | Control Group | |||
Sari-Minodier et al. [65] | Control: 69 Study: 132 | MN cells/1000 binucleated cells | 14.9 ± 8.1 * | 11.8 ± 6.5 |
Shafiee et al. [52] | Control: 35 Study: 46 | MN frequency (%) | 5.17 ± 1.7 ** | 6.89 ± 2.25 |
Gerić et al. [47] | Control: 24 Study: 24 | MN/1000 cells | 5.74 ± 3.89 | 5.38 ± 2.63 |
NPB/1000 cells | 1.61 ± 1.08 | 1.38 ± 1.65 | ||
NB/1000 cells | 4.09 ± 1.88 * | 2.96 ± 1.67 | ||
CBPI | 2.008 ± 0.153 | 1.977 ± 0.134 | ||
Fang et al. [48] | Control: 159 Study: 175 | MN/1000 cells | Significantly higher in study group than in control group * | |
Bouraoui et al. [66] | Control: 43 Study: 67 | MN frequency (‰) | 13.63 ± 4.9 *** | 6.52 ± 4.21 |
Eken et al. [58] | Control: 30 Study: 40 | MN/1000 cells | 6.88 ± 2.54 * | 5.50 ± 2.00 |
Nuclear Division Index | 1.94 ± 0.09 * | 1.95 ± 0.10 | ||
Sakly et al. [50] | Control: 33 Study: 31 | MN frequency (‰) | 22.10 ± 0.77 * | 10.76 ± 0.2 |
Zakeri et al. [53] | Control: 35 IC: 32 NM: 36 R: 33 | MN frequency (‰) | IC: 21.5 ± 9.6 ** | 1.8 ± 6.5 |
NM: 19.7 ± 3.8 ** | ||||
R: 16.8 ± 8.1 ** | ||||
Nuclear Division Index | IC: 1.58 ± 0.16 | 1.68 ± 0.18 | ||
NM: 1.56 ± 0.15 | ||||
R: 1.60 ± 0.12 | ||||
Ropolo et al. [67] | Control: 30 Study: 30 | MN cells/1000 binucleated cells | 3.62 Md | 3.06 Md |
MN cells/1000 mononucleated cells | 1.01 Md,*** | 0.40 Md | ||
NB/1000 cells | 0.25 Md | 0.22 Md | ||
NPB/1000 cells | 0.50 Md | 0.75 Md | ||
Aguiar Torres et al. [37] | Control: 39 Study: 42 | MN/2000 cells | 5.3 ± 0.6 *** | 1.3 ± 0.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piotrowski, I.; Dawid, A.; Kulcenty, K.; Suchorska, W.M. Use of Biological Dosimetry for Monitoring Medical Workers Occupationally Exposed to Ionizing Radiation. Radiation 2021, 1, 95-115. https://doi.org/10.3390/radiation1020009
Piotrowski I, Dawid A, Kulcenty K, Suchorska WM. Use of Biological Dosimetry for Monitoring Medical Workers Occupationally Exposed to Ionizing Radiation. Radiation. 2021; 1(2):95-115. https://doi.org/10.3390/radiation1020009
Chicago/Turabian StylePiotrowski, Igor, Aleksandra Dawid, Katarzyna Kulcenty, and Wiktoria Maria Suchorska. 2021. "Use of Biological Dosimetry for Monitoring Medical Workers Occupationally Exposed to Ionizing Radiation" Radiation 1, no. 2: 95-115. https://doi.org/10.3390/radiation1020009
APA StylePiotrowski, I., Dawid, A., Kulcenty, K., & Suchorska, W. M. (2021). Use of Biological Dosimetry for Monitoring Medical Workers Occupationally Exposed to Ionizing Radiation. Radiation, 1(2), 95-115. https://doi.org/10.3390/radiation1020009